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Abstract

While supervised deep learning has been a prominent
tool for solving many image restoration problems, there is
an increasing interest on studying self-supervised or un-
supervised methods to address the challenges and costs of
collecting truth images. Based on the neuralization of a
Bayesian estimator of the problem, this paper presents a
self-supervised deep learning approach to general image
restoration problems. The key ingredient of the neuralized
estimator is an adaptive stochastic gradient Langevin dy-
namics algorithm for efficiently sampling the posterior distri-
bution of network weights. The proposed method is applied
on two image restoration problems: compressed sensing
and phase retrieval. The experiments on these applications
showed that the proposed method not only outperformed
existing non-learning and unsupervised solutions in terms of
image restoration quality, but also is more computationally
efficient.

1. Introduction

Image restoration is about calculating an image x from
a collection of its measurements, denoted by y, whose rela-
tionship can be described as

y = Ψ(x) + n, (1)

where Ψ denotes the image formation process and n denotes
measurement noise. Image restoration is one fundamen-
tal problem encountered in a wide range of image-related
applications. For example, image restoration in digital pho-
tography, compressed sensing, computed tomography (CT),
and magnetic resonance imaging (MRI) in medical imag-
ing, phase retrieval for scientific imaging, and many others.
In general, the problem (1) is an ill-posed inverse problem,
whose direct inversion is either not unique or sensitive to
measurement noise.

Over last decades, regularization method, or equivalently
Bayesian estimator, has been the dominant tool for image

restoration. These non-learning methods either impose cer-
tain prior or assume certain prior distribution on images for
addressing solution ambiguity and noise sensitivity. How-
ever, it remains challenging to define an accurate image
prior. In recent years, deep neural network (DNN) emerges
as a prominent tool for solving inverse problems; see e.g.
[11, 12, 16, 17, 20, 33, 49, 52, 58, 61, 62]. The majority of
existing DNN-based solutions are supervised on an external
training dataset with truth images. Such a prerequisite on
truth images limits their wider applications in practice. For
example, collecting truth images can be very challenging and
costly in medical imaging and scientific imaging. Also, the
generalization performance of a supervised learning method
can be a concern in practice, if the network is trained over
a biased dataset where the structures of test images are not
present in training samples.

In recent years, it is receiving an increasing interest on
developing deep learning methods for imaging, which do
not require truth images for training DNNs. The so-called
plug-and-play prior attempts to address such an issue by
adopting some pre-trained denoising network in an iterative
image restoration scheme; See e.g. [35, 48, 56, 63]. While
these methods do not explicitly call truth images, the pre-
trained networks are still supervised over the dataset with
truth images related to the image for restoration. Another
approach is using generative adversarial network (GAN)
to synthesize training samples for training the network; see
e.g. [43]. Similarly, the performance of GAN-based methods
highly relies on the effectiveness of the pre-trained GAN
model on simulating truth images. While GAN has been
very effective on simulating the images in specific domain
such as face and text, it is not so for other types of images,
e.g., medical images and scientific images.

The methods above are not completely free from the
prerequisite of accessing related truth images. Recently,
there has been a rapid progress on unsupervised or self-
supervised learning for image denoising using un-trained
DNNs; See e.g. [3, 14, 28, 40, 41, 50, 55]. However, the
generalization of these denoising networks to ill-posed image
restoration problems is not trivial. The existence of the non-
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zero null space

Null(Ψ) = {x : Ψ(x) = 0} ≠ {0}

in image restoration make it quite different from image
denoising, as the error induced by the existence of non-
trivial space Null(Ψ) ̸= {0} cannot be treated as random
noise. One pioneering work is the so-called deep image prior
(DIP) [55] which shows that there exists certain implicit prior
induced by a convolutional neural network (CNN). The DIP
states that regular image structures appear before random
noise when training a CNN. Such a prior has been exploited
in many image restoration tasks, e.g. super-resolution [55],
CT reconstruction [23], image separation [22] and blind de-
blurring [32, 44]. In addition to DIP, there are some other
approaches to address the overfitting caused by the absence
of truth images during training. For CS image reconstruc-
tion, Pang et al. [39] proposed to train a Bayesian DNN
with Gaussian random weights. Heckle [24] used an under-
parametrized network. Metzler et al. [38] and Zhussip et
al. [67] proposed to regularize the denoising network in an
iterative scheme by Stein’s unbiased risk estimator (SURE).

