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Abstract

The crux of semi-supervised semantic segmentation is to
assign adequate pseudo-labels to the pixels of unlabeled
images. A common practice is to select the highly confident
predictions as the pseudo ground-truth, but it leads to a
problem that most pixels may be left unused due to their
unreliability. We argue that every pixel matters to the model
training, even its prediction is ambiguous. Intuitively,
an unreliable prediction may get confused among the top
classes (i.e., those with the highest probabilities), how-
ever, it should be confident about the pixel not belonging
to the remaining classes. Hence, such a pixel can be
convincingly treated as a negative sample to those most
unlikely categories. Based on this insight, we develop an
effective pipeline to make sufficient use of unlabeled data.
Concretely, we separate reliable and unreliable pixels via
the entropy of predictions, push each unreliable pixel to
a category-wise queue that consists of negative samples,
and manage to train the model with all candidate pixels.
Considering the training evolution, where the prediction
becomes more and more accurate, we adaptively adjust
the threshold for the reliable-unreliable partition. Experi-
mental results on various benchmarks and training settings
demonstrate the superiority of our approach over the state-
of-the-art alternatives.'

1. Introduction

Semantic segmentation is a fundamental task in the com-
puter vision field, and has been significantly advanced along
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Figure 1. Category-wise performance and statistics on number
of pixels with reliable and unreliable predictions. Model is
trained using 732 labeled images on PASCAL VOC 2012 [16] and
evaluated on the remaining 9, 850 images.

with the rise of deep neural networks [7,30,36,47]. Existing
supervised approaches rely on large-scale annotated data,
which can be too costly to acquire in practice. To alleviate
this problem, many attempts [1,4,11,17,23,34,44,49] have
been made towards semi-supervised semantic segmenta-
tion, which learns a model with only a few labeled samples
and numerous unlabeled ones. Under such a setting, how to
adequately leverage the unlabeled data becomes critical.

A typical solution is to assign pseudo-labels to the pixels
without annotations. Concretely, given an unlabeled image,
prior arts [28,42] borrow predictions from the model trained
on labeled data, and use the pixel-wise prediction as the
“ground-truth” to in turn boost the supervised model. To
mitigate the problem of confirmation bias [2], where the
model may suffer from incorrect pseudo-labels, existing
approaches propose to filter the predictions with their
confidence scores [43,44,51,52]. In other words, only the
highly confident predictions are used as the pseudo-labels,
while the ambiguous ones are discarded.

However, one potential problem caused by only using
reliable predictions is that some pixels may never be learned
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in the entire training process. For example, if the model
cannot satisfyingly predict some certain class (e.g., chair
in Fig. 1), it becomes difficult to assign accurate pseudo-
labels to the pixels regarding such a class, which may lead
to insufficient and categorically imbalanced training. From
this perspective, we argue that, to make full use of the
unlabeled data, every pixel should be properly utilized.

As discussed above, directly using the unreliable pre-
dictions as the pseudo-labels will cause the performance
degradation [2]. In this paper, we propose an alternative
way of Using Unreliable Pseudo-Labels. We call our
framework as U2PL. First, we observe that, an unreliable
prediction usually gets confused among only a few classes
instead of all classes. Taking Fig. 2 as an instance, the
pixel with white cross receives similar probabilities on class
motorbike and person, but the model is pretty sure
about this pixel not belonging to class car and train.
Based on this observation, we reconsider the confusing
pixels as the negative samples to those unlikely categories.
Specifically, after getting the prediction from an unlabeled
image, we employ the per-pixel entropy as the metric (see
Fig. 2) to separate all pixels into two groups, i.e., a reliable
one and an unreliable one. All reliable predictions are
used to derive positive pseudo-labels, while the pixels with
unreliable predictions are pushed into a memory bank,
which is full of negative samples. To avoid all negative
pseudo-labels only coming from a subset of categories,
we employ a queue for each category. Such a design
ensures that the number of negative samples for each class
is balanced. Meanwhile, considering that the quality of
pseudo-labels becomes higher along with the model gets
more and more accurate, we come up with a strategy to
adaptively adjust the threshold for the partition of reliable
and unreliable pixels.

