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Figure 1. Comparison of GGN with different baselines. (a) an input image from ADE20K [61] (upper row) with the ground truth
object masks overlaid (lower row). Three different approaches: (b) Selective Search (SS) [51], (c) Mask R-CNN [22], and (d) our Generic
Grouping Network (GGN) are applied on the same image to predict the top 100 proposals. The upper images provide all top-100 proposals
predicted by three approaches with false and true positive proposals visualized in red and green boxes, respectively. The lower images
provide only true positive proposals. The number of true positive proposals or ground truth objects are denoted in parentheses. Among 20
ground truth objects, SS recalls only 4, Mask R-CNN detects 5, and GGN retrieves 14. SS is a bottom-up non-parametric approach, thus
has no notion of objectness. Mask R-CNN can make whole object proposals; however it still fails to detect objects that are not seen during
training. Our GGN can predict whole object proposals and generalize to unseen categories.

Abstract

Open-world instance segmentation is the task of group-
ing pixels into object instances without any pre-determined
taxonomy. This is challenging, as state-of-the-art meth-
ods rely on explicit class semantics obtained from large la-
beled datasets, and out-of-domain evaluation performance
drops significantly. Here we propose a novel approach for
mask proposals, Generic Grouping Networks (GGNs), con-
structed without semantic supervision. Our approach com-
bines a local measure of pixel affinity with instance-level
mask supervision, producing a training regimen designed
to make the model as generic as the data diversity allows.
We introduce a method for predicting Pairwise Affinities
(PA), a learned local relationship between pairs of pixels.
PA generalizes very well to unseen categories. From PA

we construct a large set of pseudo-ground-truth instance
masks; combined with human-annotated instance masks
we train GGNs and significantly outperform the SOTA on
open-world instance segmentation on various benchmarks
including COCO, LVIS, ADE20K, and UVO.

1. Introduction

Instance segmentation is the task of grouping pixels into
object instances [22]. In the closed-world setup, the task
is to detect and segment objects from a predefined taxon-
omy. In contrast, the open-world setting requires segment-
ing objects of arbitrary categories. For a model trained in
a closed-world setup, this means segmenting not only the
“seen” categories (those presented at training time) but also
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the “unseen” categories (not seen during training) [27, 54].
There is generally a large performance gap between the

seen and unseen domains. Leading computer vision sys-
tems today have tightly coupled recognition and segmenta-
tion; these systems are unable to segment out objects that
they cannot recognize (e.g. Fig 1 (c)). Comparing Aver-
age Recall (AR@100) of Mask R-CNN [22] trained on 80
COCO [33] classes vs a subset of 20 classes, AR@100 of
60 classes out of training taxonomy drops from 49.6% to
19.9% when no mask of these classes is provided in training
data. The “unseen” gap remains large if we train on larger
taxonomy (e.g., 1,000+ classes in training data) Table 5).
In contrast, humans can readily group and segment objects
which they cannot categorize - few of us can identify the
6500 Passerine bird species, but we can readily segment out
a perching bird from a tree branch. Or use another often-
quoted example: our familiarity with a generic quadruped
body plan enables us to segment out horses, donkeys and
zebras, and even an okapi when first encountered.

On the other hand, models which were common in com-
puter vision in 2000-2015 (e.g., [1, 4, 6, 18, 51, 58]), before
deep learning for supervised object detection took off, were
quite category-agnostic. They didn’t work as well as, say,
Mask R-CNN on a category for which it has trained, but
they worked across the board (e.g. Figure 1 (b)). The goal
was to come up with a moderately sized set of object pro-
posals which included the true objects. The emphasis was
on recall; precision was secondary. MCG [4] is an illustra-
tive example. It starts with local grouping which produces
a set of elementary regions of coherent color and texture,
“super-pixels”. These typically over-segment objects; e.g.
a person might be broken up into a face, a torso, legs, parts
of clothing, shadows, etc. MCG then assembles regions
into objects by considering various groupings of regions,
and ranks them on some “objectness” score. While some
learning is involved in both edge detection and objectness
ranking, the method works primarily with hand-crafted fea-
tures and a small number of parameters, quite unlike the
deep learning zeitgeist.

How do we get the best of both worlds? A modern in-
stance segmentation system (eg. Mask R-CNN) would do
well if given comprehensive training data containing a large
number of examples from all visual categories. While we
have a practically infinite supply of raw natural images, ob-
taining mask annotation is very expensive. Multiple ap-
proaches have emerged to handle this data problem. Self-
supervised learning [10, 11, 20, 42] is the most well-known;
self-learning [46, 47, 59, 62] is another approach, based on
the classical idea of adding high-confidence guessed la-
bels to previously unlabeled data, and then combining this
“pseudo ground truth” data with real ground truth. We ex-
ploit this second strategy.