1.1. Motivation and main idea

A self-supervised deep learning method for image restora-
tion is very attractive to the applications where collecting
truth images is challenging, e.g. medical and scientific imag-
ing. This paper is about studying an efficient and effective
method for training a NN to process testing data, where nei-
ther pre-trained model nor training sample with truth image
is used during training.

The proposed method is derived from the so-called mini-
mum mean squared error (MMSE) estimator of the problem
(1) defined by

x̂ =

∫
xp(x|y)dx, (2)

where p(x|y) denotes the posterior distribution. One way
to calculate (2) is using the Monte Carlo (MC) method. In-
stead of directly sampling p(x|y), we use a generative CNN
f(ϵ0; θ), parametrized by θ, to re-parametrize x:

x = f(ϵ0; θ).

Then, x̂ in (2) can be re-expressed as

x̂ =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ. (3)

Such a re-parametrization allows us to utilize implicit image
prior induced by CNN. Then, the remaining task is how to
efficiently sample the posterior distribution

π(θ) = p(θ|y, ϵ0),

to calculate the integral (3) via the MC method:

x̂ ≈
∑
k

f(ϵ0; θk), where θk ∼ p(θ|y, ϵ0).

Efficient sampling restricted in feasible set. How to
efficiently sample θ is critical for an accurate calculation of
the integral (3). A natural treatment is, instead of sampling
θ in the whole space, we only sample those parameters in a
feasible set Ω, where the density function π(θ) concentrates.
Suppose measurement noise n is i.i.d. Gaussian white noise
with variance σ2. By large number theory, we have, for
image size N → ∞,

L(θ) =
1

N
∥Ψ(f(ϵ0; θ))− y∥22 =

1

N
∥Ψ(x)− y∥22 → σ2.

(4)
In other words, with sufficiently large image size, the density
of θ whose f(ϵ0; θ) is close to x, concentrates within the set:

Ωϵ := {θ : σ2 − ϵ ≤ L(θ) ≤ σ2 + ϵ}, (5)

where ϵ is a small threshold. A detailed analysis of (5)
is provided in the supplementary file. To conclude, the
samples from π(θ) within the feasible set Ωϵ defined by (5)
are sufficient for accurately calculating the integral (3).

Adaptive SGLD for restricted MC sampling. SGLD
is an Markov chain Monte Carlo (MCMC) sampling algo-
rithm, which is proposed in [57] for efficiently sampling
network weights. SGLD simulates dynamics of molecu-
lar systems with stochastic differential equation given by
dθt = −∇L(θt)dt+

√
2dWt, where Wt is stationary Gaus-

sian process with zero-mean and L is a loss function.

In this paper, we proposed a new type of SGLD for effec-
tively sampling from π(θ) = p(θ|y, ϵ0) within the feasible
set Ωϵ defined by (5). The corresponding stochastic differen-
tial equation is defined by

dθt = −∇L(θt)dt+ β exp(c0(
σ2

L(θt)
− 1))dWt,

where L(θ) is defined by (4), in the case where n ∼
N (0, σ2I) and θ follows an uniform distribution. Then the
discretization of the equation above leads to an adaptive
stochastic gradient Langevin dynamics (ASGLD):

θk+1 = θk − γk · ∇L(θk) + β exp(c0(
σ2

L(θk)
− 1))

√
γk · ϵ,

(6)
where ϵ ∼ N (0, I). It can be seen that in comparison to
classic SGLD, ASGLD adaptively adjust the magnitude of
noise perturbation based on the loss function L(θ). The
samples from ASGLD will concentrate within the feasible
set Ωϵ. See Section 3 for more details.
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1.2. Main contribution

This paper proposed a self-supervised method for solv-
ing ill-posed image restoration problems, without requiring
any external truth image. The method trains a CNN which
approximates the MMSE estimator of the problem via MC-
based integration, where the key is how to efficiently sample
the posterior distribution. The answer from this paper is an
adaptive SGLD method, an efficient MCMC scheme that
focuses on concentrated regions of the posterior distribution.

The proposed method is applied to solve image restora-
tion problems in two imaging modalities: CS and phase
retrieval. The experiments show that the proposed method
not only provides state-of-the-art performance among all
existing dataset-free solutions, but also is more computation-
ally efficient. See below for the summary of the differences
between ASGLD and most related unsupervised methods.