We evaluate the proposed U?PL on PASCAL VOC
2012 [16] and Cityscapes [!2] under a wide range of
training settings, where our approach surpasses the state-
of-the-art competitors. Furthermore, through visualizing
the segmentation results, we find that our method achieves
much better performance on those ambiguous regions (e.g.,
the border between different objects), thanks to our ade-
quate use of the unreliable pseudo-labels.

2. Related Work

Semi-Supervised Learning has two typical paradigms:
consistency regularization [3, 17, 34, 37, 43] and entropy
minimization [4, 18]. Recently, a more intuitive but
effective framework: self-training [28], has become the
mainstream. Several methods [17, 44, 45] utilize strong
data augmentation such as CutOut [15], CutMix [46], and
ClassMix [32] based on self-training. However, these
methods do not pay much attention to the characteristics of
semantic segmentation, while our method focuses on those
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(c) Reliable prediction (yellow cross).  (d) Unreliable prediction (white cross).

Figure 2. Illustration on unreliable pseudo-labels. (a) Pixel-
wise entropy predicted from an unlabeled image, where low-
entropy pixels and high-entropy pixels indicate reliable and unre-
liable predictions, respectively. (b) Pixel-wise pseudo-labels from
reliable predictions only, where pixels within the white region
are not assigned a pseudo-label. (c) Category-wise probability of
a reliable prediction (i.e., the yellow cross), which is confident
enough for supervising the class person. (d) Category-wise
probability of an unreliable prediction (i.e., the white cross),
which hovers between mot orbike and person, yet is confident
enough of not belonging to car and train.

unreliable pixels which will be filtered out by most of self-
training based methods [35,44,45].

Pseudo-Labeling is applied to prevent overfitting to in-
correct pseudo-labels when generating predictions of input
images from the teacher network [2, 28]. FixMatch [38]
utilizes a confidence threshold to select reliable pseudo-
labels. UPS [35], a method based on FixMatch [38], takes
model uncertainty and data uncertainty into consideration.
However, in semi-supervised semantic segmentation, our
experiments show including unreliable pixels into training
can boost performance.

Model Uncertainty in computer vision is mostly measured
by Bayesian deep learning approaches [14,25,31]. In our
settings, we do not focus on how to measure uncertainty.
We simply use the entropy of pixel-wise probability distri-
bution to be the metric.

Contrastive Learning is applied by many successful works
in self-supervised learning [9, 10, 19]. In semantic segmen-
tation, contrastive learning has become a promising new
paradigm [1,29,41,48,50]. However, these methods ignore
the common false negative samples in semi-supervised
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segmentation, and unreliable pixels may be wrongly pushed
away in contrastive loss. Discriminating the unlikely
categories of unreliable pixels can addresses this problem.
Negative Learning aims at decreasing the risk of incorrect
information by lowering the probability of negative sam-
ples [26,27,35,40], but those negative samples are selected
with high confidence. In other words, these methods
still utilizes pixels with reliable predictions. By contrast,
we propose to make sufficient use of those unreliable
predictions for learning instead of filtering them out.

3. Method

In this section, we establish our problem mathematically
and give an overview of our proposed method in Sec. 3.1
first. Our strategies about filtering reliable pseudo-labels
are introduced in Sec. 3.2. Finally, we describe how to use
unreliable pseudo-labels in Sec. 3.3.

3.1. Overview

Given a labeled set D; = {(xﬁ,yﬁ)}jv:ll

larger unlabeled set D,, = {X%‘}ZN:“P our goal is to train
a semantic segmentation model by leveraging both a large
amount of unlabeled data and a smaller set of labeled data.