Our approach begins with a learned pairwise affinity pre-

dictor (Figure 2a), followed by a module which extracts
and ranks segments (Figure 2b, essentially a very simpli-
fied version of MCG [4]). We can run this on any image
dataset without using annotations; we extract the highest
ranked segments as “pseudo ground truth” candidate ob-
jects. This is a large and category-agnostic set; we add it to
our (much smaller) datasets of curated annotations, to train
a Mask R-CNN instance segmentation module. Ideally this
model should become more generic and class-agnostic (Fig-
ure 2c). Indeed, this simple approach produces impressive
gains compared to closed-world training on the same back-
bone (Mask R-CNN) (Table 5, Table 6, Table 7): +11%
on VOC to Non-VOC cross-category evaluation, +3.9%
on COCO to LVIS cross-category evaluation, +5.8% on
COCO to ADE20K and +5.2% on COCO to UVO.

Our contributions in this paper include:
• A novel approach, Generic Grouping Networks

(GGNs), for open-world instance segmentation; GGN
exploits additional pseudo ground truth supervision
generated from learned pixel-level pairwise affinities.

• Comprehensive ablation experiments which provide
insights about GGNs and the problem of open-world
instance segmentation.

• GGNs achieve state-of-the-art performance in open-
world instance segmentation on various benchmarks
including COCO, LVIS, ADE20K, and UVO.

2. Related works
Object and instance segmentation. Before the success
of deep learning, object segmentation approaches typically
worked by grouping local regions into whole objects. Pop-
ular approaches include graph-based [15, 18], Normalized
Cut [24], Graph Cut [7], Multiscale Combinatorial Group-
ing [4], and Selective Search [51]. Since deep learning, end-
to-end approaches proved their success on problems such as
semantic segmentation [37,39], instance segmentation [22],
panoptic segmentation [29, 52]. Despite sharing the com-
mon problem of segmentation, our approach is different in
the open-world setup: instead of assuming a closed-world
taxonomy, our work aims at detecting and segmenting both
seen and unseen objects.
Pairwise affinity based approaches. Pairwise affinity is
used in most graph-based segmentation methods [7, 23, 24]
as an important term defining a relation graph of pixels for
segmentation. The pixel-level pairwise affinity can be ei-
ther hand-constructed [7, 23, 24] or learned [16, 17, 28, 34,
35,40,50]. Similar to pairwise affinity, object boundary de-
tection [41, 57] is a dual problem but offers weaker super-
vision (sec 5) and cannot be trained as-is on non-exhaustive
annotations. Different from previous approaches, instead
of directly using the learned pairwise affinity for segmenta-
tion, we use it as an intermediate representation for pseudo-
ground-truth generation which is later used to train our
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Figure 2. Overview of our approach. (a) First, a Pairwise-Affinity Predictor (PA Pred.) is trained to predict pairwise affinities using non-
exhaustive segmentation masks as supervision. (b) Once trained, PA Pred. is used to predict pairwise affinities of the images. A grouping
module is then applied on the predicted pairwise affinity maps to generate pseudo-ground-truth masks. (c) A class-agnostic generic object
proposal network (e.g., class-agnostic Mask R-CNN) is trained end-to-end using a combination of GT and generated pseudo-GT masks.

generic grouping model. Another difference between our
approach and previous learned pairwise affinity comes from
the open-world setting of the problem.
Open-world benchmarks and approaches. Open-world
setup [5, 43] has been recently (re)-introduced into various
problems in computer vision such as recognition [30, 38],
tracking [36], detection [25, 27, 53], and segmentation [54].
Among these, our work is mostly related to UVO [54] and
OLN [27]. We share the same problem of interest of open-
world instance segmentation with UVO [54]. However, [54]
provides a new benchmark for the problem while our work
provides an approach. Compared with the concurrent OLN
work [27], which uses an objectness-based loss for gener-
alization to unseen classes, our approach addresses general-
ization by combining pixel-level pairwise affinity with local
grouping. Our work and OLN are orthogonal and comple-
mentary; as shown later, our approach alone is on par with
OLN, and produces 4.5 − 5.7% improvements when com-
bined with OLN (see Table 6 in section 5).

