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Abstract

The resurgence of unsupervised learning can be at-
tributed to the remarkable progress of self-supervised learn-
ing, which includes generative (G) and discriminative (D)
models. In computer vision, the mainstream self-supervised
learning algorithms are D models. However, designing a D

model could be over-complicated; also, some studies hinted
that a D model might not be as general and interpretable
as a G model. In this paper, we switch from D models to
G models using the classical auto-encoder (AE). Note that
a vanilla G model was far less efficient than a D model
in self-supervised computer vision tasks, as it wastes model
capability on overfitting semantic-agnostic high-frequency
details. Inspired by perceptual learning that could use
cross-view learning to perceive concepts and semantics1,
we propose a novel AE that could learn semantic-aware
representation via cross-view image reconstruction. We use
one view of an image as the input and another view of the
same image as the reconstruction target. This kind of AE
has rarely been studied before, and the optimization is very
difficult. To enhance learning ability and find a feasible so-
lution, we propose a semantic aligner that uses geometric
transformation knowledge to align the hidden code of AE to
help optimization. These techniques significantly improve
the representation learning ability of AE and make self-
supervised learning with G models possible. Extensive ex-
periments on many large-scale benchmarks (e.g., ImageNet,
COCO 2017, and SYSU-30k) demonstrate the effectiveness
of our methods. Code is available at https://github.
com/wanggrun/Semantic-Aware-AE.

1. Introduction
Learning representations without human annotations is

a long-standing vision full of expectations [5]. Although
experiencing a downturn, it has gained a renaissance. Re-
cently, the resurgence of unsupervised learning is attributed

1Following [26], we refer to semantics as visual concepts, e.g., a
semantic-ware model indicates the model can perceive visual concepts,
and the learned features are efficient in object recognition, detection, etc.

     (a) D model         (c) semantic-aware
G model 

(b) semantic-agnostic
G model 

Figure 1. A comparison among a discriminative model (D model),
an existing semantic-agnostic generative model (G model), and
our semantic-aware generative model.

to the remarkable process of self-supervised learning (SSL),
which can be divided into two groups, i.e., generative mod-
els (G models) and discriminative models (D models).

In computer vision, the mainstream SSL algorithms be-
long to D models that learn representations via agent tasks,
e.g., patch ordering [18], solving jigsaw puzzles [43], and
rotation prediction [23]. Of all the agent tasks, contrastive
learning [12–14, 25, 27] and metric learning [61] are cur-
rently the most successful, which randomly augments each
image into different views and compares the (dis)similarity
between different views (see Figure 1 (a)). But as pointed
out by [4,27,61], without careful design, a contrastive learn-
ing algorithm would collapse. Special regularizations (e.g.,
losses [4], normalizations [27], centering [10]), unusual
optimizations (e.g., gradient stopping [14], mean teacher
[51]), and non-trival architectures (e.g., additional predic-
tors [25]) that are difficult to explain are often needed. Be-
sides, some studies also suggested that a D model might
hold some disadvantages compared to a G model in gen-
eralization and interpretability [3, 6, 26]. Specifically, G

models might be more effective in pretraining foundation
models [6] for fine-tuning tasks or downstream tasks, and
the development of G models helps unify the pretraining
paradigms in the CV and NLP domains [3, 17]. Moreover,
with G models, one can further conduct a counterfactual in-
tervention for explainability [1].

In this paper, we switch from D models to G models
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Figure 2. Examples of the cross-view image generation by our semantic-aware AE on the validation set. In each triplet, the left is the input,
the middle is our generated result, and the right is the reconstruction target. The generated image is similar to the reconstruction target.
Although some may be slightly different from the reconstruction target, the generated images are reasonable (semantically plausible).

using classical auto-encoders (AEs)2. Note that previous
works seldom used a G model because it was not as effi-
cient as a D model. For example, a typical G model Big-
BiGAN [19] with ResNet-50 [30] achieved a 55.4% top-1
accuracy on the task of linear evaluation on ImageNet [48],
which is 20.5 points lower than the triplet loss model [61],
one of the best-performing D models. Similarly, the lat-
est G model BEiT [3] with basic DeiT [52] only obtained
56.7% top-1 accuracy, still holding a 19.2% disadvantage
compared to the D model. Actually, BEiT, iGPT [11],
and MAE [26] can only perform well in pretraining tasks
but fail to do well in direct discriminative representation
learning tasks, e.g., a linear evaluation on ImageNet. A G

model’s inefficiency is caused by the waste of capability
on overfitting semantic-agnostic local high-frequency de-
tails [3, 11, 19] and the ignorance to high-level semantics.
For instance, a traditional AE uses an image as an input and
the same image as the regression target, making the model
overly focused on semantic-agnostic information compres-
sion rather than visual concepts (see Figure 1 (b)).

