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Figure 1. Exemplary samples synthesized by our self-supervised person image generation framework. Our method could generate the
same person images with the target poses (left image set), or generate person images with specific attributes referring to different person
images (right image set). Better viewed by zooming in the electronic version.

Abstract

Person image generation aims to perform non-rigid de-
formation on source images, which generally requires un-
aligned data pairs for training. Recently, self-supervised
methods express great prospects in this task by merging the
disentangled representations for self-reconstruction. How-
ever, such methods fail to exploit the spatial correlation
between the disentangled features. In this paper, we pro-
pose a Self-supervised Correlation Mining Network (SCM-
Net) to rearrange the source images in the feature space,
in which two collaborative modules are integrated, Decom-
posed Style Encoder (DSE) and Correlation Mining Module
(CMM). Specifically, the DSE first creates unaligned pairs
at the feature level. Then, the CMM establishes the spa-
tial correlation field for feature rearrangement. Eventually,
a translation module transforms the rearranged features to
realistic results. Meanwhile, for improving the fidelity of
cross-scale pose transformation, we propose a graph based
Body Structure Retaining Loss (BSR Loss) to preserve rea-
sonable body structures on half body to full body gener-
ation. Extensive experiments conducted on DeepFashion
dataset demonstrate the superiority of our method com-

†Corresponding author.

pared with other supervised and unsupervised approaches.
Furthermore, satisfactory results on face generation show
the versatility of our method in other deformation tasks.

1. Introduction
Pose guided person image generation is an unaligned im-

age to image translation problem, which aims to change
the posture of a person image given target poses as con-
dition [18, 20, 21, 31, 36, 41]. Person image generation has
shown great potential in many fields, such as film industry
and multimedia creation. However, the difficulty of per-
forming non-rigid deformation makes this task an active
topic in the community of computer vision.

Due to the large spatial misalignment between the source
and target images, existing approaches generally need un-
aligned data pairs to supervise the training process [18, 21,
31,36,41]. For instance, [31,41] calculate the attention map
between paired poses to guide the anomalous pose deforma-
tion. [3,7,25] establish the coordinate offset flow to promote
the position-level source feature sampling for person feature
alignment. With such attention or flow mechanism, the gen-
erative methods could be capable to perform spatial trans-
formations when the source images and target poses are
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provided. However, collecting paired data requires heavy
workload and limits the application scenarios of these su-
pervised approaches. Therefore, some unsupervised meth-
ods are proposed to deal with this limitation [22,30], which
utilize cycle consistent methods or create pseudo labels to
promote the training procedure. However, such methods
still have limitations in generation quality intuitively.

Recently, self-supervised methods demonstrate power-
ful prospects to perform non-rigid spatial transformations
with only source images [4, 19, 20]. They could learn dis-
entangled representations of different image types, which
are merged in the following for self-reconstruction. Early
studies [4, 19] employ multi-branch network to disentangle
different features and concatenate them to reconstruct the
source images. Ma et al. [20] utilize AdaIN [11] for fea-
ture merging by transferring statistics from style features
to pose features. However, these methods still encounter
three challenges. First, the disentangled features are aligned
in the feature space, which cannot provide enough super-
vision for spatial transformation in self-supervised meth-
ods. Second, these merging methods (e.g. concatenation
or statistics transfer) are global operations, which are lim-
ited to exploiting the spatial correlation information. Third,
the model lacks prior knowledge of invisible regions due to
the self-supervised training process within the single pose
scale, which limits the reasonable completions for invisible
regions in the half body to full body transformation.

In this paper, we propose a Self-supervised Correlation
Mining Network (SCM-Net) for person image generation.
The entire architecture of SCM-Net can be summarized as
disentanglement, fusion and translation. In the disentangle-
ment phase, inspired by the decomposed strategy in [21],
we design a Decomposed Style Encoder (DSE) to extract
the semantic-aware decoupled style features, which could
form “unaligned pairs ” with its counterpart pose features.
Through this design, the source image itself could provide
supervision for spatial feature deformation. In the fusion
phase, we propose a Correlation Mining Module (CMM) to
further exploit the spatial correlation between disentangled
feature pairs. The CMM module computes the pairwise
correlation between the corresponding positions of feature
pairs to establish the dense spatial correlation field. Based
on this correlation field, our model could align these disen-
tangled features through spatially rearranging the style fea-
ture positions. In the translation phase, a translation gen-
erator with skip connections is introduced to transform the
rearranged style features into realistic person images. The
entire model is trained in an end-to-end manner.

