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Abstract

Noisy training set usually leads to the degradation of
generalization and robustness of neural networks. In this
paper, we propose using a theoretically guaranteed noisy
label detection framework to detect and remove noisy
data for Learning with Noisy Labels (LNL). Specifically,
we design a penalized regression to model the linear
relation between network features and one-hot labels,
where the noisy data are identified by the non-zero mean
shift parameters solved in the regression model. To make
the framework scalable to datasets that contain a large
number of categories and training data, we propose a split
algorithm to divide the whole training set into small pieces
that can be solved by the penalized regression in parallel,
leading to the Scalable Penalized Regression (SPR)
framework. We provide the non-asymptotic probabilistic
condition for SPR to correctly identify the noisy data. While
SPR can be regarded as a sample selection module for
standard supervised training pipeline, we further combine
it with semi-supervised algorithm to further exploit the
support of noisy data as unlabeled data. Experimental
results on several benchmark datasets and real-world noisy
datasets show the effectiveness of our framework. Our
code and pretrained models are released at https://
github.com/Yikai-Wang/SPR-LNL.

1. Introduction
Deep learning has achieved remarkable success on many
topics of supervised learning with millions of labeled
training data. The performance heavily relies on the quality
of label annotation since neural networks are susceptible
to noisy labels and even can easily memorize randomly
labeled annotations [63], leading to the degradation
of generalization and robustness. In many real-world
scenarios, it is expensive and difficult to obtain precise
labels, exposing a realistic challenge for supervised deep
models to learn with noisy data.

*Corresponding author.

There is a large literature for this challenge from various
perspectives, including modifying the network architectures
[6, 12, 13, 59] or loss functions [11, 27, 53, 65], or
dynamically selecting clean data during training [5, 14, 17,
27,34,40,44,61]. Particularly, the dynamic sample selection
methods adopt the spirit of providing only clean data for
the training. Such a spirit can form a ‘virtuous’ cycle
between the noisy data elimination and network training:
the elimination of noisy data can help the network training;
and on the other hand, the improved network is empowered
with a better ability in picking up clean data. As this
virtuous cycle evolves, the performance can be improved.

Typical principles to identify outliers include large
loss [14], inconsistent prediction [67], and irregular feature
representation [57]. The former two principles focus on the
label space, while the last one focuses on the feature space
of the same class. In this paper, we unify the label and
feature space and assume linear relationship between the
feature-label pair (denoted as (xi,yi)) of data i by

yi = x⊤
i β + ε, (1)

where xi ∈ Rp is the feature vector, and yi ∈ Rc is the
one-hot label vector; β ∈ Rp×c is the fixed (unknown)
coefficient matrix and ε ∈ Rc is random noise. This linear
relation is approximately established as the networks are
trained to minimize the divergence between a (soft-max)
linear projection of the feature and one-hot label vector. For
a well-trained network, the output prediction of clean data
is expected to be as similar to a one-hot vector as possible,
while for noisy data the output is dense. Intuitively, when
the linear relation is well-approximated without soft-max
operation, the corresponding data is likely to be clean data.

The simplest way to identify the suspected outliers in the
linear model is checking the predict error, or residual,
ri = yi − x⊤

i β̂, where β̂ is the estimate of β. The
larger ∥r∥ indicates more possibility for the instance i to
be outlier/noisy data. The classical statistical method to test
whether the instance ri is non-zero is using the leave-one-
out approach [38] to test the externally studentized residual

346



ti =
yi − x⊤

i β̂−i

σ̂−i

(
1 + x⊤

i

(
X⊤

−iX−i

)−1
xi

)1/2
, (2)

where σ̂ is the scale estimate and the subscript −i indicates
estimates based on the n − 1 observations, leaving out
the i-th data where we are testing. Equivalently, the
linear regression model can be re-formulated into explicitly
representing the residual by the mean-shift parameter γ as
in [39],

Y = Xβ + γ + ε, εi,j ∼ N (0, σ2), (3)

where we have the feature X ∈ Rn×p, and label Y ∈ Rn×c

paired and stacked by rows; and each row of γ ∈ Rn×c,
γi, represents the predict residual of the corresponding
data. This formulation has been widely studied in
different research topics, including economics [4, 18, 32,
33], robust regression [8, 39], statistical ranking [9], face
recognition [56], semi-supervised few-shot learning [54,
55], and Bayesian preference learning [43], to name a
few. The focused formulation is different depending on
the specific research tasks. For example, for the robust
regression problem, the target is to get a robust estimate β̂
against the influence of γ. Here for solving the problem
of learning with noisy labels, we instead aim to amplify
the impact of γ such that non-zero values can represent the
noisy label that existed in the training set.