Fig. 3 gives an overview of U?PL, which follows the
typical self-training framework with two models of the
same architecture, named teacher and student respectively.
The two models differ only when updating their weights.
The student model’s weights 6 are updated consistent with
the common practice and the teacher model’s weights 6,
are exponential moving average (EMA) updated by the
student model’s weights. Each model consists of a CNN-
based encoder h, a decoder with a segmentation head f,
and a representation head g. At each training step, we
equally sample B labeled images B; and B unlabeled
images B,,. For every labeled image, our goal is to minimize
the standard cross-entropy loss in Eq. (2). As for each
unlabeled image, we first take it into the teacher model
and get predictions. Then, based on pixel-level entropy, we
ignore unreliable pixel-level pseudo-labels when computing
unsupervised loss in Eq. (3). This part will be introduced in
section Sec. 3.2 in detail. Finally, we use the contrastive
loss to make full use of the unreliable pixels excluded in the
unsupervised loss, which will be introduced in Sec. 3.3.

Our optimization target is to minimize the overall loss,
which can be formulated as:

and a much

L=Ls +)\u£u+)\c£ca (1

where £, and £, represent supervised loss and unsuper-
vised loss applied on labeled images and unlabeled images
respectively, and L. is the contrastive loss to make full
use of unreliable pseudo-labels. A, and A, are weights of

unsupervised loss and contrastive loss respectively. Both £
and L, are cross-entropy (CE) loss:

1
Lo=r D
B

1
(xt,yheB

Cee(f o h(xL:0),50), )

ce(foh(xy;0),¥7), (3)

XEB

where y! represents the hand-annotated mask label for the
i-th labeled image, and y;* is the pseudo-label for the i-th
unlabeled image. f o h is the composition function of / and
f, which means the images are first fed into h and then f to
get segmentation results. L. is the pixel-level InfoNCE [33]
loss defined as:

cC—-1 M
1O

c=0 =1

L=

“)
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where M is the total number of anchor pixels, and z;
denotes the representation of the i-th anchor of class c.
Each anchor pixel is followed with a positive sample and
N negative samples, whose representations are z ;and z
respectively. Note that z = g o h(x), which is the output
of the representation head. (-,-) is the cosine similarity
between features from two different pixels, whose range is
limited between —1 to 1, hence the need of temperature 7.
Following [29], M = 50, N = 256 and 7 = 0.5.

3.2. Pseudo-Labeling

To avoid overfitting incorrect pseudo-labels, we utilize
entropy of every pixel’s probability distribution to filter high
quality pseudo-labels for further supervision. Specifically,
we denote p;; € R® as the softmax probabilities generated
by the segmentation head of the teacher model for the -
th unlabeled image at pixel j, where C' is the number of
classes. Its entropy is computed by:

H(pij) Z pis(c

where p;;(c) is the value of p;; at c-th dimension.

Then, we define pixels whose entropy on top o as un-
reliable pseudo-labels at training epoch ¢. Such unreliable
pseudo-labels are not qualified for supervision. Therefore,
we define the pseudo-label for the i-th unlabeled image at
pixel 7 as:

c)logpi;(c), (5)

N argmax p;j(c), if H(pi;) <,
Uij = ¢ (6)

ignore, otherwise,
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Figure 3. An overview of our proposed U>PL method. U?PL contains a student network and a teacher network, where the teacher is
momentum-updated with the student. Labeled data is directly fed into the student network for supervised training. Given an unlabeled
image, we first use the teacher model to make a prediction, and then separate the pixels into reliable ones and unreliable ones based on
their entropy. Such a process is formulated as Eq. (6). The reliable predictions are directly used as the pseudo-labels to advise the student,
while each unreliable prediction is pushed into a category-wise memory bank. Pixels in each memory bank are regarded as the negative
samples to the corresponding class, which is formulated as Eq. (4).

where v; represents the entropy threshold at ¢-th training
step. We set ~; as the quantile corresponding to oy
to limit unreliable pixels with top «; entropy, i.e.,
Yt=np.percentile (H.flatten(),100% (1-ay)),
where H is per-pixel entropy map. We adopt the following
adjustment strategies in the pseudo-labeling process for
better performance.

Dynamic Partition Adjustment. During the training pro-
cedure, the pseudo-labels tend to be reliable gradually. Base
on this intuition, we adjust unreliable pixels’ proportion o
with linear strategy every epoch:

t
=y (11— ———— 7
= ( total epoch) ’ ™

where oy is the initial proportion and is set to 20%, and t is
the current training epoch.