For the lack of prior information on the lower body, we
design a Body Structure Retaining Loss (BSR Loss) to cap-
ture the semantic relationships among different body parts.
Thus, the model could make reasonable completions based
on these relationships. Specifically, we employ the graph

representation to model the semantic relationships of hu-
man body parts. In this body graph, each node represents
the perceptual features of each semantic region and each
edge measures the similarity between each node pair. We
match the graphs between each input person image and the
corresponding generated result to establish the graph based
constraint, which incorporates the body semantic relation-
ships into our model.

During inference, our model could introduce new target
poses for human pose transfer, and perform reference based
attribute editing through partial replacement of style fea-
tures. Figure 1 shows some applications of our model.

The main contributions can be summarized as follows:
• We propose a Self-supervised Correlation Mining Net-

work (SCM-Net) to achieve person image deformation
without the supervision of unaligned data pairs.

• We design two main collaborative modules, the De-
composed Style Encoder (DSE) and the Correlation Mining
Module (CMM), which could perform feature disentangling
and merging for person image deformation.

• We propose a Body Structure Retaining Loss (BSR
Loss) to acquire the prior knowledge of invisible regions
through incorporating semantic relationships among body
parts.

• Our method performs competitive results compared
with the state-of-the-art methods and also obtains satisfac-
tory results on face generation tasks, which demonstrates
the migration capability of our model.

2. Related Work

2.1. Person Image Generation

With the dramatic development of Generative Adver-
sarial Networks(GANs) [6], person image generation have
made great progress in recent years [4,18–22,25,30,31,36,
37,41]. Ma et al. [18] first introduced the pose-guide person
image generation task and proposed a two stage generator to
generate target person image. Zhu et al. [31, 41] proposed
an attention mechanism to transfer the image information
from source pose to target pose. Ren et al. [25] predicted the
flow field between source person images and target poses
for generating new pose images. Men et al. [21] used
decomposed component encoding strategy to achieve pose
transfer and person attribute editing. However, all the above
methods need paired data to supervise the training process,
which would take heavy workload for data collection. Sev-
eral unsupervised methods have been proposed for person
image generation. Pumarola et al. [22] designed a bidirec-
tional generator and employed cycle-consistent method to
supervise the training. Song et al. [30] designed a novel
schema to generate pseudo semantic maps for the unsuper-
vised generation. However, these methods still need extra
target poses as input and have some artifacts in generated
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Figure 2. An overall workflow of our self-supervised person image generation framework. Given an input person image I , we first utilize
the pre-trained methods to obtain its parsing map S and pose skeleton P . Then, the Decomposed Style Encoder disentangles the semantic-
aware decoupled style features Fs from its pose features Fp. Next, the Correlation Mining Module establishes the correlation field C to
guide the feature merging. Finally, the merged features F ∗

s are fed into the translation generator to get the reconstruction Î of the source
image. The Body Structure Retaining Loss and other losses are designed to promote the training process.

images. Recently, [4, 19, 20] proposed self-driven methods
to settle these problems. However, these methods have limi-
tations when dealing with large pose deformation problems.
Inspired by the above, in this paper, we propose a novel
self-supervised framework with graph representation learn-
ing for person image generation.

2.2. Spatial Correlation Learning

The purpose of spatial correlation learning is to establish
dense spatial correlation fields for image translation. Liao
et al. [16] proposed a coarse-to-fine strategy to compute the
spatial correlation field for image analogy and style transfer.
He et al. [8] measured the spatial similarity between the ref-
erence and the target to perform exemplar-based coloriza-
tion. Lee et al. [14] designed a spatially correlation related
module to introduce information from reference image to
sketch image for sketch colorization. Zhang et al. [36] pro-
posed a spatial-aware normalization module to preserve the
spatial context relationship for human pose transfer. Zhang
et al. [37] established the spatial correlation field in a shared
domain to perform cross-domain image to image transla-
tion. However, the above methods can only handle the spa-
tial correlation between unaligned data pairs. In this paper,
we establish the correlation field between the disentangled
features of source images, which explores more scenarios
for spatial correlation learning.

