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Abstract

Accelerated by telemedicine, advances in Remote Pho-
toplethysmography (rPPG) are beginning to offer a viable
path toward non-contact physiological measurement. Un-
fortunately, the datasets for rPPG are limited as they re-
quire videos of the human face paired with ground-truth,
synchronized heart rate data from a medical-grade health
monitor. Also troubling is that the datasets are not inclusive
of diverse populations, i.e., current real rPPG facial video
datasets are imbalanced in terms of races or skin tones,
leading to accuracy disparities on different demographic
groups. This paper proposes a scalable biophysical learn-
ing based method to generate physio-realistic synthetic
rPPG videos given any reference image and target rPPG
signal and shows that it could further improve the state-
of-the-art physiological measurement and reduce the bias
among different groups. We also collect the largest rPPG
dataset of its kind (UCLA-rPPG) with a diverse presence
of subject skin tones, in the hope that this could serve as a
benchmark dataset for different skin tones in this area and
ensure that advances of the technique can benefit all people
for healthcare equity. The dataset is available at https:
//visual.ee.ucla.edu/rppg_avatars.htm/.

1. Introduction
Photoplethysmography (PPG) is an optical technique

that measures vital signs such as Blood Volume Pulse
(BVP) by detecting the light reflected or transmitted
through the skin. Remote Photoplethysmography (rPPG)
based on camera videos has several advantages over the
conventional PPG methods. It is non-contact thus allow-
ing for a wide range of applications in e.g. neonatal mon-
itoring [15, 41]. It causes no skin irratation and prevents

*Equal contribution.

Dataset # Subjects # Videos Demo. diversity Orig. Videos Free Avail.

AFRL [10] 25 300 ✗ ✓

MMSE-HR [45] 40 102 ✗ ✗

UBFC-rPPG [6] 42 42 ✗ ✓

UBFC-Phys [25] 56 168 ✗ ✓

VIPL-HR [26] 107 3130 ✗ ✓

Dasari et al. [8] 140 140 ✗ ✗

Our synthetic method 480 480 High ✓

Table 1. Comparison of rPPG real datasets and our proposed
synthetic dataset. Real datasets are limited by the number of
subjects and videos and demographic diversity, while synthetic
datasets have easy control of these attributes.

the risk of developing into infection for those whose skins
are fragile and sensitive to the adhesive sensing electrodes.
As cameras are ubiquitous in electronic device nowadays
(such as smartphones, laptops), rPPG can be applied for
telemedicine with patients at home and no equipment set-
up is needed [1]. Camera-based rPPG techniques have
also been used in other applications such as driver moni-
toring [30] and face anti-spoofing [19].

Traditional rPPG methods either use Blind Source Sep-
aration (BSS) [17, 36, 37] or models based on skin re-
flectance [9, 16, 43] to separate out the pulse signal from
the color changes on the face. These methods usually re-
quire pre-processing such as face tracking, registration and
skin segmentation. More recently, deep learning and con-
volutional neural networks (CNN) have been more popular
due to its expressiveness and flexibility [7,20,21,27,28,44].
CNNs learn the mapping between the pulse signal and the
color variations with end-to-end supervised training on the
labeled dataset, thus achieving state-of-the-art performance
on the vital sign detection. However, the performance of
data-driven rPPG networks hinges on the quality of the
dataset [31].

There are some efforts (as shown in Tab. 1) on collect-
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Figure 1. Our proposed scalable model can generate synthetic
rPPG videos with diverse attributes such as poses, skin tones
and lighting conditions. In contrast, existing real datasets (e.g.
UBFC) only contain limited races.

ing a large rPPG dataset for better physiological measure-
ment. Nonetheless, there exists several practical constraints
towards collecting real patient data for medical purposes.
These include: (1) demographic biases (such as race biases)
in society that translate to data. As pointed out in [5], a di-
verse rPPG dataset may not be accessible for some coun-
tries/regions due to geographical distribution of skin col-
ors as reflected in their skin tone world map for indigenous
people. (2) necessity of intrusive/semi-intrusive traditional
methods for collection of data, (3) patient privacy concerns,
and (4) requirement of medical-grade sensors to generate
the data. Hence, there is a pressing need for the concept
of ‘digital patients’: physiologically accurate graphical ren-
ders that may assist development of algorithms and tech-
niques for improvement of diagnostics and healthcare. We
provide such a neural rendering instantiation in the rPPG
field.