To make G models feasible in SSL, we need to tackle the
above semantic agnosticism problem. Fortunately, Becker
& Hinton (1992) found that cross-view learning could en-
able models to perceive concepts and semantics, and they
proposed perceptual learning [5]. Inspired by this prior art,
we propose a novel AE that could learn semantic-aware rep-
resentation via cross-view image reconstruction. We take a
view of the image as input and force the AE to reconstruct
another view of the image (see Figure 1 (c)). However, this

2Sometimes, there is a minor controversy about whether a vanilla AE
counts as a G model. However, the community reached a consensus that
AE new varieties like denoising AE [53], masked AE [3, 26], and varia-
tional AE [35] are G models, because they can generate things that are not
included in an input, e.g., our semantic-aware AE can generate a new im-
age with a different angle from the input. These AE generators are similar
conditional generators in GAN [24], e.g., Conditional GAN [33], Cycle-
GAN [66], and StyleGAN [34], with inputs being conditions.

rarely-explored AE model is hard to optimize in practice.
To solve this problem, we further propose a novel semantic
alignment technology. Using the geometric transformation
knowledge, we can adjust the hidden code of AE to ensure
that the code semantic is aligned with the reconstruction tar-
get, thereby improving the learning and optimization capa-
bilities. These techniques significantly improve the repre-
sentation learning ability of AE and make SSL with G mod-
els possible in computer vision, leading to a state-of-the-art
performance in feature learning, generalizability, and ex-
plainability. Figure 2 shows some results of our cross-view
image generation, which are promising.

In summary, our contributions are three-fold.

• We seek the possibility of replacing D models with
G models in SSL in computer vision. We rethink the
inefficiency of G models from the perspective of over-
fitting semantic-agnostic local high-frequency details
and propose a novel semantic-aware AE inspired by
perceptual learning. Our AE uses one image view as
input and another view of the same image as the recon-
struction target, which is rarely explored before.

• To help semantic-aware AE optimization, we propose
a novel semantic alignment technique that uses the
geometric transformation knowledge to semantically
align the hidden AE codes to the reconstruction target.
These technologies significantly improve the represen-
tation learning ability of AE and make the SSL with G

model possible in computer vision.

• Extensive experiments show state-of-the-art perfor-
mance of our method on several large-scale bench-
marks (e.g., ImageNet [48], SYSU-30k [59], and
COCO 2017 [40]) and varieties of tasks, demonstrat-
ing the effectiveness (e.g., feature learning, generaliz-
ability, and interpretability) of our method.
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2. Related work
SSL. The idea of unsupervised representation learning

dates back to many years ago, e.g., classical clustering [42].
It is highly anticipated at first, and then disappoints people
due to unsatisfactory performance. Although experiencing
a downturn, it has recently gained a renaissance. The resur-
gence of unsupervised learning is attributed to the enormous
process of SSL, which achieved massive success in both
NLP [7, 17] and computer vision [12–14, 25, 27, 61]. Gen-
erally, SSL can be divided into two groups, i.e., generative
(G) and discriminative (D) models.

G models in SSL. Although G models achieve good per-
formance in pretraining language models in NLP [7,17,20],
they are less effective in SSL tasks in computer vision. The
first group of G models in computer vision are proxy gen-
erative tasks. Typical works include image denoising [53],
image inpainting [44], and color jittering [64]. Although
they contribute to the renaissance of SSL, their learned rep-
resentations do not generalize well. The second group are
pure generative methods. Representative work is BigBi-
GAN [19]. Its original intention is generative rather than
discriminative representation learning; thus, its learned fea-
tures are not very helpful in image recognition tasks. The
third group are NLP-inspired generative models. Outstand-
ing works include BEiT [3] and iGPT [11], which are in-
spired by BERT [20] and GPT [7], respectively. iGPT uses
image tokens as inputs and targets, which are relatively low-
level codes. Although BEiT combines masked language
modeling with DALL·E codes [46], DALL·E codes still
contain local dependencies used for image reconstruction.
Thereby, these simple regression tasks (e.g., BEiT, iGPT,
and MAE [26]) have difficulties in capturing high-level se-
mantics. Hence, they can only perform well in pretraining
tasks but fail to do well in direct discriminative representa-
tion learning tasks, e.g., a linear evaluation on ImageNet.