2.3. Graph Representation Learning

Graph representation learning plays a significant role in
the computer vision [1, 34, 39]. Due to the powerful capa-
bilities of relationship modeling, the graph representation
learning has been applied to many tasks, such as skeleton-
based action recognition [34], biometrics recognition [24]
and person re-identification [28,33,35]. Yan et al. [35] built
a person-feature based graph to model the relations among
images for person search. Ren et al. [24] proposed a dy-
namic graph for occlusion biometrics recognition. Wu et
al. [33] proposed an adaptive graph representation learn-
ing scheme to promote the interactions between relevant re-
gional features for video person Re-ID. Hou et al. [10] pro-
posed a graph matching strategy to distill structural knowl-
edge for road marking segmentation. Qi et al. [23] pro-
posed an adaptive re-weighting graph to balance the contri-
butions of different semantic nodes in face sketch synthe-
sis. However, the above methods employ graph representa-
tion learning to enhance the ability for feature extraction or
feature matching, ignoring of the characteristics of graphs
for cross-scale image complication. In this paper, we apply
graph representation to model the semantic relationships for
person image generation, aiming to generate more reason-
able body structures.
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Figure 3. Feature map visualizations of global encoder and the
DSE module. The structural information represented by the DSE
module is significantly reduced compared with the global encoder.

3. Method

In this section, we present our proposed method in detail.
To begin with, we introduce the overall workflow of our
Self-supervised Correlation Mining Network (SCM-Net).
Then we describe the whole network architecture in de-
tail according to the three phases of disentangling, merging
and translation. Finally, the total objective functions of our
model are introduced.

3.1. Overall Workflow

Without requiring unaligned data pairs, our method re-
ceives a single source image as input. As shown in Figure 2,
given a source person image I , we leverage the pre-trained
human pose estimation model [2] and human parser [5] to
obtain its pose skeleton P and semantic mask S. For feature
disentangling, we employ the pose encoder and the DSE
module to extract the pose features Fp ∈ RC×H×W and the
semantic-aware decoupled style features Fs ∈ RC×H×W ,
respectively. For feature merging, the CMM module is
proposed to establish the dense spatial correlation field C.
Based on this correlation field, the Fs could perform spatial
rearrangement to obtain the merged features F ∗

s . Eventu-
ally, the translation generator G transforms the F ∗

s from the
feature domain to realistic images.

3.2. Disentangled Feature Encoding

For feature disentangling, there are two branches (e.g.,
pose branch, style branch) in our framework to encode pose
features and style features, respectively.

Pose Encoding. In the pose encoding branch, we employ
the down-sampling convolutional neural networks (CNNs)
to extract pose feature maps Fp from the pose skeleton P .
Since the Fp is globally encoded, its structure is aligned
with source image I inherently.
Decomposed Style Encoding. For style encoding, we de-
sign the DSE module to obtain the semantic-aware decou-
pled style features Fs, which could form “unaligned data
pairs” with their counterpart pose features. Compared with
the global encoder which encodes the person image entirely,
the DSE module could embed the person image I from a

......

Position	j

Reshape

......

Position	i

Reshape

......
Position	i

Reshape

⊗

⊗

......
Reshape

Transpose

CH

W

W

W

H

H

C

C

C

HW

C

C

HW

HW

HW

HW

C

HW

C

WH

Pose	
Features

Style	
Features

Dense	Spatial	
Correlation	 Field

Weighted	
Summation

Style	
Features

Correlation	Mining	Module

Feature	Propagation

Weighted	Summation	

Position	Retrieval

Figure 4. Details of the Correlation Mining Module in our model.
Each position of outputs is the weighted average summation of the
input. The weights are stored in the correlation field.

complex manifold to the feature space according to differ-
ent regions.

As illustrated in Figure 2, we separate the segmentation
map S into 8-channel binary masks. Each channel indicates
a specific body region (e.g., pants, hair). Then we employ
element-wise multiplication between each binary mask and
the source person image I to obtain body parts. In addi-
tion, we feed each body part into an encoder whose param-
eters are shared for all regions to extract the partial style fea-
tures F i

s , i ∈ [1, 8]. Finally, we concatenate all F i
s along the

channel dimension to construct the semantic-aware decou-
pled style features Fs. Each position in style feature maps
contains specific semantic information. Furthermore, for
eliminating the limitation caused by the fixed concatenation
order, we propose a Cross Channel Fusion (CCF) module to
endow plentiful information into each position by selecting
desired semantic features from different semantic regions.
In structure, the CCF module has a concise design which
consists of two 1×1 convolutional blocks.