Adaptive Weight Adjustment. After obtaining reliable
pseudo-labels, we involve them in the unsupervised loss
in Eq. (3). The weight A\, for this loss is defined as the
reciprocal of the percentage of pixels with entropy smaller
than threshold ~; in the current mini-batch multiplied by a
base weight 7:

|By| x Hx W

f:XIW 1 [g;; # ignore] ,

®)

u

= B
2=
where 1(-) is the indicator function and 7 is set to 1.

3.3. Using Unreliable Pseudo-Labels

In semi-supervised learning tasks, discarding unreliable
pseudo-labels or reducing their weights is widely used to
prevent degradation of model’s performance [5, 6, 38, 42,

,51]. We follow this intuition by filtering out unreliable
pseudo-labels based on Eq. (6).

However, such contempt for unreliable pseudo-labels
may result in information loss. It is obvious that un-
reliable pseudo-labels can provide information for better
discrimination. For example, the white cross in Fig. 2,
is a typical unreliable pixel. Its distribution demonstrates
model’s uncertainty to distinguish between class person
and class motorbike. However, this distribution also
demonstrates model’s certainty to not to discriminate this
pixel as class car, class t rain, class bicycle and so on.
Such characteristic gives us the main insight to propose our
U?PL to use unreliable pseudo-labels for semi-supervised
semantic segmentation.

U?PL, with a goal to use the information of unreliable

pseudo-labels for better discrimination, coincides with re-
cent popular contrastive learning paradigm in distinguishing
representation. But due to the lack of labeled images in
semi-supervised semantic segmentation tasks, our U?PL
is built on more complicated strategies. U2PL has three
components, named anchor pixels, positive candidates and
negative candidates. These components are obtained in a
sampling manner from certain sets to alleviate huge com-
putational cost. Next, we will introduce how to selecting:
(a) anchor pixels (queries); (b) positive samples for each
anchor; (c) negative samples for each anchor.
Anchor Pixels. During training, we sample anchor pixels
(queries) for each class that appears in the current mini
batch. We denote the set of features of all labeled candidate
anchor pixels for class c as AL,

AL ={zi; | yij = ¢, pij(c) > 8}, )
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where y;; is the ground-truth for the j-th pixel of labeled
image ¢, and J, denotes the positive threshold for a par-
ticular class and is set to 0.3 following [29]. z;; means
the representation of the j-th pixel of labeled image :. For
unlabeled data, counterpart AY can be computed as:

Al = {245 | 9i5 = ¢, pijc) > dp}. (10)

It is similar to Alc, and the only difference is that we
use pseudo-label §;; based on Eq. (6) rather than hand-
annotated label, which implies that qualified anchor pixels
are reliable, i.e., #(p;;) < ;. Therefore, for class c, the
set of all qualified anchors is

A= AL U AL (11)

Positive Samples. The positive sample is the same for all
anchors from the same class. It is the center of all possible

anchors: 1
zj = — Ze. (12)
a2

Negative Samples. We define a binary variable n;;(c) to
identify whether the j-th pixel of image i is qualified to be
negative samples of class c.

13)

1
i(c), otherwise,

{nl- (c), if image i is labeled,
nij(c) =19

n

where nﬁj (c) and n};(c) are indicators of whether the j-th
pixel of labeled and unlabeled image @ is qualified to be
negative samples of class c respectively.

For i-th labeled image, a qualified negative sample
for class ¢ should be: (a) not belonging to class c; (b)
difficult to distinguish between class ¢ and its ground-
truth category. Therefore, we introduce the pixel-level
category order O,; = argsort(p;;). Obviously, we have
0;;(argmax p;;) = 0 and O;j(arg min p;;) = C' — 1.
nii(e) =1y # - 1[0 < Oy(e) <], (14)

)

where r; is the low rank threshold and is set to 3. The two
indicators reflect feature (a) and (b) respectively.