For decades, computer graphics has been a driving force
for the visuals we see in movies and games. Imagine if
we could harness computer graphics techniques to create
not just photorealistic humans, but physio-realistic humans.
We combine modalities of image and waveform to learn to
generate a realistic video that can reflect underlying BVP
variations as specified by the input waveform. We achieve
this by an interpretable manipulation of UV albedo map ob-
tained from the 3D Morphable Face Model (3DMM) [11].
Our model can generate rPPG videos with large variation of
various attributes such as facial appearance and expression,
head motions and environmental lighting as shown in Fig. 1.

1.1. Contributions

We summarize our contributions as follows:

• We propose a scalable physics-based learning model
that can render realistic rPPG videos with high fidelity
with respect to underlying blood volume variations.

• The synthetically generated videos can be directly uti-

lized to improve the performance of the state-of-the-
art deep rPPG methods. Notably, the corresponding
rendering model can also be deployed to generate data
for underrepresented groups, which provides an effec-
tive method to further mitigate the demographic bias
in rPPG frameworks.

• To facilitate the rPPG research, we release a real rPPG
dataset called UCLA-rPPG that contains diverse skin
tones. This dataset can be used to benchmark per-
formance across different demographic groups in this
area.

2. Related Work
rPPG methods: rPPG techniques aim to recover the
blood volume change in the skin that is synchronous with
the heart rate from the subtle color variations captured by
a camera. Signal decomposition methods include [17] that
utilizes Principal Component Analysis (PCA) on the raw
traces and chooses the decomposed signal with the largest
variance as the pulse signals and Independent Component
Analysis (ICA) [23, 36] that demixes the raw signals and
determines the separated signals with largest periodicity as
the pulse. PCA and ICA are purely statistical approaches
that do not use any prior information unique to rPPG prob-
lems. A chrominance-based method (CHROM) [9] is pro-
posed to extract the blood volume pulse by assuming a stan-
dardized skin-color to white-balance the image and then lin-
early combine the chrominance signals. Plane Orthogonal
to Skin-tone (POS) [43] projects the temporally normalized
raw traces onto a plane that is orthogonal to the light in-
tensity change, thus canceling out the effect of that. CNNs
have achieved state-of-the-art results on vital sign detection
due to their flexibility [5, 7, 20, 21, 27, 28, 44]. The repre-
sentation for rPPG estimation can be efficiently learned in
an end-to-end manner with the annotated datasets instead
of handcrafted features for traditional methods. We use two
representative work PhysNet [44] and PRN [5] in our exper-
iments to demonstrate the performance of the rPPG models
on both real and synthetic datasets.

Real rPPG datasets: There are many efforts on col-
lecting real datasets for more accurate physiological sens-
ing [6,8,10,25,26,45]. However, these datasets are usually
very limited in the number of subject participants and also
biased towards certain demographic group. Some work in-
cludes subject with darker skin types, but the number is still
very limited [45]. Making machine learning methods eq-
uitable is of increasing interest in medical domain [14, 46].
There is a lack of a benchmark dataset to measure the per-
formance of various rPPG methods on diverse skin tones,
especially dark skin tones in rPPG area. Dasari et al. [8]
proposed a dataset that only contains dark skin tones. How-
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Figure 2. Pipeline of our cross-modal synthetic generation model that can generate rPPG face videos given any face image and
target rPPG signal as input. The input image is encoded into UV albedo map, 3D mesh, illumination model LSH and camera model
c. We then decompose the UV albedo map into blood map, vary the UV blood map according to the target rPPG signal and generate the
modified PPG UV maps. The modified PPG UV map that contains the target pulse signal variation is combined with LSH , c to render the
final frames with randomized motion.

ever, the actual videos are not shared but the color space val-
ues of skin region of interest. The current best-performing
deep learning algorithms require sizeable input data. The
rPPG model trained on such a biased dataset may easily
disadvantage certain underrepresented groups in the dataset.
The lack of such a benchmark dataset to systematically and
rigorously evaluate various methods on diverse skin tones
makes it hard to ensure that the rPPG methods deployed into
the society would not cause biases against certain groups
that are underrepresented. Our real dataset represents a first
step towards filling this gap.