• ASGLD vs. DIP [55] and its extensions: DIP utilizes
the implicit prior induced by a CNN and trains the net-
work with early-stopping. ASGLD also training a network
and its algorithm is motivated by MCMC sampling based
approximation to the MMSE estimator of the problem.

• ASGLD vs. BNN [39]: Both train a network to approxi-
mate the MMSE estimator of the problem. BNN approxi-
mates it via variational approximation using a Bayesian
neural network (BNN) with random weights. ASGLD
approximates it using MC-sampling-based integration im-
plemented using an efficient MCMC sampler.

• ASGLD vs. plain SGLD : In comparison to classic SGLD
with constant noise variance for general MCMC sampling,
ASGLD proposes a new SGLD scheme with adaptive
noise variance, which enables one to efficiently calculate
the MC-based integration.

See below for the summary of main contributions:

• An MC-sampling-based MMSE estimator of image
restoration with untrained deep network.

• A new adaptive SGLD scheme of MCMC sampling for
efficient calculation of MC-based integration.

• Noticeable performance improvement over existing unsu-
pervised methods in two image restoration tasks.

• A general self-supervised method with potential applica-
tions to other ill-posed inverse problems in imaging.

2. Related work
There is an abundant literature on inverse problems. Due

to space limitation, we only cover the most related ones.
Regularization methods with manually-defined prior.
Regularization has been one prominent method for image
restoration, which imposes a pre-defined prior on the latent
image to address the ill-posedness of the problem. Most
regularization methods can be viewed as an MAP estimator

which minimizes minx−log p(x|y) = minx−log p(y|x)−
log p(x), where p(x) denotes prior distribution of x. Differ-
ent priors on x are proposed in the past, including Gaussian
prior on x, Laplacian prior on ∇x [5, 9, 10, 47] or related
measurements such as wavelet coefficients [6, 18].

Supervised learning methods. Supervised deep learning
has been used for solving a wide range of image restoration
problems. One approach is to train a network on a dataset
with many pairs {(y,x)} that maps input measurements to
the image for restoration; see e.g. [12, 13, 53, 64, 65]. Such
an approach works well for denoising, but it does not utilize
the information of the forward process Ψ. To exploit the
information of Ψ in the network, the so-called optimization
unrolling approach unrolls some iteration schemes and re-
places the prior-relating operations by a denoising CNN with
learnable parameters; see e.g. [1, 15, 17, 42, 58, 60].

Deep learning methods with pre-trained network. In
the optimization unrolling scheme, the embedded CNNs
can be viewed as image denoisers encoding the prior of
the image. The so-called deep learning with plug-and-play
prior directly plug the pre-trained denoising network into
the iterative scheme; see e.g. [35, 46, 48]. Instead of using
pre-trained denoising network, pre-trained GAN is also used
for providing the prior to regularize the prediction from the
network; Ankit Raj et al. [43] used a pre-trained GAN to
replace the hand-crafted prior for compressed sensing.

Unsupervised learning specifically for image denoising.
There has been a steady progress on unsupervised learn-
ing for denoising or similar tasks such as in-painting. The
Noise2Noise [30] trained the network from two noisy in-
stances of the same scene. Noise2void [28] proposed a
blind-spot technique for training a denoising network on a
set of noisy images. SURE-based regularization method [51]
proposed a Stein’s unbiased estimator of the supervised loss
function from noisy images. A dropout NN is proposed
in [41] to train the NN on a single noisy image. R2R [40] in-
troduced a data augmentation scheme to provide an unbiased
estimate of the loss function supervised over truth images.

Self-supervised and unsupervised learning for image
restoration. Ulyanov et al. [55] proposes the DIP which
uses early stopping for avoiding overfitting, since the train-
ing favors regular structure over random patterns during
early iterations. DIP has been exploited for many image
restoration tasks, including blind deblurring [44] and image
matting [59]. For further improving the effectiveness of DIP
on addressing overfitting, Heckel et al. [25] proposed an
under-parameterized deep decoder to handle the overfitting.
Metzler et al. [38] and Zhussip et al. [67] proposed to reg-
ularize the denoiser by SURE in the iterative approximate
message passing (AMP) scheme. Pang et al. [39] proposed
a variational approximation method to the MMSE estimator
by training a BNN with is weights following normal distri-
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butions. Cheng et al. [14] proposed to use classic SGLD
for image denoising and in-painting. Chen et al. [11] as-
sumed equivalence in data and trained an NN in the dual
space only on measurements. Li et al. [32] proposed us-
ing a dropout-based MC sampling method for blind image
deblurring.