For i-th unlabeled image, a qualified negative sample for
class c should: (a) be unreliable; (b) probably not belongs to
class ¢; (c) not belongs to most unlikely classes. Similarly,
we also use O;; to define ng; (c):

ngi(c) = L[H(pij) > 7| - L < Oyj(c) <), (15)

where 7, is the high rank threshold and is set to 20. Finally,
the set of negative samples of class c is

NC = {Zij | nij(c) = 1}. (16)

Category-wise Memory Bank. Due to the long tail
phenomenon of the dataset, negative candidates in some

Algorithm 1: Using Unreliable Pseudo-Labels

1 Initialize £ < 0;
2 Sample labeled images B; and unlabeled images B,,;
3 forx; € B,U B, do

4 Get probabilities: p; « f o h(x;;6;);

5 Get representations: z; <— g o h(x;;0s);

6 forc<~ 0toC — 1do

7 Get anchors A, based on Eq. (11);

8 Sample M anchors: B4 < sample (A.);
9 Get negatives N, based on Eq. (16);

10 Push NV, into memory bank Q.;

11 Pop oldest ones out of Q. if necessary;

12 Sample N negatives: By + sample (Q.);
13 Get zT based on Eq. (12);

14 L+ L+ {(Ba,Bn,z") based on Eq. (4);
15 end
16 end

Output: contrastive loss £, < \BI%L

particular categories are extremely limited in a mini-batch.
In order to maintain a stable number of negative samples,
we use category-wise memory bank Q. (FIFO queue) to
store the negative samples for class c.

Finally, the whole process to use unreliable pseudo-
labels is shown in Algorithm 1. All features of anchors are
attach to gradient, come from student hence, while features
of positive and negative samples are from teacher.

4. Experiments
4.1. Setup

Datasets. PASCAL VOC 2012 [16] Dataset is a standard
semantic segmentation benchmark with 20 semantic classes
of objects and 1 class of background. The training set
and the validation set include 1,464 and 1,449 images
respectively. Following [11,23,44], we use SBD [20] as the
augmented set with 9, 118 additional training images. Since
the SBD [20] dataset is coarsely annotated, PseudoSeg [51]
takes only the standard 1,464 images as the whole labeled
set, while other methods [I1, 23] take all 10,582 images
as candidate labeled data. Therefore, we evaluate our
method on both the classic set (1,464 candidate labeled
images) and the blender set (10,582 candidate labeled
images). Cityscapes [12], a dataset designed for urban
scene understanding, consists of 2, 975 training images with
fine-annotated masks and 500 validation images. For each
dataset, we compare U2PL with other methods under 1 /2,
1/4,1/8, and 1/16 partition protocols.

Network Structure. We use ResNet-101 [21] pre-trained
on ImageNet [13] as the backbone and DeepLabv3+ [8] as
the decoder. Both of the segmentation head and the rep-
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Table 1. Comparison with state-of-the-art methods on classic PASCAL VOC 2012 val set under different partition protocols. The labeled
images are selected from the original VOC train set, which consists of 1,464 samples in total. The fractions denote the percentage of
labeled data used for training, followed by the actual number of images. All the images from SBD [20] are regarded as unlabeled data.
“SupOnly” stands for supervised training without using any unlabeled data. ¥ means we reproduce the approach.

Method ‘ 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
SupOnly ‘ 45.77 54.92 65.88 71.69 72.50

MTT [ 51.72 58.93 63.86 69.51 70.96
CutMlir [ 52.16 63.47 69.46 73.73 76.54
PseudoSeg 57.60 65.50 69.14 72.41 73.23
PC2Seg [ 57.00 66.28 69.78 73.05 74.15

U?PL (w/ CutMix) | 67.98 (+1582) 69.15 (+5.68) 73.66 (+4.20) 76.16 (+2.43) 79.49 (+2.95)

resentation head consists of two Conv—-BN—ReLU blocks,
where both blocks preserve the feature map resolution
and the first block halves the number of channels. The
segmentation head can be seen as a pixel-level classifier,
mapping the 512 dimensional features output from ASPP
module into C' classes. The representation head maps the
same features into 256 dimensional representation space.
Evaluation. Following previous methods [17,23, 34, 49],
the images are center cropped into a fixed resolution for
PASCAL VOC 2012. For Cityscapes, previous methods
apply slide window evaluation, so do we. Then we adopt
the mean of Intersection over Union (mloU) as the metric
to evaluate these cropped images. All results are measured
on the val set on both Cityscapes [|2] and PASCAL VOC
2012 [16]. Ablation studies are conducted on the blender
PASCAL VOC 2012 [16] val set under 1/4 and 1/8
partition protocol.