Synthetic generation of rPPG videos: The real rPPG
dataset construction is a laborious process and generally
takes a large amount of time for collection and adminis-
trative work for Institutional Review Board (IRB) approval.
Therefore, it is tempting to have a scalable method that can
generate large-scale synthetic rPPG datasets for data aug-
mentation. Realizing the difficulty of this, there are a few
groups working on generating synthetic rPPG facial videos
to augment real data [5, 24, 32, 40]. Mcduff et al. [24] pro-
pose to render rPPG face videos using facial avatars and
simulate the blood volume change with Blender. However,
as discussed in the limitation of their method, the rendering
of a frame is extremely slow (20 seconds per frame), thus
preventing synthetic generation of large-scale videos. The
initial overhead for creating the pipeline is also expensive
and labor-intensive. A skin tone augmentation method is
proposed in [5] where they use a generative neural network
to transfer light skin tones to dark skin tones while retaining
the pulsatile signals so that the performance on dark skin

tones can be improved with the augmented dataset more
balanced. Like the other augmentation method on rPPG
signals [40], they are both limited as they can only be uti-
lized on current datasets and have to be retrained with new
datasets. In contrast, our synthetic generation method can
generate diverse appearance with any in-the-wild image and
target rPPG signal as input and the generation is merely a
forward pass of the neural network.

3. Methods
In this section, we propose a scalable method that can

generate synthetic dataset with any given reference image
and target rPPG signal in Sec. 3.1. The generated videos can
be used to train the state-of-the-art rPPG networks, which
we introduce in Sec. 3.2.

3.1. Synthesizing Biorealistic Face Videos

We first describe the 3DMM model used to obtain the
facial albedo maps and then demonstrate how to further ob-
tain facial blood maps from the extracted albedo by analyz-
ing light transport in the skin. Details about how to gener-
ate synthetic facial videos with the decomposed blood maps
and the source of the input facial images and PPG wave-
forms are also provided in this section. Please see Fig. 2 for
an illustration of the entire synthetic generation pipeline.

Non-linear 3DMM: To generate faces with different
poses, illuminations and desirable rPPG signal variations,
we have to infer the 3D shape and albedo parameters of the
face. We use DECA [11] to predict subject-specific albedo,
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shape, pose, and lighting parameters from an image. In de-
tails, it uses a statistical 3D head model FLAME [18] to out-
put a mesh M with n = 5023 vertices. The camera model
c is learned to map the mesh M to image space. Since there
is no appearance model in FLAME, the linear albedo sub-
space of Basel Face Model (BFM) [34] is used and the UV
layout of BFM is converted to be compatible with FLAME.
It outputs a UV albedo map A with a learnable coefficient
α. By expressing illumination model as the Spherical Har-
monics (SH) [39], the shaded face image can be represented
as the following equation:

B (α, l, Nuv)i,j = A(α)i,j ⊙
9∑

k=1

lkHk (Ni,j) , (1)

where Hk is the SH basis, lk are the corresponding coef-
ficients and ⊙ denotes the Hadamard product. Ni,j is the
normal map expressed in the UV form. The final texture
image is obtained by rendering the image using the mesh
M , shaded image B, and the camera model c through a
rendering function R(·):

Ir = R(M,B, c). (2)

As rPPG is essentially the change of blood volume in the
face, our idea is to first obtain the spatial concentration of
blood fblood of the UV albedo A and then temporally mod-
ulate the UV blood albedo map in a way that is consistent
with the rPPG signals. We will next show how this biophys-
ically interpretable manipulation is achieved.

Light transport in the skin: In order to obtain blood map
fblood on the face, we first study light transport in the skin
to build the connection between face albedo and fblood. Fol-
lowing a spectral image formation model, the original UV
face albedo Ac with c ∈ {R,G,B} is reconstructed by in-
tegrating the product of the camera spectral sensitivities Sc,
the spectral reflectance R, and the spectral power distribu-
tion of the illuminant E over wavelength λ [2]:

Ac =

∫
λ

E(λ)R(fmel , fblood , λ)Sc(λ)dλ. (3)

An optical skin reflectance model [4] with hemoglobin
fblood and melanin map fmel as parameters is uti-
lized to define the wavelength-dependent skin reflectance
R(fmel , fblood , λ). Specifically, we assume a two-layer skin
model that characterizes the transmission through the epi-
dermis Tepidermis and reflection from the dermis Rdermis :

R (fmel, fblood, λ) = Tepidermis (fmel, λ)
2
Rdermis (fblood, λ) .