To verify the effect of DSE, we visualize the feature
maps extracted by the global encoder and the DSE, respec-
tively. As shown in Figure 3, we can observe that the sig-
nal strength distribution of the global encoder represents the
structural information clearly, while the distribution of the
DSE is relatively flat, which indicates the structural infor-
mation degradation.

3.3. Correlation based Feature Merging

In the merging phase, we propose the CMM module,
which aims to establish the dense spatial correlation field
C for feature rearrangement. To begin with, we reshape the
feature Fi into [Fi(1), Fi(2), · · · , Fi(hw)] ∈ RC×HW , i ∈
{p, s}. Each vector Fi(j) ∈ RC in Fi represents the se-
mantic information of the jth location in the feature map,
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j ∈ [1, hw].
As illustrated in Figure 4, given Fs and Fp, each vec-

tor Fs(i) serves as the query to retrieve the relevant key
Fp(j) from the Fp. Therefore, the correlation field C ∈
RHW×HW is established, whose element Cij is the corre-
lation of key-value pairs, followed by a softmax activation.

Cij =
exp(sij)∑hw
i=1 exp(sij)

(1)

sij =
F̄s(i)F̄p(j)

||F̄s(i)|| ||F̄p(j)||
(2)

where F̄s(i) and F̄p(j) represent the centralized feature, i.e.
F̄s(i) = Fs(i) - mean(Fs(i)). The correlation field C con-
tains the weights which could be assigned to value vectors
for feature rearrangement. Specifically, the rearranged fea-
ture F ∗

s = [F ∗
s (1), F

∗
s (2), · · · , F ∗

s (hw)] ∈ RC×HW is ob-
tained by calculating the weighted average summation of all
positions in feature Fs.

F ∗
s (i) =

hw∑
j=1

cijFs(j), i ∈ [1, hw] (3)

Based on the above operations, the F ∗
s is structurally

aligned with the input pose which could be fed into the
translation generator to synthesize a realistic person image.

3.4. Aligned Feature Translation

With the rearranged features F ∗
s as input, the transla-

tion generator could synthesize the target image Î for self-
reconstruction. To better preserve the structural informa-
tion, we employ the U-Net architecture [26] as our transla-
tion generator, as its skip connection propagates the infor-
mation directly from encoder to decoder.

3.5. Objective Functions

Adversarial Learning. Following the configuration of
[41], we employ two discriminators, one is a pose discrim-
inator Dp to maintain the pose consistency, and the other is
a style discriminator Ds to maintain the style consistency.
Both of them promote the generator G to generate realistic
images. The adversarial loss Ladv is listed as follows:

Ladv = EI,P [log(Ds(I) ·Dp(I, P ))]

+ EI,P [log((1−Ds(G(I, P )))

· (1−Dp(G(I, P ))))] (4)

Self-supervised Reconstruction. The reconstruction loss
Lrec can be formulated as the L1 distance between the
source image I and generated image Î , which encourages
the Î to be similar with the I at the pixel level.

Lrec = ||Î − I||1 (5)
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Figure 5. Details of the graph generator in our model. Nodes
represent per-region styles and the edges measure the similarities
between nodes.

Perceptual Consistency. The perceptual loss Lperc cal-
culates the L1 distance between the pre-trained VGG fea-
tures of I and Î , which measures the high-level semantic
differences between images [12].

Lperc = ||ϕl(Î)− ϕl(I)||1 (6)

Style Consistency. The style loss Lstyle calculates the
statistical errors between the pre-trained VGG features of
I and Î , which penalizes the difference in colors and tex-
tures [12]. As shown in Formula (7), ϕl is the activation at
the jth layer of the pre-trained VGG network, and G is the
Gram matrix.

Lstyle =
∑
l

||G(ϕl(Î))−G(ϕl(I))||1 (7)

Body Structure Retaining. The BSR Loss is proposed to
endow prior knowledge of invisible regions through con-
straining semantic relationships among body parts. We de-
sign a graph generator to model this relationship. As illus-
trated in Figure 5, we employ a pre-trained VGG network
and the region-wise average pooling layer [40] to obtain
the body graph M, in which the nodes represent per-region
styles and the edges measure the similarities between nodes.