To this end, from the statistical perspective, this paper starts
from Eq. (3) to build up a sample selection framework,
dubbed Scalable Penalized Regression (SPR), which has
theoretical guarantees of consistently identifying noisy
data, and thus can efficiently learn with noisy labels.
Naturally, we expect γ in Eq. (3) to be sparse and only a
small number of γi are non-zeros, indicating that those data
are noisy or outlying. Thus a sparse penalty is utilized on
γi to encourage that the non-zero solution is restricted in
a small portion. We thus optimize the induced penalized
regression problem to solve γ and identify the instances
with non-zero γi as noisy data. Theoretically, in terms
of the model selection consistency theory [51, 66], there
is some nice statistical property and theoretical insight in
our SPR framework, as we can guarantee that, by meeting
certain conditions, our SPR should at least in principle,
successfully identify all the noisy data.

To incorporate Eq. (3) into the end-to-end training pipeline
of deep architecture, the simplest way is to solve Eq. (3)
for each training mini-batch to detect and remove noisy
data. However, when we train large model with small
batch size, the information of current mini-batch may not
be identifiable enough to distinguish true pattern from noise.
On the other hand, use SPR on the whole training data after
training an epoch leads to an unacceptable computation

cost due to the quadratically increased complexity of
solving Eq. (3) with the training data. To design a proper
optimization environment for solving Eq. (3) that is data-
efficient and identifiable, we utilize the whole training set
and propose a split algorithm to divide it into small pieces
that are class balance with proper data size such that the
noisy pattern is identifiable and can be solved efficiently in
parallel, making SPR scalable to large datasets.

Inspired by [69], to further encourage the linear relation
between features and labels, we propose using a sparse
penalty on the fully-connected output before it is soft-
maxed. Moreover, we utilize SPR to train the network in
a semi-supervised manner using CutMix [62], regarding
the detected noisy data as unlabeled data to fully utilize
the feature information. We conduct extensive experiments
to validate the effectiveness of our framework on several
benchmark datasets and real-world noisy datasets.

Contributions. Our contributions are as follows:

• We present a statistical approach, SPR, to identify noisy
data under a general scenario with theoretical guarantees.

• A split algorithm is proposed to make SPR scalable to
large datasets.

• A sparse penalty is proposed to encourage the linear
relation, and a full training framework that combines SPR
with semi-supervised methods is designed.

• Experiments on benchmark datasets and real-world noisy
datasets validate the effectiveness of SPR.

2. Related Work
The target of Learning with Noisy Labels (LNL) is to
train a more robust model from the noisy dataset. We can
roughly categorize LNL algorithms into two groups: robust
algorithm and noise detection. Robust algorithm does not
focus on specific noisy data, but designs specific modules
to ensure that networks can be well-trained even from the
noisy datasets. Methods following this direction includes
constructing robust network [6, 12, 13, 59], robust loss
function [11, 27, 53, 65, 68, 69], robust regularization [31,
47, 58] against noisy labels.

Noise detection method aims to identify the noisy data
and design specific strategies to deal with the noisy
data, including down-weighting the importance in the loss
function for the network training [48], re-labeling them to
get correct labels [46], or regarding them as unlabeled data
in the semi-supervised manner [23], etc.

For the noise detection algorithm, noisy data are identified
by some irregular patterns, including large error [40],
gradient directions [37], disagreement within multiple
networks [61], inconsistency along the training path [67]
and some spatial properties in the training data [22, 52, 57].

347



Some algorithms [37, 50] rely on the existence of an extra
clean set to detect noisy data.

After detecting the clean data, the simplest strategy is to
train the network using the clean data only or re-weight the
data [35] to eliminate the noise. Some algorithms [2, 23]
regard the detected noisy data as unlabeled data to fully
exploit the distribution support of the training set in the
semi-supervised learning manner. There are also some
studies of designing label-correction module [25,46,49,50,
59, 60] to further pseudo-labeling the noisy data to train the
network. Few of those approaches are designed from the
statistical perspective with non-asymptotic guarantees. In
this paper, we propose to use SPR to identify the noisy data
under general scenarios with statistical guarantees.

