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Figure 1. PhoCaL comprises 60 high quality 3D models of household object in 8 categories with different photometric complexity.

The selected objects include challenging texture-less, occluded, symmetric, reflective and transparent objects. Our robotic-induced pose

annotation pipeline provides highly accurate 6D pose labels even for objects that are hard to capture by modern RGBD sensors. The figure

shows RGB, 3D bounding boxes and rendered Normalized Object Coordinate Space (NOCS) map for 4 example scenes.

Abstract

Object pose estimation is crucial for robotic applica-

tions and augmented reality. Beyond instance level 6D

object pose estimation methods, estimating category-level

pose and shape has become a promising trend. As such, a

new research field needs to be supported by well-designed

datasets. To provide a benchmark with high-quality ground

truth annotations to the community, we introduce a mul-

timodal dataset for category-level object pose estimation

with photometrically challenging objects termed PhoCaL.

PhoCaL comprises 60 high quality 3D models of household

objects over 8 categories including highly reflective, trans-

parent and symmetric objects. We developed a novel robot-

supported multi-modal (RGB, depth, polarisation) data ac-

quisition and annotation process. It ensures sub-millimeter

accuracy of the pose for opaque textured, shiny and trans-

parent objects, no motion blur and perfect camera synchro-

nisation.

To set a benchmark for our dataset, state-of-the-art

RGB-D and monocular RGB methods are evaluated on the

challenging scenes of PhoCaL.

1. Introduction

Vision systems interacting with their environment need

to estimate the position and orientation of objects in space,

which highlights why 6D object pose estimation is an im-

portant task for robotic applications. Even though there

have been great advances in the field [6, 42], instance-level

6D pose methods require pre-scanned object models and

support limited number of objects. Category-level object

pose estimation [40] scales better to the needs of real oper-

ating environments. However, photometrically challenging

objects such as shiny, e.g. metallic, and transparent, e.g.

glass, objects are very common in our daily life and little

work has been done to estimate their 6D poses within prac-

tical accuracy on a category-level. The difficulty arises from

two aspects: first, it is difficult to annotate 6D pose ground

truth for photometrically challenging objects since no tex-

ture can be used to determine key points; second, commonly

used depth sensors fail to return the correct depth infor-

mation, as structured light and stereo method often fail to

correctly interpret reflection and refraction artefacts. As a

consequence, RGB-D methods [25, 40] do not work reli-

ably with photometrically challenging objects. We intro-
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Figure 2. Our dataset comprises 60 household objects among 8 object categories. The training and test split is depicted here.

duce PhoCaL, a class-level dataset of photometrically chal-

lenging objects with high-quality ground-truth annotations.

The dataset provides multi-modal data such as RGB, depth

and polarization which enables investigation into object’s

surface reflectance properties.

We obtain highly accurate ground truth poses with a

novel method using a collaborative robot arm in gravity

compensated mode and a calibrated mechanical tip. In or-

der to annotate the 6D pose of transparent and non-textured

objects, a specially designed tip is mounted on the robot

arm. With the calibrated tip, the positions of pre-defined

points on the object surface are acquired on the real ob-

ject and matched to a scan thereof. Using this method, the

object pose can be determined with an order of magnitude

more accuracy than previous methods. For transparent and

textureless objects, topographic key points are used instead

of textural ones. The points gathered in this way are then

matched to the object model in a final ICP [2] step to yield

an accurate fit.

The camera to robot end-effector transformation is

needed to obtain the object poses in camera coordinates.

Typically, hand-eye calibration approaches solve this by vi-

sually estimating the marker position and optimizing for

the transformation between camera and end-effector. To

minimize the error propagation and obtain highly accurate

ground truth labels, we instead used the end-effector tip of

the arm in gravity-compensated mode to measure the posi-

tion of 12 points on a ChArUco [1] board. This allows us

to use the robot’s accurate position system to obtain both

object poses and camera poses for image sequences.

Beyond photometrically challenging categories and

high-quality annotations, multi-modal input is another high-

light of PhoCaL. As the active depth sensors fail on metallic

and transparent surfaces, we include an additional passive

sensor modality in the form of a polarization camera. It pro-

vides valuable information on object surfaces [22]. In our

setup, we designed and 3D printed a rig that holds multi-

ple cameras, each mounted on it and carefully calibrated.