Note that most of the above methods are AEs, whether
based on CNN [37] or transformers [21]. The idea of AE
dates back to several decades ago at an unclear/untraceable
starting point [2, 36, 47]. Basically and traditionally, AEs
are employed for generative representation learning whose
purpose is dimensionality reduction. However, AEs are in-
efficient in discriminative representation learning because
it wastes model capability on overfitting semantic-agnostic
local high-frequency details [3, 11, 19] for reconstruction.

D models in SSL. Similar to G models, the first group
of D models in computer vision is proxy discriminative
tasks. Typical works included patch ordering [18], solv-
ing jigsaw puzzles [43], and rotation prediction [23]. Since
there was a gap between the proxy tasks and the main
mission, their learned representations could not generalize
well. The second group are currently the most effective
methods, i.e., contrastive [12–14, 25, 27] and metric learn-
ing [61], which could be traced back to perceptual learning

[5]. Lacking annotations, perceptual learning uses cross-
view agreement to perceive concepts and semantics. Fol-
lowing it, contrastive-metric learning randomly augments
each image into different views and compares the similarity
between views. However, this way of representation learn-
ing often collapses [4, 27, 61]. To stabilize learning, care-
ful designs are required. SimCLR [12] employs multi-node
computing to enlarge the batch. MoCo v1/v2 [13,27], triplet
loss model [61], BYOL [25], DINO [10], and SimSiam
[14] need gradient-free teachers (e.g., mean teachers [51] or
gradient-stopping teachers). Triplet loss model, BYOL, and
SimSiam [14] need additional predictors. DINO needs cen-
tering and sharpening of mean teachers. Most above meth-
ods benefit from synchronous batch normalization [32]. Al-
though the recent VICReg [4] needs no normalization or
predictor, it requires three special losses (i.e., variance, in-
variance, and covariance loss) for regularization. Also, the
hyper-parameters in VICReg are uneasy to tune, and train-
ing VICReg is sometimes unstable. In summary, designing
a workable D model could be over-complicated.

Besides, the literature hinted that D models might be less
general and explainable than G models [3, 6, 26]. Specifi-
cally, D models are less effective than G models in pre-
training foundation models for fine-tuning tasks or down-
stream tasks [6], and D models hold a gap in the pretrain-
ing paradigms between computer vision and NLP domains
[3, 17]. Moreover, D models have poorer interpretability
than G models, e.g., in performing causal inference [1].

3. Method
3.1. Vanilla AE (semantic-agnostic AE)

AE is a classic model in the field of representation learn-
ing. Basically, a vanilla AE includes two modules, i.e., an
encoder and a decoder (see Figure 3 (a)), which can be de-
fined with two mappings g and f respectively, such that:

f : z → h, g : h → z,

f∗, g∗ = argmin
f,g

L(z, (g ◦ f)(z)), (1)

where ◦ denotes a composite function, and L denotes a loss
function that can minimize the reconstruction errors (such
as squared errors). f∗ and g∗ are the trained encoder and
decoder. This formula shows that AE is to learn two com-
plex mappings to minimize the error between input z and
output (g ◦ f)(z). Therefore, the essential goal of AE is to
learn a representation for information compression, and this
representation learning is semantically ignorant.

3.2. Semantic-aware AE

To obtain semantic-aware AE, predecessors have made
many efforts and proposed some outstanding works, includ-
ing variational AE [35] and masked AE [3]. But these works
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(a) Vanilla AE (semantic-agnostic AE)

(b) Semantic-Aware AE

Figure 3. A comparison between vanilla AE (i.e., semantic-
agnostic AE) that achieves self-reconstruction and our semantic-
aware AE achieving cross-view generation.

are still inefficient in capturing semantics because they
waste too much capacity on overfitting local high-frequency
signals. We ask: could we learn sematic-aware representa-
tions without labels? Fortunately, this problem has been
studied by Becker & Hinton (1992). They found that cross-
view learning could enable models to perceive concepts
and semantics, and they proposed perceptual learning [5].
Specifically, they perform two independent random aug-
mentations on each image to get two different views. Then,
sematic-aware representations are obtained by learning the
similarity of two views of the same image and the dissimi-
larity of different images. Recently, perceptual learning has
been the basis of D models (i.e., contrastive learning).