Implementation Details. For the training on the blender
and classic PASCAL VOC 2012 dataset, we use stochastic
gradient descent (SGD) optimizer with initial learning rate
0.001, weight decay as 0.0001, crop size as 513 x 513,
batch size as 16 and training epochs as 80. For the training
on the Cityscapes dataset, we also use stochastic gradient
descent (SGD) optimizer with initial learning rate 0.01,
weight decay as 0.0005, crop size as 769 x 769, batch size
as 16 and training epochs as 200. In all experiments, the
decoder’s learning rate is ten times that of the backbone. We

use the poly scheduling to decay the learning rate during the
iter ) 0.9
total iter

training process: Ir = Irpage - (1 -

4.2. Comparison with Existing Alternatives

We compare our method with following recent semi-
supervised semantic segmentation methods: Mean Teacher
(MT) [39], CCT [34], GCT [24], PseudoSeg [51], Cut-
Mix [17], CPS [11], PC2Seg [49], AEL [23]. We re-
implement MT [39], CutMix [46] for a fair comparison. For
Cityscapes [12], we also reproduce CPS [1 1] and AEL [23].
All results are equipped with the same network architecture
(DeepLabv3+ as decoder and ResNet-101 as encoder). It is

Table 2. Comparison with state-of-the-art methods on blender
PASCAL VOC 2012 val set under different partition protocols.
All labeled images are selected from the augmented VOC train
set, which consists of 10, 582 samples in total. “SupOnly” stands
for supervised training without using any unlabeled data. { means
we reproduce the approach.

Method | 1716 (662) 1/8 (1323) 1/4 (2646) 172 (5291)
SupOnly | 67.87 71.55 75.80 77.13
MT? [39] 70.51 71.53 73.02 76.58
CutMix' [17] 71.66 75.51 77.33 78.21
CCT [34] 71.86 73.68 76.51 77.40
GCT [24] 70.90 73.29 76.66 77.98
CPS[11] 74.48 76.44 77.68 78.64
AEL [23] 77.20 71.57 78.06 80.29

U?PL (w/ CutMix) \ 77.21 (+5.55)  79.01 (+3.50)  79.30 (+1.97)  80.50 (+2.29)

Table 3. Comparison with state-of-the-art methods on Cityscapes
val set under different partition protocols. All labeled images are
selected from the Cityscapes t rain set, which consists of 2,975
samples in total. “SupOnly” stands for supervised training without
using any unlabeled data. ¥ means we reproduce the approach.

Method ‘ 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
SupOnly \ 65.74 72.53 74.43 77.83

MTT [39] 69.03 72.06 74.20 78.15
CutMix' [17] 67.06 71.83 76.36 78.25

CCT [34] 69.32 74.12 75.99 78.10

GCT [24] 66.75 72.66 76.11 78.34
CPst[11] 69.78 74.31 74.58 76.81

AEL' [23] 74.45 75.55 77.48 79.01

U?PL (w/ CutMix) | 70.30 (+324) 74.37 (+254) 76.47 (+0.11)  79.05 (+0.80)
U?PL (w/ AEL) 74.90 (+0.45) 76.48 (+0.93) 78.51 (+1.03) 79.12 (+0.11)

important to note the classic PASCAL VOC 2012 Dataset
and blender PASCAL VOC 2012 Dataset only differ in
training set. Their validation set are the same common one
with 1, 449 images.