During recording, a pre-defined trajectory is repeated by

the robot arm. The robot arm stops when capturing images

from all cameras, which avoids motion blur and diminished

effects from imperfect synchronization.

In summary, our main contributions are:

1. We propose PhoCaL, a multi-modal (RGBD +

RGBP) dataset for category-level object pose esti-

mation. The dataset comprises 60 high-quality 3D

models of household objects including symmetric,

transparent and reflective objects in 8 categories with

24 sequences featuring occlusion, partial visibility and

clutter.

2. We introduce a new and highly accurate pose anno-

tation method using a robotic manipulator that al-

lows for sub-millimeter precision 6D pose annotations

of photometrically challenging objects even with re-

flective or transparent surfaces.

2. Related Work & Current Challenges

Standardized datasets are used in the field of object pose

and shape estimation to quantify and compare contributions

and advances in the field. These datasets generally fall in

two domains: instance-level datasets, where the 3D model

of the object is known a priori; and category-level datasets,

where the exact CAD model is unknown. Tab. 1 provides

an overview of related datasets in both domains.

2.1. Instance­level 6D Object Pose Dataset

One of the earliest, most widely used publicly available

datasets for instance level pose estimation is LineMOD [19]

and its occlusion extension LM-Occlusion [5]. Their data
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FAT [38] ✓ ✓ ✓ ✓ ✓ ± 21 > 1k CC BY-NC-SA 4.0

BlenderProc [12] ✓ ✓ ✓ ✓ ✓ ± ± > 1k GNU GPL 3.0

LabelFusion [31] ✓ ✓ ✓ ✓ ± 12 138 BSD 3-Clause

Toyota Light [21] ✓ ✓ ✓ ✓ ± 21 21 MIT

YCB [8, 41] ✓ ✓ ✓ ✓ ✓ ± 21 92 MIT

Linemod [5, 19] ✓ ✓ ✓ ✓ ✓ ± 15 15 CC BY 4.0

GraspNet-1Billion [15] ✓ ✓ ✓ ✓ ✓ ± 88 190 CC BY-NC-SA 4.0

T-LESS [20] ✓ ✓ ✓ ✓ ✓ ± 30 20 CC BY 4.0

HomebrewedDB [23] ✓ ✓ ✓ ✓ ✓ ± 33 13 CC0 1.0 Universal

ITODD [14] ✓ ✓ ✓ ✓ ✓ (✓) ± 28 800 CC BY-NC-SA 4.0

StereoOBJ-1M [26] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ± 18 183 Not (yet) released

kPAM [30] ✓ ✓ ✓ ✓ ✓ 2 91 362 MIT

CAMERA25 [40] ✓ ✓ (✓) ✓ ✓ 6 42 30 MIT

REAL275 [40] ✓ ✓ ✓ ✓ 6 42 13 MIT

TOD [27] ✓ ✓ ✓ ✓ ✓ ✓ 3 20 10 CC BY 4.0

Ours (PhoCaL) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8 60 24 CC BY 4.0

Table 1. Overview of pose estimation datasets. The upper part shows instance-level datasets while the lower part includes category-level

setups. PhoCaL is the only dataset that includes both photometrically challenging objects with high quality (robotic) pose annotations and

all three modalities, RGB, depth, and polarisation.

was acquired using a PrimeSense RGB-D Carmine sen-

sor and a marker board was used to keep track of the

relative sensor pose. While undoubtedly pioneering this

field, the 3D model quality is now outdated and the leader

boards on these datasets have become saturated. Home-

brewedDB [23] accounts for the latter shortcoming by pro-

viding high quality 3D models scanned with a structured

light sensor. Including three models from LineMOD, they

add 30 more toy, household and industrial objects. Differ-

ent illumination conditions and occlusions make the scenes

more challenging. Other datasets also include household

objects [13, 21, 34, 37] or focus on industrial parts [14, 20]

with low texture for which it is also possible to manually

design or retrieve accurate CAD models [20]. The BOP 6D

pose benchmark [21] includes a summary of these datasets

with standardized metrics in a common format.