3. Learning pairwise pixel affinities

Grouping can be locally represented by pixel pairwise
relationship: whether two neighboring pixels should be
grouped together or not. Given a 3-channel RGB input im-
age I ∈ R3×H×W , we consider a pixel’s pairwise relation-
ship in a 3×3 neighborhood. This gives a pairwise affinities
map of P ∈ {0, 1}8×H×W and Pi,j ∈ {0, 1}8 encodes the
local pixel-level pairwise affinities of the pixel (i, j) with
its 8-neighboring pixels in the image I . Figure 4 (c) illus-
trates the pairwise affinity encodings of the two pixels at the
centers of the two image patches marked with the pink and
yellow squares in Figure 4 (a) and (b). We use pixel-level-
prediction convolutional neural networks to predict P (PA
Pred., Figure 2 a), such as FCN [39] and UPerNet [56]. We
remark that this is a dual problem to binary object bound-
ary detection ( [41,57]), and techniques used for training PA
Pred. can also be adopted to binary object boundary detec-
tors to serve as the local representation for our framework.

Figure 3. Visualization of predicted pairwise affinities and gen-
erated pseudo masks, trained only on Person class in COCO.
Despite only seeing masks of Person during training, the PA pre-
dictor correctly captures pairwise relationships of other types of
objects (top-row). By grouping pixels based on predicted PA, we
can generate pseudo masks of other categories (bottom-row).

Training from non-exhaustive segmentation masks. Ide-
ally, if all pixels in the image are exhaustively annotated
with instance segmentation masks, e.g., all object bound-
aries are labelled, then all pairs of neighboring pixels can
provide good supervision signal for learning pairwise affin-
ity. However, exhaustive annotations for instance segmen-
tation are expensive and time-consuming to obtain, so most
datasets come with non-exhaustive segmentation masks (eg.
COCO [33]). In particular, non-annotated out-of-taxonomy
objects cannot be distinguished from background pixels. To
address this, we only use neighboring pixels with object–
object or object–background relations for training pairwise
affinities; we ignore the unreliable background-background
pairs. In addition, training of pairwise affinities is unbal-
anced: only pixels at an object’s boundary has zero-valued
affinities; all other pixels have affinity 1 to all their neigh-
bors. We weight the positive affinities by computing the
ratio between the positive affinities and negative affinities
on a subset of training data (e.g., 0.05 for positive).
What does a Pairwise Affinity predictor learn? Intu-
itively, an ideal PA measure should discriminate between
instance boundaries and instance interiors: i.e. whether two
neighboring pixels cross an object boundary or not. Ide-

4424



1
1
1
1
1
1
1
1

1
0
0
0
0
1
1
1

a) b) c)

d) e)

Figure 4. Pairwise affinity encoding and prediction. Visualiza-
tion of an example input image (a) and its corresponding ground
truth mask annotation (b) and two pairwise-affinity encoding vec-
tors (c) of the two center pixels of the two image patches marked
with pink and yellow squares. The pink-patch’s center pixel be-
longs to the same instance with all of its 8-neighbor pixels, thus
it is encoded with a vector of all ones. The yellow-patch’s center
pixel lies at the object boundary and has 4 neighbor pixels belong-
ing to background, thus it is encoded with a binary vector with
four 0s and four 1s. (d) Edge prediction of the image in (a) using
off-the-shelf edge detector [49]. (e) Pairwise affinity prediction of
the image in (a) using our Pairwise Affinity predictor. Our predic-
tor is trained using only person category masks from COCO. Best
viewed in color.

ally, our PA predictor should be robust to boundaries of all
objects, not just the categories seen during training; this is
a key requirement for success in the open-world setting.
Indeed, this is the case: our PA predictor learns instance
boundaries and generalizes well to unseen classes. Figure 3
top-row and Figure 4 (e) visualize pairwise affinity pre-
dictions from our PA predictor, trained using ground truth
masks of only the person category from COCO. Our PA pre-
dictor learns to generalize to unseen classes such as zebra,
bird, temple, and cooking pan. We note that ‘person’ masks
are particularly diverse owing to clothing and accessories.
This is helpful for models to learn and generalize the no-
tion of semantic boundaries. We show quantitative results
on PA’s generalization in section 5.2 and exploit this gen-
eralization behavior to improve segmentation in section 4.
Finally, we point out that pairwise affinity should capture
the semantics of instance boundaries; this is quite differ-
ent from visual edge maps because many visual edges are
not instance boundaries. Figure 4 (d) presents the edge pre-
diction by an off-the-shelf edge detector [49]. Many visual
edges on the back of the zebra are clearly not object bound-
aries, but are still detected by an edge detector.