3. MCMC sampling with ASGLD

This section is devoted to a detailed discussion of the
ASGLD method, with more details in supplementary file.

Approximate MMSE estimator via MC-sampling. Con-
sider an inverse problem expressed as

y = Ψ(x) + n, (7)

where y denotes the measurement set, x denotes the image ,
and n denotes measurement noise. Here we consider Gaus-
sian white noise: n ∼ N (0, σ2I). Let f(ϵ0; θ) = x denote
a generative network with weights θ, which maps an initial
seed ϵ0 to the image x. Then, we have an MMSE estimator
of x, or the so-called conditional mean, given by

x̂ =

∫
xp(x|y)dx =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ. (8)

In our approach, the integral above is calculated by the MC
method. Then, the remaining question is how to sample the
posterior distribution defined by

π(θ) = p(θ|y, ϵ0).

As the dimension of θ is very high, to efficiently approximate
the integration, the sampler should focus on the samples
which make sufficient contribution to the calculation of the
integral. In other words, the samples should concentrate in
the subset where π(θ) is significant. Thus, we consider to
have a restricted sampler whose samples concentrated in

Ωϵ := {θ : σ2 − ϵ ≤ L(θ) ≤ σ2 + ϵ}, (9)

for some small constant ϵ, where

L(θ) =
1

N
∥Ψ(f(ϵ0; θ))− y∥22. (10)

Adaptive Langevin dynamics. One popular MC sampler
is the so-called MCMC sampler. For deep network, it is pro-
posed in [57] that Langevin dynamics, an MCMC sampler,
can be used for sampling the posterior distribution related
to network weights. Langevin dynamic originally is for de-
scribing the dynamics of molecular systems with stochastic
differential equation given by

dθt = −∇L(θt)dt+
√
2dWt, (11)

where L denotes a loss function. The discretization of the
equation above gives the so-called SGLD:

θk+1 = θk − γk · ∇L(θk) +
√
2γk · ϵ, (12)

where ϵ ∼ N (0, I). It can be seen that the iteration (12) can
be viewed as the noisy stochastic gradient descent (SGD)
method, corrupted by additional Gaussian white noise.

To accurately calculate (8) with sufficient computational
efficiency, we need to restrict the sampler such that the sam-
ples can concentrate in the feasible set Ωϵ defined by (9).
One natural idea is that, if one increases noise perturbation
when θ is inside Ωϵ and decreases the noise perturbation
when θ is outside of Ωϵ in SGLD, the resulting sampler will
then be more likely to take random walk inside the feasible
set Ωϵ. Based on such an idea, we proposed a new form of
Langevin dynamics for restricted MCMC sampling.

Suppose that θ follows an uniform distribution: θ ∼
1[−T,T ] with sufficiently large T . Then, by Bayesian rule,

π(θ) = p(θ|y, ϵ0) ∝ p(y|θ, ϵ0)p(θ). (13)

Taking negative logarithm on both sides, we have then

− log p(θ|y, ϵ0) =
N

2σ2
L(θ) + const., (14)

where L is defined by (10). We propose a new form of
Langevin dynamics with adaptive stochastic term, whose
underlying stochastic differential equation is defined by

dθt = −∇L(θt)dt+ β exp(c0(
σ2

L(θt)
− 1))dWt. (15)

Then, its discretization gives

θk+1 = θk − γk · ∇L(θk) + β exp(c0(
σ2

L(θk)
− 1))

√
γk · ϵ,

(16)
where ϵ ∼ N (0, I). The iteration (16) is called ASGLD.