While the datasets mentioned so far provide individual

frames, the YCB-Video dataset [41] also includes video

sequences of 21 household objects. While YCB uses La-

belFusion [31] for semi-manual frame annotation and pose

propagation through the sequence, Garon et al. [16] lever-

age tiny markers on the object to estimate the poses in their

videos directly at the cost of synthetic data cleaning after-

wards. The advent of photo realistic rendering further en-

ables a branch of works that leverages training on purely

synthetic data [12,38]. Although this circumvents the cum-

bersome pose labelling process, it introduces a domain gap

between synthetic data for evaluations and real-world ap-

pearances faced in the final applications.

2.2. Category­level Object Poses and Datasets

In real-world applications, a 3D model is not always

available, but pose information is still required. Detection

of such objects under these conditions has classically been

tackled using 3D geometric primitives [3, 4, 9].

While these methods consider outdoor scenes for which

kitti [18] provides 3D bounding box annotations, they lack

object shape comparison and the information is often too

inaccurate for robotic grasping tasks. The pioneering work

of NOCS [40] was the first category-level method that

could detect object pose and shape in indoor environments.

Further investigations consider correspondence-free meth-

ods [10] where a deep generative model learns a canoni-

cal shape space from RGBD and a method to estimate pose

and shape for fully unseen objects is also proposed [32], al-

beit this method requires a reference image for latent code

generation. CPS [28] demonstrates how to estimate pose

and metric shapes at category level, using only a monocular

view. The extension CPS++ [29] further utilizes synthetic

data and a domain transfer approach using self-supervised

refinement with a differentiable renderer from RGBD data

without annotations. SGPA [11] explores shape priors to es-

timate the object pose. DualPoseNet [25] leverages spheri-

cal fusion for better encoding of the object information.
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Figure 3. Limitations of RGBD sensors. The depth for photomet-

rically challenging objects is difficult to measure with a commod-

ity depth sensor. The intel RealSense D515 LiDAR ToF sensor

used here is affected by reflections that lead to invalid (1) incorrect

(2) distance estimates. Moreover, the glassware becomes invisible

to the sensor (3) and causes noise (4).

We leverage the standard RGBD method NOCS and the

strong state-of-the-art RGB method CPS to set the baselines

on our new dataset. While task-specific datasets for gen-

eral object detection exist for robot grasping [15,30], meth-

ods for category-level pose estimation are typically tested

on NOCS [40] data. The NOCS objects comprise various

categories, but do not contain photometric challenges often

present in everyday objects such as reflectance and trans-

parency.

2.3. Photometric Challenges and Multimodalities

While texture-less objects [20] were initially challeng-

ing for pose estimation, transparency presents an even big-

ger hurdle. While the problem is not new, previous meth-

ods have addressed this using RGB stereo without a 3D

model to identify grasping points only [36]. Rotational ob-

ject symmetry can be leveraged by contour fitting for trans-

parent object reconstruction [33] using template matching.

ClearGrasp [35] proposes a method for geometry estima-

tion of transparent objects based on RGBD. However, this

method passes over the transparent regions from the depth

map and predicts depth from RGB in these areas instead.

Liu et al. [27] investigate instance- and category-level pose

estimation from stereo imagery. Since their depth sensing

fails on transparent objects, they use an opaque object twin

as proxy to establish ground truth depth. More recently

StereOBJ-1M proposed [26] a large dataset including trans-

parent and translucent objects with specular reflections and

symmetry. However, at the time of this writing it is not yet

available for download.

For 2D object detection, information from multiple or-

thogonal sensor modalities such as polarisation (RGBP) can

help for transparent object segmentation [22]. This modal-

ity can provide information in regions were depth sensors

fail. Their inherent connection with surface normals [43]

can also make them attractive for pose estimation of photo-

metrically challenging objects.

CorrectedGT 3D

Figure 4. Annotation quality for poses in datasets Linemod [19]

(projected green silhouette, left) and YCB [8] (rendered overlay,

right) together with its correction [7] (right).