3. Methodology
Problem Formulation. We are given a dataset of image-
label pairs {(Ii, yi)}ni=1, where Ii ∈ I ⊆ Rm, yi ∈
C ⊆ R, |C| = c, with the one-hot encoding of yi as yi.
We assume that for each instance i, yi is corrupted from
the ground-truth category y⋆i , where the ground-truth and
corruption process is unknown. Our goal is predicting
the ground-truth label y⋆ ∈ C for any I ∈ I, by a
neural network composed of a feature extractor f(·) and a
classifier g(·). Typically the network first encodes the image
Ii as a feature vector xi = f(Ii), and return the soft-max
probability ŷi = g(xi).

We present our framework – Scalable Penalized Regression
(SPR), designed as a sample selection component to the
training pipeline of neural networks. As mentioned in
the introduction, SPR is motivated by the leave-one-out
approach [38] on the t-test of prediction residuals to
identify and remove the noisy data for the network to
train, by solving the mean-shift parameter in a sparse
linear regression model (Eq. (3)). Specifically, we use a
sparse linear regression model to fit the feature-label pairs
{xi,yi}ni received from the current training time, and solve
the corresponding mean-shift parameter γ in

argmin
β,γ

1

2
∥Y −Xβ − γ∥2F +

n∑
i=1

P (γi;λi) , (4)

where P (·; ·) is a sparse regularization on γ with coefficient
λi on row γi to ensure that non-zero γi are sparse, whose
corresponding instance are identified as the noisy data. We
denote Ai,A·,j , ∥A∥2F :=

∑
i,j A

2
i,j as the i-th row, j-th

column and the square of Frobenius norm, respectively.

3.1. Preliminary: Penalized Regression in Statistics

The penalized regression problem (Eq. (4)) is widely
studied in statistics, where the standard solving algorithm is
an alternating optimization pipeline: for fixed γ, the global

optimal solution of β is the Ordinary Least Square (OLS)
estimate of the linear regression problem on (X,Y −
γ); while for fixed β, the problem is separable in each
row of γ, which can be solved by soft-thresholding.
Further, it is shown in [1, 10] that the penalized regression
problem enjoys the same optimal solution of Huber’s M-
estimate [16], which minimizes

argmin
β

n∑
i=1

ρ

(
yi − x⊤

i β

σ
;λ

)
+

1

2
cnσ, (5)

for fixed constants σ > 0, c ≥ 0, λ > 0, where ρ(t;λ) =
t2/2 when |t| ≤ λ and ρ(t;λ) = λ|t|−λ2/2 otherwise. The
general formulation of the penalty P can be defined with a
three-step construction algorithm introduced in [39]. In our
experiments, we use the ℓ1 norm as the penalty.

3.2. Penalized Regression for LNL

In this paper, we regard γ as the indicator of noisy data,
with larger ∥γi∥ means more corruption the instance i is
suffered. We denote O := {i : ∥γi∥ ̸= 0} as the noisy
sample set. To estimate O, we only need to solve γ with no
need to estimate β. Thus to simplify the optimization, we
substitute the OLS estimate for β with γ fixed into Eq. (4).
To ensure that β̂ is identifiable, we apply PCA on X to
make p ≪ n so that the X has full-column rank. Denote
X̃ = I − X

(
X⊤X

)†
X⊤, Ỹ = X̃Y , the Eq. (4) is

transformed into

argmin
γ

1

2

∥∥∥Ỹ − X̃γ
∥∥∥2
F
+

n∑
i=1

P (γi;λi) , (6)

which is a standard sparse linear regression for γ. Note that
in practice we can hardly choose a proper λ that works well
in all scenarios. Furthermore, from the equivalence between
the penalized regression problem and Huber’s M-estimate,
the solution of γ is returned with soft-thresholding. Thus
it is not worth to find the precise solution of a single γ.
Instead, we use a block-wise descent algorithm [41] to solve
γ with a list of λs and generate the solution path. As
λ changes from ∞ to 0, the influence of sparse penalty
decreases, and γi are gradually solved with non-zero values,
in other words, selected by the model. Since earlier selected
instance is more possible to be noisy, we rank all samples
as the descendent order of their selecting time defined as:

Ci = sup {λ : γi (λ) ̸= 0} . (7)

A large Ci means that the γi is earlier selected. Then the
top samples are identified as noisy data.