It can be seen that the stochastic term exp(c0(
σ2

L(θ) − 1))

is adaptive to the value of L(θ). When one trains the DNN
via SGD, the value of the loss function L will decrease over
the iterations. In the initial iterations with large loss, the
ASGLD is close to classic SGD. When L(θ) > σ2, noise
level decreases with a smaller perturbation on SGD. In turn,
the next sample θt+1 is likely to have a smaller L(θ). When
L(θ) < σ2, noise level increases with a larger perturbation
on SGD. In turn, the next sample θt+1 is likely to have a
larger L(θ) as SGD is distorted by a large amount. In both
cases, the iterative scheme (6) keeps the sequential samples
being pulled back into the feasible set Ωϵ when the current
sample is away from Ωϵ. The constant c0 is chosen such that
stochastic term is negligible when L(θ) > 3

2σ
2.

Analysis and discussion. We first showed the stationary
distribution of the stochastic different equation (16).

Theorem 3.1 (Stationary distribution). Define the density
function of θt as p(θ; t) where θt is determined by (16) with
random initialization. Then the stationary distribution for θ
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can be explicitly expressed as

p∞(θ) ∝ exp[−G(L(θ))− 2c0
σ2

L(θ)
],

where G(s) := 2
β2

∫
exp(−2c0(

σ2

s − 1))ds is a function
defined through indefinite integral.

Proof. See supplementary file for the proof.

Indeed, with suitable β and c0, p∞(θ) concentrates
around L(θ) ≈ σ2, i.e. the set Ωϵ with small ϵ. Define

E(s) = G(s) + 2c0
σ2

s
,

then the iteration (16) provides the following posterior

p(θ|y, σ, ϵ0) ∝ exp(−E(L(θ))) (17)

rather than exp(− N
2σ2L(θ)) provided by (11). Then,

d

ds
E(s) =

2

β2
e−2c0(

σ2

s −1) − 2c0
σ2

s2
.

Let β =
√

σ2

c0
, we have

d

ds
E(σ2) =

2

β2
− 2c0

1

σ2
= 0,

dd

(ds)2
E(s) =

2

β2
e−2c0(

σ2

s −1) 2c0σ
2

s2
+
4c0σ

2

s3
> 0, for s > 0.

Clearly, E(s) is convex for s > 0 and s = σ2 is the global
minimizer of E(s). Moreover, E(s) has large curvature

around the minimizer. For example, set β =
√

σ2

c0
, we have

dd
(ds)2E(α) = 4c0

σ4 (1 + c0). In the case where σ2 = 0.01, set
c0 = 50. Then, dd

(ds)2E(σ2) > 108.

Empirical illustration in CS-MRI. The illustration is con-
ducted by applying ASGLD on CS-MRI, configured with
10% measurement noise and 1D Gaussian mask with 25%
sampling ratio. See Fig. 1 for the visualization of density
function exp(−E(s)), and Fig. 2 for the distribution of
{f(ϵ0, θk)} generated by ASGLD along iteration, visual-
ized by PCA-based dimension reduction. It can be seen that
the ASGLD quickly starts to sample the region close to truth
after the ”burn-in” iteration around 1000, and concentrate
inside it afterward. In the end, the average of those samples
provide an good approximation to the truth.

Training and testing. Given a generative untrained network,
the network is trained via the ASGLD (16) for total K it-
erations. Let K0 denotes the “burn-in” number where we
assume the method starts to sample the parameters that are
close to the feasible set. In other words, we generate a set
of samples {θk}Kk=K0

, which can be used for calculating the

(a) (b)

Figure 1. (a) The density function exp(−E(s)) (without normal-
ization) for different c0 and σ2 = 0.01 w.r.t. pixel value range
[0, 1], the maximum is obtained at s = 0.01; (b) The value of L(θ)
w.r.t. iteration during the training.

(a) (b)

Figure 2. Visualization of the distribution of the samples generated
from the ASGLD w.r.t. {f(ϵ0, θk)}. (a) The distribution of the
samples from iteration 100; (b) The distribution of the samples
after iteration 1100.

integral of the MMSE estimator (8) by taking the average

x̂ =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ ≈ 1

K −K0

K∑
k=K0

f(ϵ0; θk).

4. Experiments

The proposed method is a training algorithm for training
the DNN without truth images. While it is independent of
network architecture, we adopt the same U-Net as DIP [55]
through all experiments to exclude the effect from network
architecture for fairness. The architectures are 5-layer auto-
encoders with skip connections and each layer contains 128
channels. We set the fixed input ϵ0 sampling from the uni-
form distribution U(0, 0.1). All experiments are based on Py-
torch on a server with NVIDIA Titan RTX GPUs. The code
is publicly available at https://github.com/Wang-
weixi/restricted_sampling.