2.4. Ground Truth Pose Annotation

Manual annotation of 6D pose is difficult and extremely

time-consuming. Therefore, most datasets rely on semi-

manual processes for ground truth annotation. The data

from a depth sensor, if available, is often used to register

the 3D model and manual adjustments are applied to visu-

ally refine the pose for this one frame. Relative camera mo-

tion is typically calculated using visual markers [19, 23] to

propagate the pose information through a sequence of im-

ages. The use of depth sensors for ICP-based alignment of

pose labels reduces labour and improves fully-manual an-

notation quality. However, depth maps from RGBD sensors

are erroneous or invalid for photometrically challenging ob-

jects with high reflectance and translucent or transparent

surfaces [26]. An examples is shown in Fig. 3.

Ensuring high quality of pose labels over a series of im-

ages is difficult and errors accumulate as the examples in

Fig. 4 show. This equally affects depth-based refinement

strategies of 6D pose pipelines [21, 24]. We propose a me-

chanical measurement process using a robotic manipulator

to circumvent this issue and allow for high precision labels

that omits the error propagation of relative camera pose re-

trieval from images.

3. Dataset Acquisition Pipeline

Our dataset features multiple object classes including

photometrically challenging classes such as objects with re-

flective surfaces or transparent material. It also provides

multi-modal sensor data with highly accurate 6D pose an-

notation. This section describes our dataset acquisition

pipeline as shown in Fig. 5.

3.1. Objects Model Acquisition

To represent a cross section of common household

objects, we selected eight common categories for our

category-level 6D object pose dataset: bottle, box, can, cup,

remote, teapot, cutlery, glassware. All object models are

scanned using an EinScan-SP 3D Scanner (SHINING 3D

Tech. Co., Ltd., Hangzhou, China). The scanner is a struc-

tured light stereo system with a single shot accuracy of ≤

0.05 mm in a scanning volume of 1200×1200×1200 mm3.
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Figure 5. Overview of dataset acquisition pipeline. (a): 3D models are extracted with a structured light scanner. (b): Pivot calibration

calibrates a tipping tool to robot coordinates. (c): 6D poses are annotated using the tool and manual movements of the robot. (d): The

camera trajectory is saved. (e): Dataset is recorded automatically following the planned trajectory.

Figure 6. Overview of hand-eye-calibration and its evaluation. (a): shows the marker-to-robot calibration. (b): illustrates camera-to-robot

hand-eye calibration. (c) depicts our accuracy evaluation.

The models from the first six categories are provided

as textured obj files. Since the cutlery and glassware ob-

jects are photometrically challenging with their highly re-

flective and transparent surfaces, we apply a self-vanishing

3D scanning spray (AESUB Blue, Aesub, Recklinghausen,

Germany) to make the objects temporarily opaque for scan-

ning. We scan the object and provide an obj file without

texture. The spray sublimes after approx. 4 h.

3.2. Scene Acquistion Setup

For each scene, 5-8 objects are placed on the table with

the random background. We use a KUKA LBR iiwa 7

R800 (KUKA Roboter GmbH, Augsburg, Germany) 7 DoF

robotic arm that guarantees a positional reproducibility of

±0.1 mm. The vision system comprises a Phoenix 5.0

MP Polarization camera (IMX264MZR/MYR) with Sony

IMX264MYR CMOS (Color) Polarsens (i.e. PHX050S1-

QC) (LUCID Vision Labs, Inc., Richmond B.C., Canada)

with a Universe Compact lens with C-Mount 5MP 2/3º

6mm f/2.0 (Universe, New York, USA). As depth camera,

the Time-of-Flight (ToF) sensor Intel®RealSense™LiDAR

L515 is used, which acquires depth images at a resolution

of 1024x768 pixels in an operating range between 25 cm

and 9 m with a field-of-view of 70°x 55°and an accuracy

of 5 ± 2.5 mm at 1 m distance up to 14 ± 15.5 mm at 9 m

distance.

3.3. Tip Calibration

We use a rigid, pointy metallic tip to obtain the coordi-

nate position of selected points on the object. Tip calibra-

tion is therefore essential to ensure the accuracy of the sys-

tem. The rig attached to the robot’s end-effector consists of

custom 3D printed mount which holds the tool-tip rigidly.