Inspired by perceptual learning, we propose a novel AE
that could learn semantic-aware representations via a new
cross-view learning, i.e., cross-view image generation. As
shown in Figure 3 (b), we perform two independent random
data augmentations T1 and T2 for each image x to obtain
z1 and z2, such that: z1 = T1(x) and z2 = T2(x). Then,
our goal is to reconstruct z2 from z1. Overall, our semantic-
aware AE is written as:

z1 = T1(x), z2 = T2(x),

f : z1 → h, g : h → z2,

f∗, g∗ = argmin
f,g

L(z2, (g ◦ f)(z1)).
(2)

3.3. Semantic alignment

Empirically, we found that it is extremely difficult to op-
timize the objective in Eqn. (2) straightforwardly; the train-
ing loss cannot converge (see Section 6). Therefore, it is
uneasy to learn an effective semantic-aware representation
with this formula. To help optimization, we introduce a
novel semantic aligner below.

Geometric transformation. To illustrate the semantic
alignment process, we first present the difference between
the input view (Figure 4 (a)) and the expected output view

 scale,
flip,

replace

ENCODER

DECODERinput

output

(c) Semantic alignment

(a) Input                    (b) output           

Figure 4. An illustration of semantic alignment. (a-b) illustrate the
geometric transformation between the input and the reconstruction
target. (c) illustrates the semantic alignment process.

(i.e., reconstruction target, see Figure 4 (b)). The geometric
transformation between them are summarized as follows.
(1) Random cropping: The two views are cropped from dif-
ferent locations of the original image, so the regional knowl-
edge of interest is different. (2) Random scaling: The two
views have different receptive fields due to different zoom-
ing scales. (3) Random flipping: There is a random dif-
ference in horizontal flip for the two views, so their mirror
perception ability is also different.

Our semantic aligner is placed at the end of the encoder,
i.e., on the feature map. Specifically, we send the input z1
into the encoder and get the intermediate code f(z1), which
is in the form of a feature map. Then, having the geomet-
ric transformation between the input and the reconstruction
target, we perform the following semantic alignment steps:
(1) Zoom in/out (Z, i.e., the “scaling” in Figure 4 (c)): We
resize the cropped code into the target size, i.e., (Z ◦f)(z1).
(2) Flipping (F): We perform horizontal flipping for the
cropped code, i.e., (F ◦Z ◦ f)(z1). (3) Replacing (R): we
replace the transformed code in the appropriate coding posi-
tion (the position corresponding to the area of interest in the
reconstruction target), i.e., (R ◦F ◦Z ◦ f)(z1). Finally, the
decoder will decode the latent code into the output space,
where a reconstruction image can be obtained via cropping,
i.e., (C ◦ g ◦ R ◦ F ◦ Z ◦ f)(z1). An illustration of our
semantic alignment process is shown in Figure 4 (c).

3.4. Technical implementation details

Encoder. Our encoder is a standard ViT [21]. We im-
plement ViT following DeiT [52], which is the same as that
in [3, 10]. Our ViT architecture is the most widely-used
basic one (i.e., ViT-base). For more detail about the archi-
tecture protocol, please refer to Section 4.1.

Decoder. Our decoder g is composed of several simple
transformer blocks. Having the output (C ◦ g ◦ R ◦ F ◦
Z ◦ f)(z1) in Section 3.3, we can easily calculate the re-
construction error to get the reconstruction loss L(z2, (C ◦
g ◦R ◦F ◦Z ◦ f)(z1)), and use it to optimize our goal in
Formula (2). Please see Section 6 for more details.
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Data augmentation. Our data augmentation methods
are all standard methods, and the method we use is similar
to the standard ImageNet supervised training, or even less.
We did not use label smoothing [50] and did not use drop-
ping paths [31]. For more data augmentation information,
please see the “Training protocol” part of Section 4.1.

Others. Besides, we have also thoroughly discussed the
exclusion of global features in Section 6.

4. Main results
4.1. General protocols

Architecture protocol. As is implied by [3,10,16], SSL
has more potential in a vision transformer (ViT) [21], and
thus a ViT is an ideal architecture to examine the effective-
ness of SSL. Thereby, we focus on VITs to test the effec-
tiveness of our method (see footnote3 for more reasons),
similar to [3, 10, 16, 26]. We implement the ViT following
DeiT [52], which is the same as that in [3, 10]. Our ViT ar-
chitecture is the most widely-used basic one (i.e., ViT-base):
Specifically, it takes a 224x224 image as input, and then di-
vides it into 14x14 patches, each of which has 16x16 pixels.
The encoder embeds each patch with a linear mapping into
an embedding (including position codings), and then flat-
tens these embeddings into 196 sequential vectors. These
sequential vectors are input into 12 transformer blocks for
processing. The hidden size of the transformer block is 768.