3.3. Scalable Penalized Regression

The computation cost of Eq. (6) is O(n2c), which increases
in quadratic with the growth of the training sample, making
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it not scalable to large datasets. Note that we are finding
data that are more noisy than others from Eq. (7); thus
we may generate the environment that the noisy instances
are easier to be identified and with less computation cost.
To this end, we propose to split the total training dataset
into many pieces, each of which contains a small portion
of training categories with a small number of training data.
With the splitting strategy, SPR can run on several pieces in
parallel and significantly reduce the running time.

Recall that the principle of selecting the group of categories
is to reduce the optimizing difficulty and generate an easier
environment for finding noisy data. Our motivation is that
categories with less similarity are helpful to identify the
noisy data (based on the noisy set recovery theory which
we will introduce later), where the similarity is defined as

s(i, j) = p⊤
i pj , (8)

for class i, j where p represents the class prototype.
Specifically, we take the clean features xi of each class
extracted by the network along the training iteration, and
average them to get the class prototype pc after the current
training epoch ends, as

pc =

∑n
i=1,yi=c,i/∈O xi∑n
i=1,yi=c,i/∈O 1

, (9)

Then the most dissimilar classes are grouped together. In
our experiments, we design one group with 10 classes.

For the instances in each group, we split the training data of
each class in a balanced way such that each group contains
the same number of instances for each class. The number
is determined to ensure that the clean pattern remains the
majority in the group, such that optimization can be done
easily. In practice, we select 10 training data of each class
to construct the group. When there is an imbalance between
different classes, we use over-sampling strategy to sample
the instance of class with less training data multiple times to
ensure that each training instance is selected once in some
split group. The detection process is shown in Algorithm 1.

3.4. Learning with Detected Noisy Data

Supervised training manner. After estimating the noisy
set O, the simplest strategy is to remove them and train the
network with the remaining clean data. We show that this
strategy will lead to an improvement in testing accuracy.
Note that we assume in Eq. (3) that the one-hot encoded
label is linearly related to the feature X; however, in
practice, the prediction is obtained via the soft-max function
on the XWfc, where Wfc is the weight of the final fully-
connected layer (we ignore the bias term for simplicity).

Algorithm 1: Scalable Regularized Regression
Input: Feature matrix X , label matrix Y , noisy set O.
Calculate prototypes P of each class using Eq. (9);
Divide classes into most diverged groups based on the
similarity within classes using Eq. (8);

Split data of each class in the same group into pieces
{(X(i),Y(i))};

for each piece of (X(i),Y(i)) in parallel do
Solve γ(i) using Eq. (6);
Select the noisy subset O(i) using Eq. (7);

end
Group all the O(i) together and return the result O.

To reduce this gap, inspired by [69], we append a ℓq (q <
1) penalty on the cross entropy loss, which encourages the
linear relationship between X and one-hot encoded vector
Y :

L (xi,yi) = 1i/∈O(LCE (xi,yi) + λ∥x⊤
i Wfc∥q), (10)

where q < 1, LCE denotes the cross-entropy loss, and
1i/∈O denotes the indicator function such that the loss is
only calculated on the clean data. Note that the ∥x⊤Wfc∥q
enforces the x⊤Wfc to approximately be one-hot encoded
vector as long as q is small enough. In this training manner,
SPR can be regarded as a robust loss function algorithm
since we do not modify the training pipeline except the
modification of the loss function.