The pivot calibration is performed as shown in Fig. 8 (left),

where the tip point is placed in a fixed position, while only

the robot end-effector position is changed. We collect data

from N such tip positions with corresponding end-effector

poses, iT
b
e , which contain rotation iR

b
e and translation it

b
e,

the final translation t
e
t of the end-effector is calculated as

follows:

t
e
t =











1R
b
e − 2R

b
e

2R
b
e − 3R

b
e

...

nR
b
e − 1R

b
e











†

·











1t
b
e − 2t

b
e

2t
b
e − 3t

b
e

...

nt
b
e − 1t

b
e











(1)

where † denotes the pseudo-inverse. We evaluate the tip

calibration by calculating the variance of each tip location

at the pivot point. The variance of the tip location in our

setup is ε = 0.057 mm.

3.4. 6D Pose Annotation

Annotating the precise 6D pose of the objects is a chal-

lenging task as mentioned in Sec. 2.4. Here, we utilize
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Figure 7. Example of annotation quality before and after ICP based refinement on the textureless object. (a) Initial pose of mesh overlaid

with measured surface points (red dots) shows error in initial pose (red arrow). (b) After the ICP, refined pose matches with the surface

points properly (blue arrow). (c) Shows improvement in 6D pose annotation. Rendering of the mesh with initial pose (d) and refined pose

(e) shows a significant difference in quality.

Figure 8. Tip calibration (left) with its pivot point (red). Tip mea-

suring points of object surface (right) and its correspondence on

the object’s model mesh (blue).

the robot accuracy and its reproducible encoders to an-

notate the object pose. Our annotation steps are as fol-

lows: first, we attach the tool tip on the robot’s end-effector

and measure several keypoints along with 20-30 surface

points of the given object by hand guiding the end-effector

while the robot is in gravity compensation mode (Fig 5 (c),

Fig 8 (right)). Then, corresponding keypoints are manually

picked on the object model’s mesh to obtain the initial pose

of the respective objects (Fig 8 (right) (blue)). Finally, ICP

is applied to align the dense mesh points of the object and

the measured sparse surface points as the refinement step

for the initial object poses.

To evaluate the refinement performance, 25 points on a

specific area of the object surface are picked and uniformly

distributed noise of ±0.2mm is added to simulate the mea-

surement noise. We then apply a small perturbation of ran-

dom translation errors of range ±2mm in x,y,z and a ro-

tation error about a random axis with an angle of up to 4

degrees to the object pose to simulate the error introduced

by the point correspondences. Thereafter, we apply ICP be-

tween the picked surface points and the perturbed mesh to

refine the pose. We test this pipeline with 3 selected objects

with 5 different random perturbation before applying ICP

to recover the initial pose. The pose error is measured in

translation and rotational distance [17] after the refinement

and it gives an average RMSE of 0.20mm in translation and

0.38
◦ in rotation.

It is observed that ICP improves the annotation in real

life scenario particularly on textureless objects, where it is

difficult to find exact correspondence from the mesh. An

extreme example of annotated poses before and after ICP

on the textureless objects is shown in Fig. 7.

3.5. Hand­Eye Calibration

Traditional hand-eye calibration, such as [39] requires

detection of the marker from the camera in various posi-

tions to obtain an accurate calibration result. The transfor-

mation from camera to end-effector is difficult to estimate

as the marker transformation to robot base is unknown and

both have to be jointly estimated. In our case, however, the

marker position can be accurately measured with the robot

tip. Considering this fact, we measure 12 selected points

on the marker board and calculate TMarker→RB (Fig. 6 (a))

to link the end-effector pose to the camera frame. From

TMarker→RB , the Thandeye is calculated as shown in Fig. 6

(b).

The overall accuracy of the entire procedure is mea-

sured as shown in Fig. 6 (c). TMarker→cam is formed by

applying Thandeye and multiply Tmarker→cam of n dif-

ferent views to transform the 12 points from the marker

board to the robot base (Ptransformedn
). RMSE is cal-

culated by comparing the result to Pmeasured. We evalu-

ate our hand-eye calibrations in one of our scenes on both

RGBD and Polarization camera with the mentioned ap-

proach with n = 10 and obtained RMSERGBD = 0.89mm

and RMSEPolarization = 0.83mm across all the view points.

This calibration is performed procedure for all cameras be-

fore recording each scene as shown in Fig. 9.