4. Augmenting with pseudo ground truth
Existing state-of-the-art detectors and instance segmen-

tation models, such as Mask R-CNN, often fail to detect and
segment novel objects unseen during training. This can be
caused by difficulties to group pixels into unknown entities

due to lack of supervision signals during training. In addi-
tion, even a novel region is grouped and proposed, a generic
concept of objectness is missing and such out-taxonomy
proposals are suppressed. We kill two birds with one stone,
by using pseudo-GT masks generated from PA to train these
detectors. The pseudo-masks benefit from pixel diversity to
provide novel segments not seen during training, and there-
fore enhance supervision signals for both novel grouping
and a more inclusive concept of objectness.
Grouping pixels into regions. Based on predicted pairwise
affinities, we leverage class-agnostic local grouping algo-
rithms to group pixels into instances. One may use the Con-
nected Component (CC) algorithm for grouping. CC treats
all affinities independently using a hard cut-off threshold to
decide pixel connections which may be a sensitive parame-
ter to tune. Alternatively one may use graph-based hierar-
chical grouping (GBH) [15] which is a variant of agglomer-
ative clustering. In segmentation literature [3, 60], Oriented
Watershed Transform (OWT), globalized contour through
Normalized Cut (gPb) [48] and Ultrametric Contour Map
(UCM) [2] are also used for grouping from the edge map
of an image. Following [2, 4], we first aggregate the im-
age pairwise affinity map into a semantic edge map using
pooling along the channel dimension, e.g., reducing from
8-channels to 1-channel. This semantic edge map is passed
to OWT to generate initial segments, whose edges are then
globalized through normalized cut. We take the average of
semantic edge map and its globalized version as input to
UCM for grouping. We acknowledge that a different linear
combination of these two might work better upon further
study. We provide the ablation comparing CC, GBH, and
different components of OWT+gPb+UCM in section 5.
Computing objectness. Objectness [13] measures group-
ing qualities; in our framework, it is critical to decide
which pseudo-GT masks to select for training detectors. An
ideal objectness score should reveal over-segmentation and
under-segmentation. In previous literature, objectness can
be modeled by low-level features such as shape and con-
tours such as MCG [4] or learned directly from annotated
data as classification (Region Proposal Network [45]) or re-
gression (Object Localization Network [27]). We consider
both types of objectness. For low-level features, we use pre-
dicted pairwise affinities to define objectness score of each
region R by total affinities OPA(R):

OPA(R) =
Inner(R)

Rinner
− Outer(R)

Rboundary
(1)

where Inner(R) and Outer(R) are the inner and outer
affinities of R defined by the sum of pairwise affinities
of pixels inside or crossing-boundary of R, respectively.
Rinner and Rboundary denote the number of pixels inside R
and on the boundary of R. Intuitively, we want to rank high
for the region with strong inner pairwise affinities and weak
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affinities at the boundary (a.k.a strong cut). For learned ob-
jectness, we consider scoring from OLN [27] OOLN (R) :

OOLN (R) =
√
centerness(R) ∗ IoUness(R) (2)

where centerness(R) and IoUness(R) are the centerness
and IoU predictions of the bounding box of R. We can op-
tionally combine OPA and OOLN by taking average.
Generic Grouping Networks (GGNs). We generate class-
agnostic masks from PA predictor and grouping module and
use the objectness score to rank regions provided by group-
ing methods (Figure 2 b). We then select top ranked regions
from each image as pseudo ground-truth (GT) masks for
training our generic object proposal network (Figure 2 c).
Since the whole approach to generate pseudo-GT masks are
designed in a class-agnostic grouping fashion, we expect the
pseudo-GT masks to cover a diverse set of objects and parts,
and more importantly most of them are from unseen cate-
gories, as shown in Figure 3 bottom-row. Since our GGN is
trained on a large and diverse set of masks, it is expected to
generalize to unseen classes, thus providing a good solution
for open-world instance segmentation. GGN is generic in
the sense of both pixels and models: it can work on different
domains of images, labeled or unlabeled, and it can work on
any architecture for object detection or segmentation, such
as Faster R-CNN [45], Mask R-CNN [22], YOLO [44], or
Swin Transformer [37]. The adoption is as simple as mak-
ing the multi-class classification prediction head into a bi-
nary foreground vs. background classification head.