Semi-supervised training manner. We can further exploit
the support of noisy data by incorporating SPR with semi-
supervised algorithms. In this paper, we interpolate part of
images between clean data and noisy data as in [62],

x̃ = M ⊙ xclean + (1−M)⊙ xnoisy (11a)
ỹ = λyclean + (1− λ)ynoisy (11b)

where M ∈ {0, 1}W×H is a binary mask, ⊙ is element-
wise multiplication, and the clean and noisy data are
identified by SPR. Then we train the network using the
interpolated data using

L (x̃, ỹ) = LCE (x̃, ỹ) . (12)

Since ỹ is interpolated, it is no longer a one-hot vector,
and thus is not sparse. Hence we do not use the sparse
penalty when we train the network using the interpolated
data. Note that SPR is done using the original data
without interpolation, hence the linear relationship still
holds. In practice, the above two training method is
randomly selected in each mini-batch with the predefined
probability. The full algorithm is shown in Algorithm 2.
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Algorithm 2: Training algorithm
Initialize: Noisy dataset {(Ii,yi)}ni=1, feature matrix
X , noisy label matrix Y , noisy set O = ϕ, CutMix
probability p.

for ep from 0 to total epochs do
for each mini-batch do

Sample r from U(0, 1);
if r > p then

Train the network using Eq. (10).
else

Train the network using Eq. (12).
end
Update X visited in the current mini-batch;

end
Run SPR (Algorithm 1) on (X,Y ) and update

noisy set O;
end

3.5. Noisy Set Recovery of SPR

In this part, we provide the result that the Eq. (4) can recover
the oracle support set O. For simplicity, we use the ℓ1 norm
as the penalty. In the above we have re-formulate Eq. (4)
as Eq. (6), which is a standard multi-response regression
problem. Here we further vectorize the problem such that
it shares the standard formulation of LASSO. Then we can
use the well-studied model selection consistency result [51,
66] to support our conclusion. Specifically, we vectorize
Y ,γ in Eq. (6) as y⃗, γ⃗ and the Eq. (6) turns to

argmin
γ⃗

1

2

∥∥∥y⃗ − X̊γ⃗
∥∥∥2
2
+ λ ∥γ⃗∥1 , (13)

where X̊ = Ic⊗X̃ with ⊗ denoting the Kronecker product
operator. Denote S := supp(γ⃗∗), then it is sufficient for
the recovery of noisy set O to recover S. We further denote
X̊S(X̊Sc) as the column vectors of X̊ whose indexes are
in S(Sc) and µX̊ = maxi∈Sc ∥X̊∥22. Then we have

Theorem 1 (Noisy set recovery). Assume that:
C1, Restricted eigenvalue: λmin(X̊

⊤
S X̊S) = Cmin > 0;

C2, Irrepresentability: there exists a η ∈ (0, 1], such that
∥X̊⊤

ScX̊S(X̊
⊤
S X̊S)

−1∥∞ ≤ 1− η;
C3, Large error: γ⃗∗

min := mini∈S |γ⃗∗
i | > h(λ, η, X̊, γ⃗∗);

where ∥A∥∞ := maxi
∑

j |Ai,j |, and h(λ, η, X̊, γ⃗∗) =

λη/
√
CminµX̊ + λ∥(X̊⊤

S X̊S)
−1sign(γ⃗∗

S)∥∞.

Let λ ≥ 2σ
√
µX̊

η

√
log cn. Then with probability greater

than 1 − 2(cn)−1, model Eq. (13) has a unique solution
ˆ⃗γ such that: 1) If C1 and C2 hold, Ô ⊆ O;2) If C1, C2 and
C3 hold, Ô = O.

Note that The Theorem 1 is extended from the model
selection consistency in [51], which only provides the

conclusion that Ŝ ⊆ S and Ŝ = S, respectively. Here we
show that Ŝ ⊆ S leads to Ô ⊆ O, and of course Ŝ = S
leads to Ô = O in our case. For instance i, i ∈ Oc only
when γi,j = 0 for all j, then all the vectorized indexes are
in Sc. When Ŝ ⊆ S, all vectorized indexes of instance i are
in Ŝc, which means i ∈ Ôc and leads to Ô ⊆ O.

C1 is necessary to get a unique solution, and in our case is
mostly satisfied with the nature assumption that the clean
data is the majority in the training data. If C2 holds, the
estimated noisy data is the subset of truly noisy data. This
condition is the key to ensuring the success of SPR, which
requires divergence between clean and noisy data such that
we cannot represent clean data by noisy data. If C3 further
holds, the estimated noisy data is exactly all the truly noisy
data. C3 requires the error measured by γi is large enough to
be identified from random noise. If the conditions fail, SPR
will fail in a non-vanishing probability, not deterministic.