(4)
The transmittance in epidermis is modeled by Lambert-
Beer law [38] as light not absorbed by the melanin in this
layer is propagated to the dermis [3]:

Tepidermis(fmel, λ) = e−µa.epidermis(fmel,λ), (5)

where µa.epidermis(fmel, λ) is the absorption coefficient of the
epidermis. More specifically,

µa.epidermis(fmel, λ) = fmelµa.mel(λ)+(1−fmel)µskinbaseline(λ),
(6)

where µa.mel is the absorption coefficient of melanin and
µskinbaseline is baseline skin absorption coefficient.

The reflectance in dermis can be modeled using the
Kubelka-Munk theory [13], and the proportion of light re-
mitted from a layer is given by [3]:

Rdermis (fblood, λ) =

(
1− β2

) (
eKdpd − e−Kdpd

)
(1 + β2) eKdpd − (1− β)2e−Kdpd

,

(7)
where dpd is the thickness of the dermis, and K and β are
related to the absorption of the medium contained within
the dermis (i.e. blood). For simplicity of notation, we drop
the dependence of K and β on fblood and λ in Eq. (7).

Biophysical decomposition and variation of UV albedo
map: With the light transport theory of the skin, we fol-
low a physics-based learning framework (BioFaceNet [2])
to obtain fblood from albedo A. The wavelengths are dis-
cretized into 33 parts from 400nm to 720nm with 10nm
equal spacing. We utilize an autoencoder architecture and
use a fully-convolutional network as encoder to predict the
hemoglobin and melanin maps and fully-connected net-
works to encode the parameters for lighting E and camera
spectral sensitivities Sc. The model-based decoder is then
to reconstruct the albedo with all the learned parameters ac-
cording to Eq. (3).

Different from the previous work [2], we obtain biophys-
ical parameters directly from the UV albedo maps instead of
the facial images. This arrangement allows us to model the
underlying blood volume changes more precisely regardless
of the environmental illumination variations. Our model is
trained to minimize the following loss function:

L = w1Lappearance + w2LCameraPrior, (8)

where the appearance loss Lappearance is the L2 distance be-
tween the reconstructed UV map AlinRecon and the original
one in the linear RGB space AlinRGB. We convert A to linear
space by inverting the Gamma transformation with γ = 2.2.
To make the problem more constrained, we also introduce
the additional camera prior loss: LCameraPrior = ∥b∥22,
where b is the prior for the camera spectral sensitivities.
w1 and w2 are the weights for the reconstructed loss and
camera prior loss, respectively.

To reflect the change of the target rPPG signal on the
face, we temporally vary the UV blood map fblood linearly
with the target rPPG signal in the test phase. Given the
blood map of a reference UV map (e.g. the UV blood map
of first frame), we generate the UV blood map of the con-
sequent frames as the multiplication of the UV blood map
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of the reference frame and a ratio scalar that is calculated as
the ratio of pt (rPPG signal at time t) and pref (rPPG signal
at the reference time). Then the modified UV blood map of
each frame that contains the desired rPPG signal is recon-
structed using the BioFaceNet decoder to get UV map. The
final image is rendered using the UV map combined with
illumination and camera model according to Eq. (2).

For the purpose of simulating real-world scenarios where
the subject might move in the collection process, we ran-
domize the poses in the generation of the sequence of the
frames by adding a small random value to the pose and ex-
pression parameter of the previous frame.

Face image dataset: To generate synthetic rPPG videos
with diverse face appearances, we use the public in-the-
wild face datasets BUPT-Balancedface [42]. It is catego-
rized according to ethnicity (i.e. Caucasian, Indian, Asian
and African). We use these images as the reference images
for generating the synthetic videos as shown in Fig. 2.

PPG recordings: To synthesize videos of a given in-
put PPG signal, we use PPG waveforms recordings from
BIDMC PPG and Respiration Dataset [35]. It contains 53
8-minute contact PPG recordings with sampling frequency
125Hz. We sample it correspondingly with the video frame
rate (30Hz) and the first sequences of time length L are used
where L is the duration of the generated video.