3.6. Synchronized Robot Pose Capture with Images

RGBD and polarization cameras are used for the data ac-

quisition. A specially designed and 3D printed rig is used

to mount both cameras tightly on the end-effector. The tra-
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Figure 9. Measuring the marker points for the calibration on the

scene (left) and detected marker from one of the cameras (right)

jectory of all joints of the robot is recorded by manually

moving the end-effector while the robot arm is in gravity

compensated mode. Thereafter, we record the images of

the scene by replaying the joint trajectory while stopping

the robot every 5-7 joint positions to capture the images and

the robot pose (approx 10-15 fps). This ensures no mo-

tion blur and camera synchronization artefacts are recorded

while reproducing the original hand-held camera trajectory.

3.7. Evaluation of Overall Annotation Quality

We evaluate overall annotation quality of our dataset by

running simulated data acquisition with two measured er-

ror statistics : ICP error (Sec 3.4) and hand-eye calibration

error (Sec 3.5). For both RGBD and Polarization camera,

setup from one of the scenes is used including the objects

and the trajectories. The acquisition is simulated twice, with

and without the aforementioned error. In the end, RMSE er-

ror is calculated pointwise in mm between the acquisitions.

We averaged the error per object and per each frame in the

trajectories.

RMSE error for RGBD camera is 0.84 mm and for po-

larization camera is 0.76 mm. Detailed description of this

procedure is attached in the supplementary material. The

annotation quality in comparison with other dataset acqui-

sition principles is shown in Tab. 2.

Dataset RGBD Dataset TOD [27] StereOBJ [26] Ours

3D Labeling Depth Map Multi-View Robot

Point RMSE ≥ 17mm 3.4mm 2.3mm 0.80mm

Table 2. Comparison of pose annotation quality for different

dataset setups. The error for RGBD is exemplified with the stan-

dard deviation of the Microsoft Azure Kinect [26].

4. Benchmarks and Experiments

Both monocular (CPS) and RGB-D based (NOCS)

category-level methods are considered for the baseline eval-

uation on the PhoCaL dataset. For the evaluation of NOCS,

the normal object coordinate space maps are rendered for

each training image and will be published together with

the dataset. With the predicted normalized object shape

from NOCS map, the depth information is used to lift 2D

detection to 3D space using ICP. Considering the artifacts

in the depth data from metallic and transparent objects in

the dataset, along with the occlusion, the test sequences are

very challenging for RGBD methods.

Similiar to NOCS, CPS first detects 2D bounding boxes.

Then lifting modules for each class transform 2D image fea-

tures to 6D pose and scales. Simultaneously the method

also estimates the point cloud shape for the respective ob-

ject class. CPS is trained on approximately 1000 object in-

stance models for each category to learn a deep point cloud

encoding of each class. The 2D detection and lifting mod-

ules are trained together for 100k steps with a learning rate

of 1e-4, decaying to 1e-5 at 60k steps.

4.1. Evaluation Pipeline

Our dataset consists of 24 image sequences in total with

training and testing split in each sequence. In our evalua-

tion pipeline, the training split of the first 12 sequences are

used to train the network. To have an evaluation on both the

known and novel objects in each category, two experiments

are designed. To evaluate on seen objects firstly, the net-

work is trained on the training split of the first 12 sequences

and tested on the testing split of the same sequences. To fur-

ther evaluate the generalization ability of NOCS and CPS to

novel objects in the same category, the same training split

of the first 12 sequences is used, but we evaluate the result

on the testing split of the latter 12 sequences, where objects

are mostly unseen. With this way, generalization ability of

the methods to novel objects in the category is emphasized,

which is a common issue in real operating environments.

The evaluation metric is the intersection over union (IoU)

result with a threshold of 25% and 50%.

4.2. Evaluation Result

The 3D IoU at 25% and 50% evaluations of NOCS for

the first experiment setup is shown in Tab. 3. The mean

average precision (mAP) for 3D IoU at 25% is 43.34%. It

is observed in the experiment that even if the segmentation

and normalized object coordinate map predictions are ac-

curate, the lifting from NOCS map to 6D space is sensitive

to artifacts in depth maps. Since the objects are highly oc-

cluded in the PhoCaL dataset, and depth measurements are

inaccurate because of cutlery and glassware categories, the

method does not have a good performance on the dataset

which indicates the drawbacks of RGBD methods in these

photometrically challenging cases. The average precision

of each category with respect to 3D IoU threshold is plotted

in Fig. 10a. Note that the results of cutlery and glassware

categories are among the worst three categories.