4. Experiments
Datasets. We validate the effectiveness of SPR on synthetic
noisy datasets MNIST [21] and CIFAR10 [20], and real-
world noisy datasets ANIMAL10 [44] and WebVision [24].
We consider two types of noisy labels for MNIST and
CIFAR10: (i) Symmetric noise: Every class is corrupted
uniformly with all other labels; (ii) Asymmetric noise:
Labels are corrupted by similar (in pattern) classes. The
ANIMAL10 is published with mislabeling (the ratio is 8%)
and the corruption process and noise type in ANIMAL10
are unknown. WebVision has 2.4 million images collected
from the internet with the same category list with ImageNet
ILSVRC12. Thus, the ANIMAL10 and WebVision datasets
can be regarded as a real-world challenge.

Backbones. For MNIST, we use two convolutional layers
followed by two fully-connected layers, denoted as C2F2.
For CIFAR10, a ResNet-18 [15] network is utilized. For
ANIMAL10 we use VGG19-BN [42] as our backbone.
And for WebVision we use Inception-ResNet [45] to extract
features.

Hyperparameter setting. We use SGD to train all the
networks with momentum 0.9 and a cosine learning rate
decay strategy. The initial learning rate is set as 0.1 for
ANIMAL10 and 0.01 for others. The weight decay is set as
1e-3,1e-4, 1e-3, 5e-4 for MNIST, CIFAR10, ANIMAL10,
and WebVision, respectively. We use a batch size of 128
for all experiments. We use random crop and random
horizontal flip as augmentation strategies for CIFAR10,
ANIMAL10, and WebVision. The network is trained for 50
epochs for MNIST, 180 epochs for CIFAR10, 160 epochs
for ANIMAL10, and 300 epochs for WebVision. We use
q = 0.2 in Eq. (10) with coefficient λ of the sparse penalty
initialized as 1.2 and is increased by multiplying 1.2 for
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Dataset Method Sym. Noise Rate Asy. Noise Rate
0.2 0.4 0.6 0.8 0.2 0.3 0.4

MNIST
(C2F2)

CE 91.6 74.0 49.4 22.7 94.6 88.8 82.3
FL 91.7 74.5 50.4 22.7 94.3 89.1 82.1
GCE 98.9 97.2 81.5 34.0 96.7 89.1 81.5
SCE 98.9 97.4 88.8 48.8 98.0 93.7 85.4
NLNL 98.3 97.8 96.2 86.3 98.4 97.5 95.8
APL 99.1 98.4 95.7 73.0 98.9 96.9 91.5
SR 99.2 99.2 98.9 98.0 99.3 99.2 99.2
SPR 99.3 99.2 99.2 98.7 99.3 99.2 99.2

CIFAR-10
(ResNet-18)

Standard 85.7 81.8 73.7 42.0 88.0 86.4 84.9
Forgetting 86.0 82.1 75.5 41.3 89.5 88.2 85.0
Bootstrap 86.4 82.5 75.2 42.1 88.8 87.5 85.1
Forward 85.7 81.0 73.3 31.6 88.5 87.3 85.3
Decoupling 87.4 83.3 73.8 36.0 89.3 88.1 85.1
MentorNet 88.1 81.4 70.4 31.3 86.3 84.8 78.7
Co-teaching 89.2 86.4 79.0 22.9 90.0 88.2 78.4
Co-teaching+ 89.8 86.1 74.0 17.9 89.4 87.1 71.3
IterNLD 87.9 83.7 74.1 38.0 89.3 88.8 85.0
RoG 89.2 83.5 77.9 29.1 89.6 88.4 86.2
PENCIL 88.2 86.6 74.3 45.3 90.2 88.3 84.5
GCE 88.7 84.7 76.1 41.7 88.1 86.0 81.4
SCE 89.2 85.3 78.0 44.4 88.7 86.3 81.4
TopoFilter 90.2 87.2 80.5 45.7 90.5 89.7 87.9
SPR 93.2 91.0 82.7 64.1 92.8 91.3 89.0

Table 1. Test accuracies on several benchmark datasets with different settings. The best result is boldfaced. Results of competitors on
MNIST are reported in [69], and on CIFAR10 are reported in [57].

MNIST, and 1.02 for others. In CIFAR10 with noise rate
0.8, we do not increase the λ. We simply select half of the
training data as noisy data in all of our experiments.