3.2. Physiological Measurement Networks

We use two state-of-the-art deep rPPG networks Phys-
Net [44] and PRN [5] to benchmark the performance on
both real and synthetic datasets. PhysNet and PRN both
utilize 3D convolutional neural networks (3D-CNN) archi-
tecture to learn spatio-temporal representation of the rPPG
videos and predict the rPPG signal in the facial videos. PRN
differs in that it uses residual connection for convolutional
layers. They take consecutive frames of length T as the in-
put, and its output is the corresponding BVP value for each
input frame. The Negative Pearson loss is used to measure
the difference between the ground-truth PPG signal p and
the estimated rPPG signal p̂:

Lppg(p, p̂) = 1−
T
∑

i pip̂i −
∑

i pi
∑

i p̂i√(
T
∑

i p
2
i − (

∑
i pi)

2
)(

T
∑

i p̂
2
i − (

∑
i p̂i)

2
) , (9)

where all the summation is over the length of frames T .

Implementation details: For the training of BioFaceNet,
we use 3000 face albedo images with 750 images in each

Figure 3. Experimental setup of data collection. The subject
wears an oximeter on their finger and sits looking directly into the
camera. The camera and the oximeter are connected to a laptop
to get synchronous video and ground-truth pulse reading. Face
blurred to preserve anonymity.

race. We use 80% images for training and 20% for valida-
tion. The weight w1 and w2 for the loss is 1e−3 and 1e−4

respectively. The learning rate is set as 1e−4 and the num-
ber of epochs is 200. For the generation of synthetic videos,
we set the length of generated frames L as 2100.

The bounding boxes of the videos are generated using
a pretrained Haar cascade face detection model. For each
video, one bounding box is detected and increased 60% in
each direction before the frames are cropped. To be con-
sistent with the original papers, each frame is resized to
128 × 128 pixels using bilinear interpolation for PhysNet
and 80× 80 for PRN. The length of training clips T is 128
for PhysNet and 256 for PRN. The Adam optimizer is used
and the learning rate is set as 1e−4. All the code is imple-
mented in PyTorch [33] and trained on Nvidia V100 GPU.

4. Experiments
In this section, we introduce the datasets we use for the

experiments and evaluation protocol in Sec. 4.1. We re-
port and analyze the experimental results for our real dataset
in Sec. 4.2 and UBFC-rPPG dataset in Sec. 4.3.

4.1. Datasets and Evaluation Protocol

Our real dataset UCLA-rPPG: In order to benchmark
the performance of current rPPG estimation methods, we
collect a real dataset of 104 subjects. The setting is faulty
for two of them so we dropped their samples. Finally, the
dataset consists of 102 subjects of various skin tone, age,
gender, ethnicity and race. The Fitzpatrick (FP) skin type
scale [12] of the subjects varies from 1-6. For each subject,
we record 5 videos of about 1 minute each (1790 frames at
30fps). After removing erroneous videos we have total 503
videos. All the videos in our dataset are uncompressed and
synchronized with the ground truth heart rate.

Fig. 3 illustrates the data collection process of our real
dataset UCLA-rPPG. The left part of the figure is a cartoon
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Method
F1-2 F3-4 F5-6 Overall

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

PhysNet [44] w/ Real&Synth 0.54 0.84 0.38 0.70 1.55 2.17 0.71 1.10
PhysNet [44] w/ Real 0.81 1.21 0.43 0.77 2.61 3.34 1.06 1.51
PhysNet [44] w/ Synth 1.06 1.52 1.16 1.66 4.96 6.20 2.06 2.73
PRN [5] w/ Real&Synth 0.54 0.79 0.36 0.65 3.41 4.09 1.15 1.53
PRN [5] w/ Real 0.65 1.02 0.40 0.71 4.35 5.26 1.43 1.90
PRN [5] w/ Synth 1.47 2.00 0.63 1.07 8.89 9.88 2.87 3.47
POS [43] 3.40 4.34 3.03 3.98 8.07 10.23 4.27 5.49
CHROM [9] 4.06 5.11 3.99 5.25 7.45 9.74 4.79 6.22
ICA [36] 3.75 4.73 3.26 4.19 7.51 9.34 4.35 5.50