5. Experiments

5.1. Implementation Details

Datasets. We conduct experiments on COCO17 [33],
LVIS [19], ADE20K [61], and UVO [54]. COCO is a stan-
dard benchmark for instance segmentation with 80 object
categories annotated on 164k images. LVIS is an instance
segmentation dataset with 1203 classes in a long-tail distri-
bution. It is labeled as a federated dataset and does not in-
clude exhaustive label for its categories. We adopt LVIS to
study cross-category generalization when a large taxonomy
is provided. ADE20k is a semantic segmentation dataset
with all pixels exhaustively annotated by object instances
or stuff. UVO is a video instance segmentation dataset of
YouTube videos (Kinetics400 [26]) with object masks ex-
haustively labeled. We use validation set of ADE20K (2000
images) and UVO sparse (7356 frames) to evaluate open-
world segmentation in the wild in section 5.4. In all se-
tups, we use only mask annotation (without class labels) for
training and evaluation in the open-world, class-agnostic.
We note that PA predictor, baseline methods (e.g., Mask R-
CNN), and GGN has access to the same labeled masks.

Backbone architectures and loss function. We adopt
UperNet [56] for our PA predictor to learn pairwise affini-
ties. For training, our generic grouping networks, we use
Mask R-CNN [22] with a ResNet-50 backbone as a de-
fault setup. Unless specified otherwise, models are ini-
tialized by ImageNet [12] pre-training. We use Binary
Cross Entropy loss to train pairwise affinities. We ig-
nore background-background affinity as in section 3. We
note that back-propagating losses that include background-
background affinities leads to very poor cross-category gen-
eralization (e.g., −15% Average Recall).
Ranking and selecting pseudo-GT masks. Unless oth-
erwise specified, we use OPA (Eq. 1) to rank pseudo-
GT masks. We pick top-k pseudo-GT masks per image
(k∈ [1, 3]), where k is selected to improve unseen categories
performance while minimally impact seen performance.
Training and evaluation. We build model training and in-
ference on MMDet [9] platform; all training are done with
the default 1x schedule. Following previous object proposal
literature [43,51], we use average recall (AR) over multiple
IoU thresholds (0.5:0.95) to evaluate model performance.
Cross-category evaluation. Cross-category generalization
is a major challenge for open-world: how do we detect
and segment objects whose categories are outside training
data. We split existing datasets by their categories to con-
struct controlled environment for ablations (Table 1). In
each setup, we train PA and baseline methods with the same
splits of categories (no additional supervision for PA).

On COCO dataset, we follow common practice [27, 43]
to split COCO into 20 classes overlapped with Pascal
VOC [14] for training (seen) and use the rest of 60 COCO-
exclusive classes for evaluation (unseen). We further in-
clude an extreme case by using only person class for train-
ing and the rest 79 classes for evaluation.

On LVIS dataset, some categories are highly overlapped:
for example, clothes (“jacket”, “wet suit”) are highly over-
lapped with “person” when the person is wearing the
clothes. In a class-agnostic setup, a detector trained with
person masks can detect clothes as person and vice versa.
Other examples of high-overlapped category pairs are “ball”
with “tennis ball”, “alcohol” with “beer bottle”, or “com-
puter monitor” with “television set”. COCO and LVIS
share the same set of images, but with different annota-
tions. LVIS covers 1203 categories which include all 80
categories from COCO. COCO also exhaustively annotates
all masks of objects that belong to its 80 categories while
LVIS is annotated so as to maintain a similar number of
masks across categories. This means that some object in-
stances, even if they belong to LVIS categories, are not an-
notated. As COCO masks are more exhaustively annotated,
we use COCO masks and validate cross-category overlap
with LVIS masks. We find that there are 67k LVIS masks
outside COCO taxonomy having >0.5 IoU with COCO
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Dataset Train Eval Image Mask

COCO
Person(1) non-Person 64k 161k
VOC(20) non-VOC 95k 493k

LVIS
COCO(80) non-COCO 100k 455k

non-COCO(1122) COCO 85k 749k
+Person(1123) non-Person 86k 775k

Table 1. Cross-category generalization evaluation setups. We
split categories in COCO and LVIS to evaluate.

Grouping CC GBH WT+UCM +OWT +gPb
Recall@all 14.4 17.1 23.6 23.8 24.2

Table 2. Comparing different grouping methods. Methods are
applied on the same affinity maps and output roughly a similar
number of proposals. OWT+gPb+UCM gives the best recall.

Aggregate Min Max Mean
8-channel 22.8/19.3 18.1/16.7 22.1/18.9
1-channel 19.9/18.4 NA/NA 23.1/18.5

Table 3. The effect of different PA aggregation. Evaluated by
AR@100 on both seen and unseen categories (VOC/non-VOC)
and results are separated by /. 1-channel prediction is not appli-
cable with max-pooling since the prediction target is all 1s (all
pixels have at least one neighbor connected). 8-channel PA pre-
diction with min pooling provides the best AR.

masks. To ensure a clear distinction between seen and un-
seen categories, we remove those masks in both training and
validation for cross-category generalization evaluation. We
study transfer performance by training on COCO categories
and evaluate on LVIS non-COCO categories and vice-versa.