4.1. Evaluation on Synthetic Label Noise

Competitors. In this part, we first use SPR with only
using the supervised training manner on MNIST to compare
with robust loss function methods. Then we use the
full SPR model on CIFAR-10 to compare with sample
selection algorithms and other popular algorithms. We
use cross-entropy loss (CE) as baseline algorithm for two
datasets. For MNIST, we also compare with competitors
including an effective loss function Focal Loss (FL) [26],
some refined algorithms for CE loss like GCE [65] and
SCE [53], NLNL [19] which utilizes complementary labels
against the noise, APL [28] which combines robust active
and passive loss to train the network. SR [69] which
utilizes the sparse regularization combined with the feature
normalization and temperature scaling method to train
the network. For CIFAR-10, we compare SPR with
algorithms include Forgetting [3] with train the network
using dropout strategy, Bootstrap [36] which train with
bootstrapping, Forward Correction [35] which corrects the

loss function to get a robust model, Decoupling [30] which
uses a meta update strategy to decouple the update time
and update method, MentorNet [17] which uses a teacher
network to help train the network, Co-teaching [14] which
uses two networks to teach each other, Co-teaching+ [61]
which further uses an update by disagreement strategy to
improve Co-teaching, IterNLD [52] which uses an iterative
update strategy, RoG [22] which uses generated classifiers,
PENCIL [60] which uses a probabilistic noise correction
strategy, GCE [65] and SCE [53] which are extensions of
standard cross-entropy loss function, and TopoFilter [57]
which uses feature representation to detect noisy data. For
each dataset, all the experiments are running with the same
backbone to make a fair comparison.

As in Tab. 1, SPR enjoys a high performance compared with
other robust loss function algorithm without using noisy
data on MNIST, and shows a high superiority to many
competitors on CIFAR-10, validating the effectiveness of
SPR on different noise scenarios.

4.2. Evaluation on Real-World Noisy Datasets

In this part, we compare SPR with other methods in real-
world noisy datasets including ANIMAL10 and WebVision.
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For WebVision we use CutMix probability of 1.0.

Competitors. For ANIMAL10, we compare with
the baseline of directly training with cross-entropy loss
(CE), as well as previous works including Nested(ND),
CE + Dropout (CED), SELFIE [44], PLC [64], and
NestedCoTeaching (NCT) [7]. For WebVision, we compare
with directly training with cross-entropy loss (CE), as
well as Decoupling [30], D2L [29], MentorNet [17], Co-
teaching [14], Iterative-CV [5], and DivideMix [23].

The results of real-world datasets are shown in Tab. 2, where
the results of CE and SELFIE on ANIMAL is reported
in [44], the results of ND, CED, and NCT is reported in [7],
while the result of PLC is reported in their paper. The
results of competitors on WebVision are reported in [23]
and the result of CE is reported in [69]. Our algorithm SPR
enjoys superior performance to all the competitors, showing
the ability of handling real-world challenges.

ANIMAL10 WebVision
Model Accuracy Model Accuracy

CE 79.4 CE 66.96
Nested 81.3 Decoupling 62.54
CED 81.3 MentorNet 63.00
SELFIE 81.8 Co-teaching 63.58
PLC 83.4 Iterative-CV 65.24
NCT 84.1 DivideMix 77.32

SPR 86.8 SPR 78.12

Table 2. Results on real-world datasets. The best are in bold.

4.3. More Analysis of SPR

Precision of noisy detection. Besides accuracy, another
metric to test the capacity of a sample selection algorithm is
label precision: the ratio of true clean labels in the detected
clean instances. In this part, we check the label precision
of SPR to show the sample selection effectiveness. We
conduct our experiments on the symmetric noise rate of 0.4
and 0.8, as well as asymmetric noise rate of 0.4. Results
are shown in Fig. 1. SPR enjoys a monotonically increasing
label precision in the symmetric noise setting, leading to a
better training environment than the standard noisy dataset.
When the training process ends, almost all the selected
training data is guaranteed to be clean data (93.90% in the
symmetric-40% setting). In the symmetric-80% setting, due
to the strategy of selecting half of the training data, the
upper bound of the precision is 40%, as illustrated. In this
high noise rate scenario, SPR can still achieve the precision
of 30.34%, which means that 76.24% of the clean training
instances are detected by our algorithm. Note that in the
asymmetric-40%, the label precision is first increased then
decreased, and ends with 93.50%. Though it is still high, the
accuracy drops with the label precision, suggesting that an