F1-2 F3-4 F5-6 Overall

PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑

PhysNet [44] w/ Real&Synth 0.84 14.40 0.80 17.11 0.60 9.19 0.76 14.45
PhysNet [44] w/ Real 0.81 13.13 0.77 15.83 0.59 6.54 0.74 12.84
PhysNet [44] w/ Synth 0.74 7.19 0.64 6.11 0.23 -3.33 0.57 4.10
PRN [5] w/ Real&Synth 0.81 12.24 0.79 14.61 0.57 4.84 0.74 11.59
PRN [5] w/ Real 0.77 10.73 0.77 13.22 0.48 2.38 0.70 9.91
PRN [5] w/ Synth 0.69 5.14 0.67 5.27 0.21 -5.81 0.56 2.53
POS [43] 0.50 -0.30 0.42 -0.09 0.27 -5.38 0.41 -1.34
CHROM [9] 0.41 -1.81 0.31 -1.60 0.26 -5.31 0.33 -2.49
ICA [36] 0.45 -0.60 0.38 -0.19 0.27 -5.24 0.37 -1.44

Table 2. Heart rate estimation results on our real dataset UCLA-rPPG show that both PhysNet and PRN trained with real and
synthetic datasets performs consistently better than the models trained with only real data. The improved performance shows the
benefit of the synthetic video dataset we generate.

illustration of the data collection process. The right part of
the figure is a photo depicting the actual data collection pro-
cess. The human subjects wear an oximeter on finger and
looks into the camera. Both the camera and the oximeter
are connected to a laptop to get synchronous data.

UBFC-rPPG [6]: UBFC-rPPG database contains 42
front facing videos of 42 subjects and corresponding ground
truth PPG data recorded from a pulse oximeter. The videos
are recorded at 30 frames per second with a resolution of
640× 480. Each video is roughly one minute long.

Metrics: To evaluate how the heart rate estimates com-
pare with gold-standard heart rates obtained from gold-
standard pulse waves, we use the following four met-
rics Mean absolute error (MAE), Root Mean Squared Er-
ror (RMSE), Pearson’s Correlation Coefficient (PCC) and
Signal-to-Noise Ratio (SNR). Pearson’s Correlation Coeffi-
cient (PCC) and Signal-to-Noise Ratio (SNR) is defined as
in [29].

For traditional baseline methods POS, CHROM and ICA
we compare, we use iPhys toolbox [22] to get the estimated
rPPG waveforms. The output rPPG signals are normalized
by subtracting the mean and dividing by the standard devi-
ation. We filter all the model outputs using a 6th-order But-

terworth filter with cut-off frequencies 0.7 and 2.5 Hz. The
filtered signals are divided into 30-second windows with 1-
second stride and the above four evaluation metrics are cal-
culated on these windows and averaged.

4.2. Performance on UCLA-rPPG

For the study of this work, we split the subjects into three
skin tone groups based on the Fitzpatrick skin type [12].
They are light skin tones, consisting of skin tones in the FP
1 and 2 scales, medium skin tones, consisting of skin tones
in the FP 3 and 4 scales, and dark skin tones, consisting
of skin tones in the FP 5 and 6 scales. This aggregation
helps compare experimental results on skin tones more ob-
jectively. Since our ultimate goal is to improve the perfor-
mance on our dataset, we first train on all the synthetic data
and then finetune on the real data for the models trained
with both real and synthetic data. For training and testing
deep rPPG networks PhysNet and PRN on real dataset, we
randomly split all the subjects into training, validation and
test set with 50%, 10% and 40% and all the test results are
averaged on three random splits. The validation set is used
to select the best epoch for testing the model.

We report results on the three groups and overall per-
formance using evaluation metrics of MAE, RMSE, PCC
and SNR in Tab. 2. In general, models trained with both
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Figure 4. Left: Ablation study. The model pre-trained with all
synthetic dataset outperforms these pre-trained on either light or
dark skin tones alone. Right: Bias mitigation. The standard de-
viation of MAE and RMSE of the deep rPPG models trained with
real and synthetic dataset are smaller than real data alone and the
traditional models.

real and synthetic data perform consistently better than us-
ing real data alone on all the skin tones for all evaluation
metrics. PhysNet trained with both real and synthetic data
achieved the best overall MAE result 0.71 BPM, with 33%
reduction in error compared with PhysNet trained with only
real data (1.06 BPM). Notably, the performance improve-
ment is most significant on dark skin stones F5-6 group with
41% and 35% reduction in MAE and RMSE respectively
for PhysNet. The same phenomenon is also observed for
PRN, where the improvement is most noticeable for darker
skin tones. We attribute this to the introduction of synthetic
videos we generate in Sec. 3.1. The other two metrics PCC
and SNR also validate the superiority of the model trained
with both real and synthetic datasets. The results for tradi-
tional methods POS, CHROM and ICA are far worse than
the deep learning methods, as these methods usually takes
the average of all the pixels and ignore the inhomogeneous
spatial contribution of the pixels to pulsatile signals.