For comparison, the result of CPS is also listed in Tab.

3. As can be seen from the table, CPS has a higher preci-
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3D25 / 3D50 Bottle Box Can Cup Remote Teapot Cutlery Glassware Mean

NOCS [40] 91.17 / 0.65 16.10 / 0.01 85.44 / 23.01 51.83 / 1.48 93.26 / 86.05 0.00 / 0.00 4.89 / 0.01 4.00 / 0.06 43.34 / 13.91

CPS [28] 80.08 / 40.30 31.68 / 28.18 68.96 / 6.69 81.60 / 70.24 86.30 / 37.08 67.43 / 4.31 44.00 / 24.95 30.33 / 17.74 61.30 / 28.69

Table 3. Class-wise evaluation of 3D IoU for NOCS [40] and CPS [28] on test split of known objects.

3D25 / 3D50 Bottle Box Can Cup Remote Teapot Cutlery Glassware Mean

Experiment 1 91.17 / 0.65 16.10 / 0.01 85.44 / 23.01 51.83 / 1.48 93.26 / 86.05 0.00 / 0.00 4.89 / 0.01 4.00 / 0.06 43.3 / 13.91

Experiment 2 13.70 / 1.28 27.74 / 0.00 48.17 / 0.00 61.77 / 0.00 8.35 / 0.00 4.90 / 0.00 16.10 / 0.00 0.83 / 0.00 22.70 / 0.17

Table 4. Class-wise evaluation of 3D IoU for NOCS [40] on seen (Experiment 1) and mostly unseen (Experiment 2) objects.

(a) NOCS result in the first experiment (b) CPS result in the first experiment (c) NOCS result in the second experiment

Figure 10. Plots of average precision (AP) with respect to 3D IoU thresholds for each category.

sion for cutlery and glassware categories. Monocular meth-

ods are not affected by artifacts in depth images, which ex-

plains the result from the experiment. CPS has a higher

mAP of 61.30%, which means RGB has an advantage in

dealing with photometrically challenging objects. The de-

tailed APs for each category are plotted in Fig. 10b.

In addition, the NOCS evaluation on both experiments

are compared in table 4. The evaluation result for the sec-

ond experiment has a lower mAP for 3D IoU at 25% and

50% as expected, as most of the test objects are novel in

the second experiment. Fig. 10c plots NOCS APs in the

second experiment. In comparison to NOCS, the CPS re-

sult drops significantly in the second experiment and the 3D

IoU at 25% is 4.3%. The result shows that pretraining with

a large amount of synthetics images is necessary for monoc-

ular methods, to learn the correct lifting from 2D detection

to 3D space without the help of depth images.

4.3. Limitations

Even though the proposed pipeline for annotating the 6D

pose ground truth is accurate, annotating the objects with

deformable surface, such as empty boxes, poses a challenge

during the surface measurement step in the workflow due

to its light deformation which could deteriorate the quality

of both initial pose and ICP based refinement. Moreover,

the limited workspace of the robot constrains the view an-

gles in the image sequences which is an issue the PhoCaL

shares with other robotic acquisition setups. The hand eye

calibration of the camera plays a key role for the annotation

quality. If the camera resolution is low, a good calibration

result requires significantly more input images from differ-

ent angles.

5. Conclusion

In this paper we introduce the PhoCaL dataset, which

contains photometrically challenging categories. High-

quality 6D pose annotations are provided for all categories

and multiple camera modalities, namely RGBD and RGBP.

With our manipulator-driven annotation pipeline, we reach

pose accuracy levels that are one order of magnitude more

precise than previous vision-sensor-only pipelines even for

photometrically complex objects. Moreover, baselines are

provided for future works on category-level 6D pose on our

dataset by evaluating both monocular and RGB-D methods.

The evaluation shows the difficulty level of the dataset in

particular for objects that include reflective and transpar-

ent surfaces. PhoCaL therefore constitutes a challenging

dataset with accurate ground truth that can pave the way for

future pose pipelines that are applicable to more realistic

scenarios with everyday objects.
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