Model Accuracy

CE 65.5
CE + SPR 80.4
CE + ℓq 71.6
CE + CutMix 87.0
CE + SPR + ℓq 88.5
CE + SPR + CutMix 89.2

Full 91.0

Table 3. Accuracy of using different modules in SPR.

early stopping strategy is needed in the asymmetric noisy
setting. We leave it as a future work to provide a fine-
grained framework for different noise scenarios.

Ablation study of modules in SPR. To verify the
effectiveness of each module in our framework, we conduct
an ablation study on CIFAR10 with 40% symmetric noise
rate. Specifically, the “CE” denotes vanilla cross entropy
method; the “CE + SPR” means the cross-entropy loss
only on the clean data detected by SPR; the “CE + ℓq”
means the Eq. (10) for all training data; the “CE +
CutMix” means using CutMix strategy for all the training
data; other variants are defined similarly based on utilized
components, and the “Full” denotes our SPR method
with all components. As shown in Tab. 3, simply using
our framework to detect noisy data will lead to better
performance compared with the standard CE loss. And
the full model enjoys the best performance. We further
visualize the learned representation of using SPR compared
with standard cross-entropy method in Fig. 2. SPR will
learn a better discriminative representations.

Model Training Time

SPR w/o split algorithm about 6h
SPR w/ split algorithm 54s

Table 4. Training time for one epoch on CIFAR-10.

Influence of Split algorithm. In our framework, we
propose a split algorithm to divide the whole training set
into small pieces to run SPR in parallel. In this part, we
compare the running time between using the split algorithm
and not using it. Results are shown in Tab. 4. When we do
not use the split algorithm, the training time for each epoch
will cost an unacceptable time, making it impossible to train
on large datasets. Hence we propose the split algorithm to
reduce the training time.

Influence of select ratio. In our experiments, we simply
select half of the training data to train the network. It is
desirable to investigate how does the ratio of detected noisy
data influence the training process. We conduct experiments
of SPR on CIFAR10 with a symmetric noise rate of 0.8. To
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Figure 1. Accuracy and Label precision of SPR under different noise scenarios. The red line is the accuracy of SPR, while the dotted line
is the label precision.
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Figure 2. Visualization of learned representations.
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Figure 3. Best and final accuracies of SPR running with selecting
different ratio of training data.

avoid the influence of semi-supervised training pipeline, we
only use the supervised training manner in this part. It can
be found that the best selection ratio is near the noise ratio
in the training set. Hence a better selection strategy may be
designed based on the estimation of the noise ratio in the
training set. We leave it as a future work since in this paper
we mainly propose the sample selection framework.

Influence of ℓq . In this part, we investigate the influence
of ℓq norm in our framework. We run with a sequence
of q from 0.05 to 1, as illustrated in Fig. 4. In general,
a smaller q encourages the linear relation as expected
by our framework, while too small q will damage the
representation capacity of the network. Thus, a convex
accuracy curve exists, suggesting a choice of q = 0.2 to
be the best. Hence in our experiments we use q = 0.2.
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Figure 4. Accuracies of SPR with different ℓq .

Limitations of SPR. The major limitation of SPR is that
it requires the almost necessary irrepresentability condition
to identify the noise set. When this condition is not
hold for the problem, SPR will end with a non-vanishing
probability to identify at least one clean data as noisy data.
Further, the recovery theory are based on the Gaussian noise
assumption, which may not hold for special problems.

5. Conclusion
This paper proposes a statistical sample selection
framework – Scalable Penalized Regression (SPR) to
identify noisy data with theoretical guarantees. Specifically,
we propose an equivalent leave-one-out t-test approach as
a penalized linear model, in which non-zero mean-shift
parameters can be induced as an indicator for noisy
data. We provide theoretical conditions to guarantee the
identifiability of SPR to recover the oracle noisy set.
Experiments on several synthetic and real-world datasets
show the effectiveness of our method.

Social Impact. Our SPR will have positive impact to social,
as it enables to directly identify noisy data with theoretical
grounding to help train the network.
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