Due to the training process is self-supervised with the
single pose in each iteration, the model cannot make a rea-
sonable completion for the unknown regions when perform-
ing cross-scale pose transformation. Applying BSR Loss
for training encourages the output person image to retain a
reasonable structure, which is conductive for half body to

7707



Source Source

T
ar

g
et

 P
o

se
s

T
ar

g
et

 P
o

se
s

Figure 6. The results of our method in the pose guided person image generation.

full body transformation. We calculate the BSR loss be-
tween I and Î as the Lgraph.

Lgraph = ||M(I, S)−M(Î , S)||1 (8)

The overall objective function is shown in Formula (9),
where αadv , αrec, αperc, αstyle, αgarph are the weights of
the corresponding loss functions.

Ltotal = αadvLadv + αrecLrec + αpercLperc (9)
+ αstyleLstyle + αgraphLgraph

4. Experiments
4.1. Implementation Details

Dataset. We carry out our experiments on DeepFashion
In-shop Clothes Retrieval Benchmark [17], which contains
52,712 high quality person images. We split the dataset fol-
lowing the same configurations of [20],

Metrics. We use the common metrics such as Struc-
tural Similarity (SSIM) [32], Inception Score (IS) [27],
Learned Perceptual Image Patch Similarity (LPIPS) [38],
and Fréchet Inception Distance (FID) [9] to assess the qual-
ity of generated images quantitatively. SSIM indicate the
similarity between paired images in raw pixel space. Mean-
while, LPIPS, IS and FID measure the realism of the gener-
ated images at the feature level.

Network Architecture and Training Details. Both the
pose encoder and style encoder employ several downsam-
pling convolutional layers to extract features. The feature
maps with resolutions 32 × 32 are applied for establish-
ing the correlation field. Our method is implemented on
PyTorch framework using 4 Nvidia TitanX GPUs. The
weights for loss functions are set to αadv = 5, αrec = 1,
αperc = 1, αstyle = 150, αgarph = 1, respectively.

4.2. Pose Guided Person Image Generation

Pose guided person image generation, or pose transfer,
aims to change the posture of a person image given target

Source

Image

Target

Pose

Ground

Truth
PATN XingGAN ADGAN MUSTGAN PISE Ours

Figure 7. The comparisons with other state-of-the-art methods on
pose guided person image generation. Zoom in for a better view.

poses as condition. Pose transfer is an important application
of person image generation. As shown in Figure 1 (left) and
Figure 6 (all), given a source person image, our model could
transform it to any target pose and keep the appearance de-
tails unchanged.

Qualitative Comparison. We compare the generated im-
ages of our method with several state-of-the-art approaches,
including PATN [41], XingGAN [31], ADGAN [21],
MUSTGAN [20] and PISE [36]. All the results are obtained
using the source code or the pre-trained model released by
the authors. The results of the qualitative comparisons are
shown in Figure 7. PATN and XingGAN generate blurry
results since these models can not disentangle different fea-
tures. The results of ADGAN and MUSTGAN have correct
postures, but they fail to maintain detailed textures. This is
because these models can not capture the spatial correlation
well. PISE could generate desirable results. However, its re-
sults still have some unsatisfactory artifacts due to the lack
of semantic relationships. Meanwhile, this model requires
unaligned image pairs for training. In contrast, our model
obtain competitive results only requires source images.
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Figure 8. The results of our method in the person attribute editing.

Quantitative Comparison. As shown in Table 1, we
compare our method with several state-of-the-art supervised
and unsupervised methods on the DeepFashion. As we can
see, our method outperforms these methods in most met-
rics on both supervised and unsupervised setting, which
demonstrates the superiority of our method in generating
high-quality person images.

Table 1. Quantitative comparisons with other supervised and un-
supervised methods on DeepFashion.

Method FID↓ SSIM↑ LPIPS↓ IS↑
Unsupervised
VU-Net [4] 23.583 0.786 0.3211 3.087
E2E [30] 29.9 0.736 0.238 3.441
DPIG [19] 48.2 0.614 0.284 3.228
MUST [20] 15.902 0.742 - 3.692
Supervised
Intr-Flow [15] 16.134 0.798 0.2131 3.251
Def-GAN [29] 18.547 0.770 0.2994 3.141
PATN [41] 24.071 0.770 0.2520 3.213
ADGAN [21] 18.395 0.771 0.2242 3.329
GFLA [25] 14.061 0.701 0.2219 3.635
PISE [36] 13.61 - 0.2059 -
SCM-Net 12.18 0.751 0.1820 3.632

Table 2. The evaluation results of ablation study.