Training protocol. In the unsupervised representation
learning stage, we trained the model for 400 epochs, and we
used the AdamW optimizer. Our learning rate adjustment
scheme is cosine descent, and the basic learning rate is 5e-4.
The learning rate is linearly warmed up during the first then
epochs to its base. We set the weight decay factor as 4e-2.
Our data augmentation is very common, including random
scaling, cropping, and horizontal flips. Our model is trained
using 1.28M training images on ImageNet, but we did not
access its annotation information. Thanks to the simplicity
of our method, we don’t need complex training techniques
as D models did. See our code for more details.

Evaluation benchmarks. Since ViTs are data-hungry,
we verify the effectiveness of our method by comparing it
with the best existing methods in three large-scale bench-
marks. The tasks include linear evaluation on ImageNet
[48] (1.28M images), person re-ID on SYSU-30k [59] (30M
images), object segmentation and instance detection evalu-
ation on COCO 2017 [40] (123K images, 900K instances).

3We did not use a CNN for three reasons. First, CNNs typically operate
on regular grids, and it is not straightforward to integrate ‘indicators’ such
as mask tokens into CNNs, which are required in our framework. Second,
cross-view generation is a tough learning task that requires a big model to
overfit it. ViTs are very big (≫ResNets) and tends to overfit [15, 26, 52],
so we choose ViTs rather than ResNets. Third, some recent leading SSL
works also only study ViTs (e.g., MoCov3 [16], BEiT [3], MAE [26], and
iBOT [65]), and our choice is in line with them.

Critical discussion on evaluation protocol. At present,
linear evaluation is the most mainstream criterion to test
the ability of SSL methods. The standard process is first
to use an SSL method to train a backbone network and then
freeze the trained model parameters. Next, people add a lin-
ear classifier to the top of the frozen backbone network and
merely train this linear classifier for evaluation. [26] thinks
that the occasional inconsistency between linear evaluation
and fine-tuning indicates that fine-tuning should be empha-
sized (see footnote4). In contrast, we hold a slightly differ-
ent opinion and believe that linear evaluation/probing can
highly measure representation ability.

• As shown in [10], representations with good linear
evaluation performance can even be used to segment
the object directly in an unsupervised manner.

• Classic visual matching tasks like face recognition and
person re-ID also use linear query methods.

• Using fine-tuning will bring new unfairness because
fine-tuning is highly dependent on hyperparameters
(e.g., learning rate and training epochs). Fine-tuning
will change the original parameters, and it is uneasy to
standardize the extent to which parameters are allowed
to be changed for evaluation. In fact, fine-tuning itself
is still an open question [28, 41]. (see footnote5)

What causes the occasional inconsistency between fine-
tuning and linear evaluation may be complicated and multi-
fold (see footnote6 for detail). We believe that the widely-
used linear evaluation should still be valued by the commu-
nity. Hence, we adopt this widely-used linear probing on
ImageNet and SYSU-30k. Neverthelss, we also report the
fine-tuning results on ImageNet. In addition, we follow the
standard protocol to adopt fine-tuning evaluation on COCO.

4.2. Linear evaluation on ImageNet

We evaluate linear probes on ImageNet. In the unsu-
pervised learning stage, we perform SSL with the 1.28M
pictures on the ImageNet training set (but without their an-
notations). In the linear evaluation stage, all SSL methods
are trained on the same training set and validated with 50k
images on the validation set. The standard batch size is 256.
A total of 100 epochs of training is adopted. This process
does not use weight decay. The top-1 accuracy of the single-
scale-center-crop scheme is used as the evaluation metric.
Please see our code for more details.

4In fact, the linear evaluation accuracy of [26] is not very satisfactory.
5In [26], the fine-tuning learning rate is TEN TIMES larger than that

of supervised training from scratch (i.e., 1e-3 vs. 1e-4). Their parameters
are changed to a great extent due to the large fine-tuning learning rate.

6One possible reason is that the model with good linear evaluation
performance might ideally fit the source task, so a different learning rate
is needed in the fine-tuning stage [61]. Another possible reason is that
it is likely that a G model has learned more local dependencies that are
beneficial for middle-level tasks (e.g., segmentation and detection tasks).
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Table 1. Top-1 accuracy and training epochs of state-of-the-art
methods on ImageNet using linear evaluation.

Method Top-1 Epochs Backbone #param.