5.2. Learning Pairwise Affinities: Ablation Study

Grouping mechanisms. We revisit different grouping
methods to construct segment masks from pairwise affini-
ties: Connected Component (CC), Graph-Based Hierarchi-
cal [18] (GBH) and methods based on Ultrametric Contour
Map [2] (UCM). In UCM, we ablate the effect of orienta-
tion in watershed transform (OWT vs. WT), and the effect
of including globalized edge (gPb). To evaluate, we gen-
erate mask outputs from each of the method and directly
evaluate their AR. We tune parameters for each method so
that each has roughly the same number of output segments
on average. Since CC gives a single non-overlapping out-
put instead of a hierarchical structure like GBH or UCM,
we use multiple thresholds and use all segments from each
threshold. We found that UCM-based methods significantly
outperforms other two methods (Table 2): whereas CC and
GBH make decision on a merge based on a single pairwise
relationship, UCM uses all relations between two segments,
and is more robust. In addition, adding orientation and gPb
further improves grouping results.
PA aggregation. In UCM, PA (8 neighbors) need to be ag-
gregated into one value to feed to WT. The aggregation can

be implemented by a pooling operation and can be applied
before or after PA prediction. Specifically, we can either:
(i) train a PA predictor to predict a 8-channel PA map then
apply aggregation on the prediction output of the PA pre-
dictor; or (ii) train a PA predictor to predict a 1-channel PA
map which is the aggregated version of ground truth. We
compare different methods for aggregating pairwise affinity
values (Table 4) and found min aggregation works the best.
Alternatively, we can directly predict the aggregated pair-
wise affinities. We found that a single-channel prediction
of mean of pairwise affinities works comparably with 8-
neighbor predictions (Table 4). We remark that “1-channel,
min” is equivalent to adopting a binary boundary detector
trainer in our framework (e.g., HED [57]), which offers
weaker supervision signals than PA.

5.3. Cross-category evaluation of GGN

We use the pseudo-GT masks from PA+Grouping to
train detectors for open-world segmentation. We option-
ally use additional ground truth masks when they are avail-
able. Since PA generalize well in the open-world, the
pseudo masks offer more diversities to the training data and
therefore improve generalization of downstream detectors
(GGNs). We begin by comparing PA with other candidate
representations for open-world segmentation.
Pairwise affinity is a strong representation for open-
world. Besides pairwise affinities, we consider a few other
types of mid-level representations to encode grouping and
generalize in the open-world:

• Edge maps are strong alternative to PA to encode
grouping. We take SOTA edge detector DexiNed [49].

• Depth maps by pretrained Mannequin network [32].
• Feature affinities computed on semantic features,

self-supervised trained on ImageNet (MoCoV2 [11]).
Most of the features here, except edge map, are not

proper to run UCM to construct grouping. Therefore, we
consider replacing the RGB input with the proposed repre-
sentation (e.g., depth map or PA) to understand how well
the representation can generalize in the open-world com-
pared to RGB in cross-category evaluation.

Surprisingly, all representations have regularizing ef-
fects compared to RGB to improve generalization to unseen
classes when only training on person (Table 4). Pairwise
affinities outperform all other types of representations re-
gardless of application methodologies (replacing input or
adding pseudo masks). In particular, using UCM to gener-
ate pseudo-GT masks for edge does not benefit much, since
without semantics, edge map can over-segment entities.
GGN significantly outperforms baselines on cross-
category generalization. We take top-scoring pseudo-
GT masks and use them in addition with the ground truth
masks; we remove pseudo-GT masks whose IoU overlap
with in-taxonomy GT masks are greater than 0.5.
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Method
replace RGB UCM mask

RGB depth edge MoCo PA edge PA
nonPerson 4.9 10.9 10.5 10.7 14.1 7.9 20.9
nonVOC 19.9 17.8 21.3 21.8 26.5 19.7 28.7

Table 4. Compare Pairwise Affinity with other types of mid-
level representations. All mid-level representations can serve to
help generalizing to unseen categories in certain scenario to cer-
tain degrees. The significant improvement of pairwise affinities
over edge map shows the importance for boundaries to contain se-
mantics. Methods are evaluated by AR@100. Pairwise Affinities
provide strongest generalization signals for open-world grouping.