Results on classic PASCAL VOC 2012 Dataset. Tab. 1
compares our method with the other state-of-the-art meth-
ods on classic PASCAL VOC 2012 Dataset. U?PL out-
performs the supervised baseline by +22.21%, +14.23%,
+7.78% and +4.47% under 1/16, 1/8, 1/4 and 1/2
partition protocols respectively. For a fair comparison,
we only list the methods tested on classic PASCAL VOC
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2012. Our method U?PL outperform PC?Seg under all
partition protocols by +10.98%, +2.87%, +3.88% and
+3.11% under 1/16, 1/8, 1/4 and 1/2 partition protocols
respectively. Even under full supervision, our method
outperform PC2Seg by +5.34%.

Results on blender PASCAL VOC 2012 Dataset. Tab. 2
shows the comparison results on blender PASCAL VOC
2012 Dataset. Our method U?PL outperforms all the other
methods under most partition protocols. Compared with the
baseline model (trained with only supervised data), U?PL
achieves all improvements of +9.34%, +7.46%, +3.50%
and +3.37% under 1/16, 1/8, 1/4 and 1/2 partition
protocols respectively. Compared with the existing state-
of-the-art methods, U?PL surpasses them under all partition
protocols. Especially under 1/8 protocol and 1/4 protocol,
U2PL outperforms AEL by +1.44% and +1.24%.

Results on Cityscapes Dataset. Tab. 3 illustrates the
comparison results on the Cityscapes val set. UZ?PL
achieves consistent performance gains over the supervised
only baseline by +9.16%, +3.95%, +4.08% and +1.29%
under 1/16, 1/8, 1/4 and 1/2 partition protocols. U2?PL
outperforms the existing state-of-the-art method by a no-
table margin. In particular, U?PL outperforms AEL by
+0.45%, +0.93%, +1.03% and +0.11% under 1/16, 1/8,
1/4 and 1/2 partition protocols.

Note that when labeled data is extremely limited, e.g.,
when we only have 92 labeled data, our U?PL outperforms
previous methods by a large margin (+10.98% under 1/16
split for classic PASCAL VOC 2012), proofing the effi-
ciency of using unreliable pseudo-labels.

4.3. Ablation Studies

Effectiveness of Using Unreliable Pseudo-Labels. To
prove our core insight, i.e., using unreliable pseudo-
labels promotes semi-supervised semantic segmentation,
we conduct experiments about selecting negative candidates
(Sec. 3.3) with different reliability. Tab. 4 demonstrates the
mloU results on PASCAL VOC 2012 val set. “Unreli-
able” outperforms other options, proving using unreliable
pseudo-labels does help.

Effectiveness of Probability Rank Threshold. Sec. 3.3
proposes to use probability rank threshold to balance in-
formativeness and confusion caused by unreliable pixels.
Tab. 5 provides a verification that such balance promotes
the performance. r; = 3 and r;, = 20 outperform other
options by a large margin. When r; = 1, false negative
candidates would not be filtered out, causing the intra-class
features of pixels incorrectly distinguished by £.. When
r; = 10, negative candidates tend to become irrelevant
with corresponding anchor pixels in semantic, making such
discrimination less informative.

Effectiveness of Components. We conduct experiments in
Tab. 6 to ablate each component of U2PL step by step. For

Table 4. Ablation study on using pseudo pixels with different
reliability, which is measured by the entropy of pixel-wise
prediction (see Sec. 3.3). “Unreliable” denotes selecting negative
candidates from pixels with top 20% highest entropy scores.
“Reliable” denotes the bottom 20% counterpart. “All” denotes
sampling regardless of entropy.

Unreliable Reliable All
1/8 (1323) 79.01 77.30 77.40
1/4 (2646) 79.30 77.35 77.57

Table 5. Ablation study on the probability rank threshold,
which is described in Sec. 3.3.

T Th 1/8 (1323) 1/4 (2646)

1 3 78.57 79.03

1 20 78.64 79.07
10 78.27 78.91

3 20 79.01 79.30

10 20 78.62 78.94

Table 6. Ablation study on the effectiveness of various compo-
nents in our U?PL, including unsupervised loss £, contrastive
loss L., category-wise memory bank Q., Dynamic Partition
Adjustment (DPA), Probability Rank Threshold (PRT), and high
entropy filtering (Unreliable).