D models
Random 4.4 0 R50 23M
Ordering [18] 38.8 200 R50 23M
Rotation [23] 47.0 200 R50 23M
DeepCluster [8] 46.9 200 R50 23M
NPID [62] 56.6 200 R50 23M
ODC [63] 53.4 200 R50 23M
SimCLR [12] 60.6 200 R50 23M
SimCLR [12] 69.3 1000 R50 23M
MoCo [27] 61.9 200 R50 23M
MoCo v2 [13] 67.0 200 R50 23M
MoCo v2 [13] 71.1 800 R50 23M
SwAV [9] 72.7 200 R50 23M
BYOL [25] 71.5 200 R50 23M
BYOL [25] 72.5 300 R50 23M
BYOL [25] 74.3 1000 R50 23M
SimSiam [14] 68.1 100 R50 23M
SimSiam [14] 70.0 200 R50 23M
SimSiam [14] 70.8 400 R50 23M
SimSiam [14] 71.3 800 R50 23M
Triplet [61] 75.9 700 R50 23M
DINO [10] 78.2 400 ViT-base 86M
MoCo v3 [16] 76.7 600 ViT-base 86M

G models
BigBiGAN [19] 55.4 - R50 23M
iGPT [11] 65.2 - ViT-super 1362M
iGPT [11] 65.2 - ViT-super 1362M
BEiT [3] 56.7 800 ViT-base 86M
MAE [26] 68.0 1600 ViT-base 86M
Ours 70.1 400 ViT-base 86M

Comparison with G models. As a new G model, we
first compare our method with the existing G models. Due
to the low efficiency of G models in recognition tasks, peo-
ple were rarely interested in this task and thus, there are
only a handful of G models that can be compared, includ-
ing BigBiGAN [19], iGPT [11], BEiT [3], and MAE [26].
The comparison results are reported in Table 1. The per-
formance of our method far exceeds the existing G models.
For example, our accuracy is 70.1%, which is significantly
higher than the best method before (e.g., 56.7% for BEiT).
Note that the performance of the concurrent work MAE is
also lower than our method (i.e., 68.0% vs. 70.1%). These
comparisons confirmed the superiority of our approach.

Comparison with D models. In Table 1, we compare
our method with the state-of-the-art methods. That is, our G
model is compared with D models. We can observe that G
models still have a long way to go. They have significantly
lower learning efficiency than D models. But as shown in
the table, our method is the closest to the D models. It is
worth noting that DINO uses an extra multi-crop scheme
that we didn’t adopt, which has a significant gain (without

Table 2. Top-1 accuracy of state-of-the-art methods on ImageNet
using pretraining and fine-tuning evaluation.

Rand MoCo v3 [16] DINO [10] BEiT [3] MAE [26] Ours

81.8 83.2 82.8 83.2 83.6 83.4

multi-crop augmentation and Sinkhorn-Knopp, DINO only
achieves 72.5%; see [10] for detail).

4.3. Pretraining and fine-tuning on ImageNet

As we have mentioned above, pretraining-finetuning
evaluation has several shortcomings. Nevertheless, follow-
ing [3] and [26], we also report the accuracies under this
evaluation metric in Table 2. We have two observations.
First, the fine-tuned result of our method is better than
D models. Second, compared to G models, our result is
slightly better than BEiT [3] and comparable to MAE [26].

4.4. Transfer to downstream tasks on COCO 2017

A goal of SSL is to learn general features. Thereby, we
need to test the generalization ability of the learned features
of our method by transferring them to downstream tasks.
The downstream benchmark we adopt is COCO 2017 [40],
which is currently one of the largest benchmarks for gen-
eral object detection and segmentation, containing a total of
119k training images. Specifically, our ViT backbone is first
trained using the above-mentioned unsupervised learning.
Then these pretraining parameters are used as the initializa-
tion parameters of a Cascade Mask-RCNN [29], the widely-
adopted framework for ViTs in object detection [65]. Next,
we use the COCO 2017 training set to fine-tune all ViT lay-
ers. As suggested by [27,61], the distribution of features ob-
tained by unsupervised pretraining is different from that of
supervised pretraining. Therefore, in the fine-tuning stage,
we use a larger learning rate than supervised pretraining
counterparts. We report the accuracy on the COCO 2017
validation set. For the object detection task, we report the
standard APbox metric; for the instance segmentation task,
we report the standard APmask metric.