Train (# classes)
Mask PA+

GGN
Upper

R-CNN Grouping Bound

COCO-Dataset
Person (1) 4.9 14.6 20.9 49.2
VOC (20) 19.9 22.0 28.7 49.6

LVIS-Dataset
COCO (80) 16.5 17.1 20.4 36.1

non-COCO (1123) 21.7 16.2 23.6 35.1
+Person (1124) 27.3 18.4 29.1 44.2

Table 5. GGN generalizes to out-taxonomy categories sig-
nificantly better than baselines. GGN also outperforms the
pseudo-GT masks generated by pairwise affinities (denoted as
PA+Grouping), proving the benefit of the instance-level training
with additional pseudo-GT supervision. Upper bound indicates
AR@100 achieved by training on entire taxonomy (all classes).

GGN has significantly stronger cross-category general-
ization compared to baseline Mask R-CNN (Table 5). On
low to medium-sized taxonomy on COCO dataset, GGN
achieves +16% AR@100 gain and +8.8% AR@100 gain
when training on Person-only and training on 20 VOC
classes, respectively. In the large-taxonomy setup, GGN
achieves 1.8% to 3.9% gain on AR@100 in different setups.
The gain is smaller when training on non-COCO categories;
we believe that this is caused by the fine-grained taxonomy
of LVIS: many classes in LVIS are objects parts or parts of
other classes. Training on non-COCO categories on LVIS
makes pairwise affinities closer to edge maps.

Additionally, we evaluate pseudo-GT masks generated
by pairwise affinities with UCM. This is equivalent to our
GGN but without using top-down instance-level training (as
in Figure 2 b), denoted as PA+Grouping. Comparing with
Mask R-CNN baseline, local grouping using learned pair-
wise affinities offer stronger performance in low to medium
sized taxonomy. Finally, GGN significantly outperforms
the PA+Grouping baseline which suggests the benefits of
instance-level end-to-end training on pseudo-GT masks.
GGN is comparable and complementary to state-of-the-
arts object proposal method. Object Localization Net-
work (OLN) [27] is a concurrent work to tackle open-
world object proposal. OLN proposes to replace classifi-

Backbone Base OLN GGN
GGN+ GGN+
OOLN OLN

Faster R-CNN 24.9 33.0 31.5 34.7 37.2
Mask R-CNN 19.9 26.9 28.7 30.9 33.7

Table 6. GGN is competitive yet complementary to OLN.
Trained on VOC and evaluated on non-VOC using AR@100.
Adopting OOLN improves ranking of pseudo-masks and thus im-
proves GGN; adopting OLN backbone further improves.

Method Ranking
ADE20K UVO
AR AP AR AP

Selective Search 3.8 - 4.7 -
Mask R-CNN 14.7 6.4 40.1 18.5

GGN
OPA 18.3 7.9 42.6 19.4

OPA +OOLN 21.0 9.7 43.4 20.3
GGN, pseudo-GT pre-training 21.5 9.3 45.3 21.0

Table 7. Open-world segmentation in the wild on ADE20K
and UVO. GGN significantly outperforms the baseline Mask R-
CNN when using the same amount of training data and annota-
tion. In addition, having stronger objectness by combining OPA

and OOLN further improves model performance. Finally, replac-
ing ImageNet label pre-training with ImageNet pseudo-GT masks
pre-training (sec 5.5) offers additional improvement.

cation with localization quality prediction to avoid over-
fitting to annotated objects, which is similar to how we
train pairwise affinities by not backpropagating the loss in
un-annotated relationships. Different from OLN, pseudo
masks generated bring more diversity to training data, and
therefore help to generalize better. We compare GGN with
OLN in Table 6 and find that GGN achieves similar perfor-
mance as OLN (−1.5% on box AR@100, +1.8% on mask
AR@100). When adding OOLN (Eq. 2) to rank and select
pseudo-GT masks, GGN improves by 2.2%. When adopt-
ing OLN as backbone, GGN sets new state-of-the-arts for
cross-category generalization of VOC to COCO.