In the table for quantitative comparison, the best results
from all supervised methods marked as bold, and the best
results from all traditional regularization and unsupervised
learning methods are colored in blue.

4.1. Image reconstruction for CS

CS [8] is an imaging modality for faster sampling and
lower energy consumption. It has a wide range of applica-
tions including medical imaging [21, 34] and computational
photography [2, 19]. Image reconstruction for CS can be
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DAMP [37] TVAL3 [31] ISTA [61] DIP [55] BNN [39] ASGLD Truth

Figure 3. Results of CS image reconstruction using noisy input with ratio 25% for “Barbara”.

Table 1. Average PSNR(dB) results of different methods for natural image reconstruction on Set11.

Regularized methods Supervised methods Self-supervised methods

Noise CS TVAL3 D-AMP ReconNet ISTA ISTA+ DPANet MACNet FISTANet SURE- DIP BNN
ASGLD

σ -ratio [31] [37] [29] [61] [61] [53] [12] [58] AMP [67] [55] [39]

0
40% 30.52 33.49 - 35.97 36.02 35.04 35.31 36.24 34.12 33.28 35.71 35.87
25% 26.44 28.21 25.54 32.59 32.44 31.74 32.91 32.60 29.76 31.33 32.30 33.06
10% 21.35 21.16 22.68 26.64 26.49 26.99 27.68 26.94 22.65 27.40 27.49 28.15

10
40% 26.66 29.25 - 27.98 31.09 30.01 30.34 31.07 31.14 28.87 30.39 31.11
25% 24.75 26.35 24.36 27.26 29.20 29.25 29.31 30.32 28.50 27.36 28.67 29.35
10% 21.02 20.84 22.00 24.55 24.55 25.21 25.56 25.11 22.11 24.19 25.23 26.02

formulated as solving an ill-posed linear system:

y = Ax+ n,

where A ∈ RM×N (M ≪ N ) denotes the sensing matrix.

CS for natural image acquisition. Following the set-
ting of [39, 61], we consider CS-based natural image ac-
quisition via block-wise random Gaussian sensing matrix.
The images from Set11 [61] and BSD68 [28] are cropped
into non-overlapped blocks of size 33 × 33 to generate
the measurements. The sensing matrix A of size M × N
(N = 1089) is sampled from N (0, I) with row-wise orthog-
onalization. Gaussian white noise with s.t.d. 10 is added
to the measurements. Three different down-sampling ratios
are tested. The methods for comparison includes regulariza-
tion methods: TVAL3 [31] and D-AMP [37]; six supervised
learning methods: ReconNet [29], ISTA and ISTA+ [61],
DPANet [53], MACNet [12] and FISTANet [58]; three
self-supervised methods: SURE-AMP [67], DIP [55], and
BNN [39]. We set the learning rate as 0.001. For noisy
data, K = 10000,K0 = 2000. For noise-free data,
K = 30000,K0 = 5000.

See Table 1–2 for quantitative comparison of different
methods in different configurations. It showed that ASGLD
not only outperformed all non-learning and unsupervised
deep learning methods by a noticeable margin, but also re-
mained very competitive against supervised learning meth-
ods. See Figure 3 for visual comparison of different methods
of one example and supplementary file for more examples.

CS-MRI. The second CS application is CS-based MRI, an
important technology for rapid MRI imaging. The experi-

ment follows the procedure of [33, 39]. The measurement
matrix A is implemented using random Fourier downsam-
pling matrices and the dataset contains 21 MRI images from
ADNI (Alzheimer’s Disease Neuroimaging Initiative). Three
down-sampling masks with 25% down-sampling rate are
tested: 1D Gaussian mask, 2D Gaussian masks, and ra-
dial mask; see [33, 39] for more details. ASGLD is com-
pared to different methods, including direct zero-filling (ZF)
method [4] and TV regularization method [34]; supervised
ADMM-Net [60]; plug-and-play method [33] with three
different networks: SCAE, SNLAE, GAN; tuning free plug-
and-play deep learning TFPnP [56]; three self-supervised
learning methods: DIP [55], BNN [39] and EI [11]. Both
noiseless measurement and noisy measurement with noise
level σ = 10% are tested. The learning rate is 0.002. For
noisy data, K = 7000,K0 = 1000. For noise-free data,
K = 15000,K0 = 5000.