Comparison with G models. Table 3 shows that, in
the COCO 2017 object detection and instance segmentation
task, our SSL pretraining approach achieves state-of-the-art
performance. Our approach is better than BEiT (e.g., 51.0%
vs. 50.1% for the APBox metric, and 44.1% vs. 43.5% for
the APMask metric). It is worthy to note that all the G mod-
els outperform both D models and the supervised counter-
parts. These comparisons confirm the effectiveness of our
method. Besides, we are unable to compare our method
with MAE because their training protocol is missing. Note
that MAE loads pretrained weights into a new windowed
ViT [38] for fine-tuning, claiming MAE is superior to ex-
isting methods. We are really worried about this claim be-
cause loading weights into a new architecture puts exist-
ing methods at a disadvantage, as it introduces architecture
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Table 3. Object detection and instance segmentation on COCO
2017 for Mask-RCNN.

Method APBox (%) APMask (%)

D models
DINO [10] 50.1 43.4

G models
BEiT [3] 50.1 43.5
Ours 51.0 44.1

Supervised
supervised 49.8 43.2

gaps. Moreover, the code of [38] is unavailable.
Comparison with D models. Different from the lin-

ear evaluation in ImageNet, in downstream segmentation
and detection tasks, the current best-performing methods
are G models rather than D models. For example, as Ta-
ble 3 shows, our method is 0.9% higher in APBox accuracy
than the best D model DINO. Two reasons might account
for this. First, our method learns more general features that
are transferable to downstream tasks. Second, as a G model,
our approach pays more attention to local dependencies that
are beneficial for dense prediction tasks.

Comparison with supervised learning. As shown in
Table 3, our AE method fully surpasses the supervised pre-
training method. Our APBox is 51.0%, and the supervised
counterpart is 49.8%. These comparisons confirm the effec-
tiveness of our method. Note that, in summary, G models
are better than D models, and D models are close to the
performance of the supervised model.

4.5. Person re-identification on SYSU-30k

Since ViTs are data-hungry models, we next verify the
effectiveness of our method on a more extensive data set,
SYSU-30k [59], that is 30 times larger than ImageNet both
in terms of category number and image number. From a
more general perspective, the above tasks (image classifica-
tion, detection, and segmentation) are all visual classifica-
tion tasks7. In view of this, the effectiveness of our method
needs to be verified on more types of tasks. As mentioned
in Section 4.1, if we can find a task to directly evaluate the
features learned by SSL without fine-tuning network param-
eters, we will have a more transparent understanding of the
effectiveness of SSL. Fortunately, person re-ID [22] is such
a satisfying visual matching task8. Hence, we adopt the re-
ID task for examination. The benchmark SYSU-30k is em-

7This is because object detection and instance segmentation can be seen
as classifying regions and pixels.

8Specifically, re-ID is a visual matching problem of recognizing pedes-
trians across cameras [39, 54–58, 60, 67]. But in recent years, there are
some concern about privacy issues of face recognition and re-ID technol-
ogy, which is beyond the scope of the scientific community. We evaluate
the SYSU-30k in this paper for research purposes only. Our source code
and model are not allowed to use for any applications like surveillance that
might raise ethical concerns.

Table 4. Comparison in re-ID tasks on SYSU-30k.

method rank-1 (%)
Backbone

D models
SimCLR [12] 10.9 R50
MoCo v2 [13] 11.6 R50

BYOL [25] 12.7 R50
Triplet [61] 14.8 R50

MoCo v3 [16] 14.96 ViT-base
G models

BEiT [3] 8.3 ViT-base
Ours 11.8 ViT-base

ployed for three reasons. First, SYSU-30k is not only the
largest re-ID dataset, but also one of the largest datasets in
computer vision, containing 29,606,918 images of 30,508
pedestrians. Second, this dataset does not hold an exact la-
bel for each image. Evaluation on SYSU-30k means that
we use its training set to perform SSL, and then the learned
model is directly used to extract features for matching with-
out any fine-tuning. This linear probing is more challenging
than linear evaluation on ImageNet because linear evalua-
tion on ImageNet can learn an extra classifier for recogni-
tion, but no extra classifier is allowed here. Third, another
challenge in the linear probing is that there are 478,730 mis-
matching images as the wrong answer in the gallery. Eval-
uation using the SYSU-30k test set is like searching for a
needle in a haystack. Unless being an extraordinary SSL
feature learner, it is challenging to excel in this task.

Comparision with SSL methods. We compare our
method with existing SSL methods, including SimCLR
[12], MoCo v2 [13], BYOL [25], MoCo v3 [16], and BEiT
[3]. Among them, MoCo v3, BEiT, and our method use
ViT-base [52] as the backbone, while others use ResNet-
50 [30] as the backbone. Both BEiT and our method are
G models; other methods are D models. The experimental
results are shown in Table 4. We can see that our method
has achieved a good performance (11.8%), which is com-
parable to D models. Overall, the performance of the D

models is better than G models. Even so, our method is sat-
isfactory. These comparisons prove that our method is an
effective SSL visual feature learner.