5.4. Evaluate open-world segmentation in the wild

Ablations in section 5.3 focus on cross-category general-
ization in a controlled version of open-world. A more prac-
tical question is: how well detectors can generalize across
datasets in the wild? It is difficult to evaluate since com-
mon datasets, e.g., COCO and LVIS, are only partially-
annotated. Evaluating open-world segmentation on such
datasets may fail to capture performance difference across
methods due to punishing precision and not rewarding re-
call [8]. To handle this, we adopt ADE20K [61] and
UVO [54] for evaluating generic proposals in the wild open-
world. Specifically, we treat each segmentation mask in
ADE20K or UVO as a ground-truth semantic entity and
evaluate Average Recall (AR) and Average Precision (AP).
This setup evaluates both in-taxonomy and out-taxonomy
segments. While UVO contains only objects, ADE20K also
includes stuff masks. We emphasize that this is truly in the
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Figure 5. GGN outperforms ImageNet supervised pre-training for open-world instance segmentation and demonstrates promising
scaling behaviors. We compare pseudo-GT mask pre-training by GGN with ImageNet label pre-training on closed-world (COCO, a),
cross-category (non-COCO in LVIS, b) and open-world (UVO, ADE20K, c,d). Except closed-world setting, pseudo-GT masks provide
stronger pre-training signals than ImageNet annotated labels (b-d). In addition, performance improves when more pseudo-GT masks
selected per image (a-d) or more pixels (unlabeled images) (e) are used.

(a) GT (81) (b) Mask R-CNN (16) (c) GGN (30)

(d) GT (13) (e) Mask R-CNN (4) (f) GGN (9)

Figure 6. Visualization of predictions of GGN and Mask R-
CNN on ADE20K and UVO. GGN retrieves more instances cor-
rectly (numbers denoted in parentheses) and covers a more diverse
set of object categories.

wild test as no fine-tuning is done on ADE20K or UVO.
We compare GGN with Selective Search [51] and Mask

R-CNN baselines trained with the GT masks of all 80
COCO classes from COCO dataset (Table 7). GGN (en-
hanced by pseudo masks) significantly outperforms the
baseline on both ADE20K and UVO dataset, both AR and
AP. In addition, better ranking by combining OPA and
OOLN further improves model performance. Qualitative
results comparing Mask R-CNN and GGN on UVO and
ADE20K are showed in Figure 6 (more in supplementary).

5.5. Pre-training on unlabeled images with GGN

Since PA-based bottom-up grouping can generate masks
for any unlabeled image, we hypothesize that training with
pseudo-GT masks from additional pixels may help open-
world segmentation. Masks from PA generalizes well to
new categories on new pixels, and thus benefit from pixel
diversity. We study the effect of training GGN on pseudo-
GT masks from unlabeled images from ImageNet [12].

Specifically, we use PA trained on 80 COCO cate-
gories from COCO with random initialization. We generate
pseudo-GT masks on ImageNet images and pre-train a ran-

domly initialized Mask R-CNN on pseudo-GT masks (18
epochs). We then finetune the model on COCO annotated
masks (80 categories) for standard 1x schedule. Similar to
previous training from random initialization setup [21], we
use GroupNorm [55] for long training with small batch size.

Results are summarized in Figure 5. When evaluated
on COCO categories (same as training, closed-world), pre-
training by pseudo-GT masks performs slightly worse than
supervised label pre-training (-1.4%). On open-world setup,
however, pseudo-GT pre-training consistently outperforms
supervised training. We note that different from closed-
world [21], ImageNet supervised pre-training is a strong ini-
tialization for open-world (see supplementary). In addition,
we observe two promising scaling behaviors of pseudo-
GT pretraining: a. using more masks per image, despite
some being noisy, improves performance; using more im-
ages/ pixels improves performance for both closed-world
and open-world instance segmentation. We show similar
results of Pre-training on images from OpenImages [31] in
supplementary materials. Finetuning on both COCO an-
notated masks and PA generated Pseudo-masks on COCO
images provides additional gain (last row in Table 7).

6. Conclusion

We have presented GGN, a novel approach for open-
world instance segmentation which combines learned se-
mantic boundaries with grouping to generate additional
pseudo ground truth for instance-level training. GGNs
significantly outperform baselines on various benchmarks.
GGN is on par with state-of-the-art approaches, e.g.,
OLN [27], and when combined with OLN, GGN obtains
an additional 6.8%, establishing new state-of-the-art results
for open-world instance segmentation. Finally, we showed
that GGN is robust when evaluated “in the wild” and bene-
fits from training on additional unlabeled data.
Acknowledgement. We thank Ross Girshick for the discus-
sion on baselines and grouping methods and Abhijit Ogale
for the discussion about open-world setting.
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Leal-Taixé. Opening up open-world tracking. CoRR,
abs/2104.11221, 2021. 3

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2, 5

[38] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,
Boqing Gong, and Stella X Yu. Large-scale long-tailed
recognition in an open world. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2537–2546, 2019. 3

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2, 3

[40] Michael Maire, Takuya Narihira, and Stella X. Yu. Affin-
ity cnn: Learning pixel-centric pairwise relations for fig-
ure/ground embedding. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2016. 2

[41] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,
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