See Table 3 for quantitative comparison of different meth-
ods in different configurations. See Figure 4 for the visual-
ization of the results from different methods. It can be seen
that ASGLD is overall the top performer among the methods
for comparison including supervised learning methods. See
supplementary file for more experiments and visualizations.

4.2. Phase retrieval

Phase retrieval is an imaging technology used in many
areas of engineering and science, e.g. diffraction imag-
ing [26, 27], microscopy imaging [66], and holographic
imaging [45]. It needs to solve a non-linear problem:

b =
√

|Ax|2 + n,
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Table 2. Average PSNR(dB) results of different methods for natural image reconstruction on BSD68.

Regularized methods Supervised methods Self-supervised methods

Noise CS TVAL3 D-AMP ReconNet ISTA ISTA+ DPANet MACNet FISTANet SURE- DIP BNN
ASGLD

σ -ratio [31] [37] [29] [61] [61] [53] [12] [58] AMP [67] [55] [39]

0
40% 29.39 28.03 - 32.17 32.17 31.33 31.39 32.25 30.26 30.10 31.28 31.36
25% 26.48 25.57 25.31 29.36 29.29 29.00 29.42 29.18 27.02 27.78 28.63 29.51
10% 22.49 21.92 23.16 25.32 25.29 25.57 25.80 25.09 22.53 24.82 25.24 25.51

10
40% 26.15 26.55 - 26.68 28.98 28.78 28.92 29.01 28.16 25.24 28.13 28.75
25% 24.80 24.87 24.12 25.84 27.26 27.24 27.57 28.12 26.14 24.07 26.47 27.16
10% 22.03 21.70 22.36 23.86 23.86 24.34 24.63 24.34 21.93 22.46 23.79 24.56

Table 3. Average PSNR (dB) results of different MRI reconstruction methods.

Regularized methods Supervised methods Self-supervised methods

Methods Noise
ZF TV prior ADMM SCAE SNLAE GAN TFPnP EI DIP BNN

ASGLD
[4] [34] -Net [60] [33] [33] [33] [56] [11] [55] [39]

1D 0 23.06 25.77 28.99 29.37 29.06 27.47 29.94 28.98 31.80 31.38 32.18
Gaussian 10% 20.37 22.25 22.98 22.72 24.37 23.32 24.24 22.98 23.38 25.65 26.03

2D 0 25.3 32.79 34.97 35.61 32.85 32.94 33.88 31.76 35.63 36.10 36.07
Gaussian 10% 22.38 24.92 25.84 26.06 26.06 26.15 26.89 24.61 24.41 27.12 27.40

Radial
0 25.45 32.32 33.67 33.94 32.53 32.26 33.24 31.14 33.81 34.08 34.38

10% 22.38 25.16 25.96 26.13 26.38 25.33 27.12 24.73 24.54 27.07 27.37

ADMM-Net [60] SNLAE [33] GAN [33] TFPnP [56] BNN [39] ASGLD Truth

Figure 4. Reconstruction results of CS-MRI with 1D Gaussian mask of sampling ratio 25%.

Table 4. Average PSNR(dB) results of different phase retrieval methods.

Dataset Unnatural-6 [35] Natural-6 [35]

Noise type
Traditional Plug-and-play Self-supervised Traditional Plug-and-play Self-supervised

WF DOLPHIn prGAMP prDeep DIP BNN
ASGLD

WF DOLPHIn prGAMP prDeep DIP BNN
ASGLD

[7] [54] [36] [35] [55] [39] [7] [54] [36] [35] [55] [39]

AWGN
10 20.37 24.71 30.00 30.20 28.71 29.99 31.53 15.33 23.68 25.28 26.11 24.54 24.65 25.30
15 26.18 26.70 32.81 32.13 32.49 31.89 34.53 21.12 26.78 28.19 28.79 29.59 29.52 30.30
20 31.47 29.80 35.81 35.44 32.08 32.22 37.31 26.42 30.09 30.87 31.33 32.17 30.19 32.32