Method FID↓ SSIM↑ LPIPS↓ IS↑
w/o DSE 12.86 0.750 0.187 3.2456
w/o CCF 17.08 0.751 0.175 3.605
w/o BSR 12.61 0.755 0.178 3.441
Full 12.18 0.751 0.182 3.632

4.3. Ablation Study

We further perform the ablation study to analyze the con-
tribution of each module and the proposed BSR Loss in our
method. Firstly, we introduce the variants implemented by
alternatively removing a specific component from our full

model. There are four settings in this module ablation. 1).
W/o DSE. This model removes the DSE module and di-
rectly uses a global encoder to extract the style features. 2).
W/o CCF. This model removes the Cross Channel Fusion
module from the DSE. 3). W/o BSR. This model removes
the BSR Loss during the training procedure. 4). Full. This
model represents our full model.

Table 2 shows the quantitative results of the ablation
study. We can observe that our full model achieves the best
performance on FID and IS metrics. Meanwhile, the re-
moval of any components will degrade the performance of
the model integrally. Figure 9 shows the qualitative com-
parisons of different ablation models. We can observe that
the w/o DSE model fails to preserve the styles of source
images and the w/o CCF model has limitation in preserving
the detailed texture. Meanwhile, w/o BSR model can not
complete the lower body well while the full model could
generate reasonable results. It demonstrates that BSR Loss
enhance the model’s ability of capturing body structural in-
formation. Furthermore, we illustrate the comparisons on
half body to full body transformation with previous self-
supervised method MUST-GAN [20]. Figure 10 shows
the advantages of our method when performing half body
to full body transformation. We can observe that MUST-
GAN [20] would generate more artifacts, while our method
could complete the lower part of the body reasonably with
correlation learning.
4.4. Person Attribute Editing

Our model can also achieve person attribute editing
based on reference images by exchanging channel features
of specific semantic areas in semantic-aware decoupled
style features. As shown in Figure 1 (right) and Figure 8
(all), our method could edit the style of the upper clothes,
pants and hair style respectively.

4.5. Applications on Face Generation tasks

In this section, we demonstrate the versatility of our
method. Since our method could disentangle the shape and
style features, it could also be applied to other image gener-
ation tasks under this self-supervised framework. Two face
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Figure 9. The qualitative comparison of ablation study.

Source Image Target Pose MUSTGAN Our model Ground Truth

Figure 10. Results of half body to full body transformation

generation tasks are shown as follows.

Reference-Based Edge Colorization. Reference-based
edge colorization aims to translate an edge map to a real-
istic image based on a reference image. Regarding the edge
map as a pose skeleton and the reference image as a person
image, our self-supervised model could achieve edge col-
orization. We obtain the edge map following [37] and use
CelebA-HQ [13] dataset for training. The results are shown
in Figure 11 (top). We can observe that the results main-
tain a good style consistency with the reference image, and
preserve a good shape consistency with input edge maps.

Face Attribute Editing. Similar to person attribute edit-
ing, our method could also achieve face attribute editing.
The results can be found in Figure 11 (bottom). We can edit
specific attributes while keeping other attributes unchanged.

5. Limitation
As shown in figure 12, our self-supervised model some-

times directly transfers certain source patterns into the final

Reference
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R
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Source

Figure 11. The results of our method in reference-based face edge
colorization (top) and face attribute editing (bottom).

results when performing pose transfer, which is a rare situa-
tion in the supervised model. This, we hypothesis, is caused
by the inherent defects of self-supervised strategy that the
self-reconstruction process makes the model easy to overfit.
This phenomenon might be avoided by employing spatial
transformation to perform data augmentation during train-
ing in the future.

Source Image Target Pose Ground Truth Our Result

Figure 12. The illustrations of the model limitation. The hair and
left arm are transferred directly from source image.

6. Conclusion

In this paper, we propose a Self-supervised Correlation
Mining Network (SCM-Net) for person image generation.
We propose two specially designed modules, the DSE mod-
ule for feature disentanglement, and the CMM module for
feature merging based on the spatial correlation. Mean-
while, the BSR Loss is proposed to promote our network to
better capture the structural information, especially for half
body to full body transformation. Extensive experiment re-
sults conducted on person and face datasets demonstrate the
superiority of our method.
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