L. Q. DPA PRT Unreliable | 1/4(2646)

73.02
v 77.08
v v v v 78.49
v v v v 79.07
v v v v 77.57
v v v v v 79.30

Table 7. Ablation study on «o in Eq. (7), which controls the
initial proportion between reliable and unreliable pixels.

g 40% 30% 20% 10%

1/8 (1323) 76.77 77.34 79.01 77.80
1/4 (2646) 76.92 77.38 79.30 77.95

a fair comparison, all the ablations are under 1/4 partition
protocol on blender PASCAL VOC 2012 Dataset. Above
all, we use no L, trained model as our baseline, achieving
mloU of 73.02% (MT in Tab. 2). Simply adding £, without
DPA strategy improves the baseline by +4.06%. Category-
wise memory bank Q., along with PRT and high entropy
filtering brings an improvement by +5.47% to baseline.
Dynamic Partition Adjustment (DPA) together with high
entropy filtering, brings an improvement by +6.05% to
baseline. Note that DPA is a linear adjustment without
tuning (refer to Eq. (7)), which is simple yet efficient.
For Probability Rank Threshold (PRT) component, we set
corresponding parameter according to Tab. 5. Without high
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(b) Ground-Truth

(c) Supervised Only

(d) Plain £,

(e) U?PL

Figure 4. Qualitative results on PASCAL VOC 2012 val set. All models are trained under the 1/4 partition protocol of blender set,
which contains 2, 646 labeled images and 7, 396 unlabeled images. (a) Input images. (b) Hand-annotated labels for the corresponding
image. (c) Only labeled images are used for training without any unlabeled data. (d) The vanilla contrastive learning framework, where all
pixels are used as negative samples without entropy filtering. (e) Predictions from our U?PL. Yellow rectangles highlight the promotion of

segmentation results by adequately using unreliable pseudo-labels.

entropy filtering, the improvement decreased significantly
at +4.55%. Finally, when adding all the contribution
together, our method achieves state-of-the-art result under
1/4 partition protocol with mIoU of 79.30%. Following
this result, we apply these components and corresponding
parameters in all experiments on Tab. 2 and Tab. 1.

Ablation Study on Hyper-parameters. We ablate fol-
lowing important parameter for U?PL. Tab. 7 studies the
impact of different initial reliable-unreliable partition. This
parameter ayy have a certain impact on performance. We
find oy = 20% achieves the best performance. Small
oo will introduce incorrect pseudo labels for supervision,
and large o will make the information of some high-
confidence samples underutilized. The studies on other
hyper-parameters can be found in Supplementary Material.

4.4. Qualitative Results

Fig. 4 shows the results of different methods on the
PASCAL VOC 2012 val set. Benefiting from using
unreliable pseudo-labels, UPL outperforms other methods.
Note that using contrastive learning without filtering those
unreliable pixels, sometimes does harm to the model (see
row 2 and row 4 in Fig. 4), leading to worse results than
those when the model is trained only by labeled data.

Furthermore, through visualizing the segmentation re-

sults, we find that our method achieves much better per-
formance on those ambiguous regions (e.g., the border
between different objects). Such visual difference proves
that our method finally makes the reliability of unreliable
prediction labels stronger.

5. Conclusion

We propose a semi-supervised semantic segmentation
framework U?PL by including unreliable pseudo-labels
into training, which outperforms many existing state-of-
the-art methods, suggesting our framework provide a new
promising paradigm in semi-supervised learning research.
Our ablation experiments proves the insight of this work is
quite solid. Qualitative result gives a visual proof for its
effectiveness, especially the better performance on borders
between semantic objects or other ambiguous regions.

The training of our method is time-consuming compared
with fully-supervised methods [7, 8, 30, 36, 47], which
is a common disadvantage for semi-supervised learning
tasks [11,22,23,34,44,49]. Due to the extreme lack of
labels, the semi-supervised learning frameworks commonly
need to pay a price in time for higher accuracy.
Acknowledgment. This work is also sponsored by Hetao
Shenzhen-Hong Kong Science and Technology Innovation
Cooperation Zone: HZQB-KCZYZ-2021045.
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