Poisson
9 38.67 30.12 39.41 39.01 34.16 32.96 43.67 38.80 31.21 38.12 37.87 36.21 36.64 40.41
27 28.61 26.81 32.53 33.03 33.36 31.88 37.09 29.02 27.12 31.29 31.71 30.33 30.98 34.61
81 17.95 22.11 25.32 27.17 26.25 29.81 30.01 18.61 19.28 23.97 25.23 24.40 24.29 28.29

where | · | denotes absolute value and A is a sensing ma-
trix composed by Discrete Fourier transform and bipolar
(or uniform) random masks; See more details in [35]. The
experiments are conducted on 2 datasets: Unnatural-6 and
Natural-6 sets with 6 images each [35]. For a fair com-

parison, measurement data are obtained from three bipolar
masks. We consider two types of noise: AWGN and Poisson.
The noise level for AWGN is measured by SNR, while Pois-
son noise is measured by α in noise n ∼ N

(
0, α2|Ax|2

)
(a

large α indicates low SNR). The compared methods include
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WF [7] prDeep [35] prGAMP [36] DIP [55] BNN [39] ASGLD Truth

Figure 5. Results of phase retrieval with bipolar masks and sample data with SNR=15.

Table 5. Comparison of ASGLD with classic SGLD on noisy measurements in terms of PSNR(dB).

Tasks CS (σ = 10) MRI (σ = 25.5) Phase Retrieval

Set11 BSD68 Gaussian
Radial

AWGN (in SNR) Poisson (α)
10% 25% 40% 10% 25% 40% 1D 2D 10 15 20 9 27 81

SGLD 25.30 28.59 30.31 24.13 26.28 28.02 25.11 26.25 26.30 27.64 31.66 33.25 40.74 33.09 26.73
ASGLD 26.02 29.35 31.11 24.56 27.16 28.75 26.03 27.40 27.37 28.42 32.42 34.82 42.04 35.85 29.15

traditional non-learning Wirtinger flow (WF) method [7]
and dictionary learning DOLPHIn [54]; two plug-and-play
methods: prGAMP with BM3D denoiser [36] and super-
vised learned denoiser prDeep [35]; two self-supervised
learning methods: DIP [55] and BNN [39]. We set the
learning rate as 0.01. For both noiseless and noisy data,
K = 10000,K0 = 2000.

See Table 4 for the results. It can be seen that the ASGLD
is the top performer among all compared methods. It also
is the most robust to measurement noise. See Figure 5 for
visual comparison of different methods of one sample.

Table 6. Comparison of model size, no. of iterations and comput-
ing time of different methods to achieve reported results for MRI
reconstruction with measurement noise (σ = 25.5).

Methods # of params #of iterations elapsed time PSNR

BNN 2M 1× 104 ≈ 520s 25.70
SGLD 2.2M 1× 104 ≈ 640s 26.14

ASGLD 2.2M 0.3× 104 ≈190s 26.42

4.3. Ablation study

In this study, we would like to see how much advantage
on performance and efficiency of the proposed ASGLD over
plain SGLD. The experiments are conducted on both applica-
tions. See Table 5 for the ablation study on the performance,
and Table 6 for the study on the efficiency.

It can be seen from Table 5 that, thanks for our pro-
posed effective restricted sampling strategy, in all three ex-
periments, the proposed ASGLD outperformed the same
implementation but with SGLD by a large margin. For com-
putational efficiency, ASGLD is about 3 times faster than
the one with SGLD with better result, the same for BNN.
In addition, it can be seen from Figure 6 that the proposed
ASGLD is also very stable during the training.

Limitation. The proposed method aims at training an NN for

Figure 6. PSNR curves of ASGLD and SGLD w and w/o average
over iterations on MRI (Gaussian noise, σ = 25.5).

solving inverse problem without accessing any truth images.
As an unsupervised solution, it cannot have a pre-trained
model to process new coming data, as supervised methods
can. Such an issue limits its applicability to certain applica-
tions which require real-time processing of image data.

5. Conclusion

This paper presents a self-supervised deep learning
method for general image restoration and reconstruction
problems, which is built on an adaptive stochastic gradi-
ent Langevin dynamics for effective MCMC sampling used
for integral calculation. The proposed method is universal
and has its advantages over existing unsupervised learning
methods in terms of both reconstruction quality and compu-
tational efficiency. In future, we would like to investigate its
applications to other problems, as well as further improve its
computational efficiency.
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