One thing that could not be ignored is that all SSL mod-
els perform unsatisfactorily on the challenging benchmark
of SYSU-30k, i.e., the rank-1 values are very low. This is
attributed to the challenge of the dataset, whereas warning
us that SSL still has a long way to go.

5. Visualization
We show our image generation results in Figure 2 (Page

2) in the form of triplets. In each triplet, the left is the input
image, the middle is our generated image, and the right is
the ground truth. We can see that our generated images are
very close to the ground truths. Even if some generated im-
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Figure 5. Achieving interpretability via counterfactual interven-
tion with the help of a G model.

age is slightly different from the ground truth, the generated
image is semantically plausible, indicating that our model
has learned reasonably semantic representations. Besides,
there is some grid effect in the visualization, similar to that
in MAE [26]. We conjecture that this is attributed to two
reasons. First, the loss is applied to the masked region. Sec-
ond, it might be due to feature distortion.

We have proven the generalizability of our method, e.g.,
in outperforming D models in pretraining tasks and dense
prediction tasks and towards unifying pretraining methodol-
ogy between CV and NLP. Next, we show the interpretabil-
ity of our method. Our method can elegantly perform causal
inference that is beyond the ability of D models. We con-
duct counterfactual interventions by masking an image to
leave only one window at a time to exclude confounding
factors for reconstruction. The reconstruction scores are vi-
sualized in Figure 5. As shown, the shark is successfully
found via causal inference.

6. Necessities, exclusions, and options
The rest of this paper aims not to pursue state-of-the-art

results but to gain insight into the role of different compo-
nents of our method. Thus, we reduce the training epochs
to 100 to fast access results. Other rraining protocol in this
section is the same as in Section 4. This section only reports
the linear evaluation results on ImageNet, because, as we
said before, it is a general and reliable evaluation method.

Necessity of semantic-aware generation.As described,
our method inputs one view of the image and generates an-
other view of it to perceive semantics. Now we removed
this cross-view generation design and let the model perform
self-regression, degenerating it back to a vanilla AE. Table
5 shows the result. It can be seen that after removing the
semantic-aware generation, the performance of the visual
feature learner plummeted from 46.4 to 6.1. This compari-
son confirms the necessity of semantic-aware generation.

Necessity of semantic alignment. As mentioned, to
train our semantic-aware AE, we need to align semantics.
Specifically, we need to know the geometric transformation
of the input and target and align them. Now we remove the
aligner and directly regress the input into the target. This
learning goal is different from all previous AEs, causing

Table 5. Effectiveness analysis and insight of our method.

Properties Top-1 (%)

Semantic-aware AE (full) 46.4
- Semantic-aware generation 6.1 (-40.3)
Semantic-aware AE (full) 46.4
- Semantic alignment not converge
Semantic-aware AE (full) 46.4
+ Global feature not converge

huge learning difficulties. We observed that the training
loss dropped quickly at the start, then it almost no longer
declined (see Table 5). This comparison confirms that se-
mantic alignment is necessary in a good feature learner.

Exclusion of global feature. Unlike D models, existing
state-of-the-art G models [3, 11, 26] do not have a global
feature vector. As pointed out by [3, 11], lacking global-
ity creates a gap between pretraining and linear evaluation.
Here we insert a global pooling module at the end of the en-
coder and then increase the spatial size of the feature map
using transformer decoder [45] and deconvolution [49] re-
spectively to complete image reconstruction. As a result,
the training loss cannot converge regardless of whether us-
ing a transformer decoder or deconvolution (see Table 5).

7. Conclusion
In NLP/NLU, G models play a vital role in SSL pre-

training. But this role was absent in computer vision be-
fore, until [3, 26] came. This paper aims to bridge this
gap. To tackle the problem that G models waste capacity
in learning semantic-agnostic local signals, we propose a
novel semantic-aware AE. Our AE uses one view of the im-
age as input, but reconstructs another view of the image. In
this way, our AE learns semantic representations, achiev-
ing good performance in many tasks. We hope that our ap-
proach will be inspiring for rethinking the new position of
G models as a feature learner in computer vision, especially
for closing the gap between NLP and computer vision.

Broader impacts. This paper uses existing datasets, so
the potential negative impact of the existing datasets will
also be inherited. For example, the datasets ImageNet and
SYSU-30k inevitably contain human photos. One limita-
tion of this paper is that the proposed G still has a slight gap
to the D models so far. The proposed method can generate
non-existent images, which might be uncontrollable.
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