Bias mitigation: To evaluate the bias of various rPPG
methods on subjects with diverse skin tones, we use the
standard deviation of the MAE and RMSE results on three
skin tone groups. From the right of Fig. 4, we can see the
standard deviation of PhysNet with both real and synthetic
dataset is the smallest and the MAE disparity among all
the three groups are reduced by 45% (from 0.95 BPM to
0.52 BPM) compared with the model trained with only real
dataset. Similarly, the standard deviations of both metrics
MAE and RMSE for PRN are also reduced for the model
trained with both real and synthetic datasets.

Ablation study: We first pre-train the PhysNet with ei-
ther light skin tones (subjects with race Caucasian in the
synthetic dataset) or dark skin tones (subjects with race
African), then finetune the model on real dataset and test
the model on real subjects with either light skin tones or
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Figure 5. The example shows that PRN [5] trained with syn-
thetic data (above) generalizes better than PRN trained with
real data (bottom) on UBFC-rPPG dataset. The waves are more
aligned with the ground-truth PPG wave (dashed black line) and
the power spectrum plot is also more consistent with the ground-
truth for the PRN trained with synthetic data.

Method MAE ↓ RMSE ↓ PCC ↑ SNR ↑

PhysNet [44] w/ Real&Synth 0.90 1.80 0.84 6.28
PhysNet [44] w/ Real 1.42 2.74 0.78 5.64
PhysNet [44] w/ Synth 0.84 1.76 0.83 6.70
PRN [5] w/ Real&Synth 1.15 2.38 0.82 5.36
PRN [5] w/ Real 2.36 4.21 0.66 -1.24
PRN [5] w/ Synth 1.09 1.99 0.83 3.00
POS [43] 3.69 5.31 0.75 3.07
CHROM [9] 1.84 3.40 0.77 4.84
ICA [36] 8.28 9.82 0.55 1.45

Table 3. Performance of HR estimation on UBFC-rPPG shows
the superiority of the synthetic datasets. Boldface font repre-
sents the preferred results.

dark skin tones. From the left of Fig. 4, we can see the
model with the pre-trained rPPG network on diverse races
are consistently better than these on a single race. The im-
provement is more obvious on dark skin tones test set. This
demonstrates the benefits of a diverse synthetic dataset.

4.3. Performance on UBFC-rPPG

We use the model with best performance on our real
dataset to test them on UBFC-rPPG dataset [6] along with
the traditional methods. Since this is a cross-dataset evalua-
tion for the model trained on UCLA-rPPG, we test the deep
learning models on all the subjects in UBFC-rPPG. All the
results with four evaluation metrics are reported in Tab. 3.
While the synthetic dataset performs worse than the mod-
els trained in our real dataset, the performance gain is more
obvious in UBFC dataset. The MAE of PhysNet trained on
synthetic dataset achieved the lowest MAE and RMSE (0.84
BPM and 1.76 BPM respectively). The explanation for this
observation is that when the distribution of the dataset is
similar to the distribution of the test data as in the intra-
dataset setting in our real dataset, the benefits of synthetic
datasets are not straightforward. The models trained on real
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Example frames of synthetic videos rPPG signals

Figure 6. Illustration of example frames of our generated synthetic videos. Our proposed framework has successfully incorporated
PPG signals into the reference image. The estimated pulse waves from PRN for generated synthetic videos are highly correlated to the
ground-truth waves, and the heart rates are preserved as shown in the power spectrum plot.

dataset perform worse on generalizing to another dataset
due to different environmental setting such as lighting. We
also give a qualitative study in Fig. 5 that shows that the
rPPG wave extracted using our synthetic dataset resemble
more closely to the ground-truth than that using real dataset.
As a result, it gives more accurate heart rate estimation.

4.4. Visualization

As shown in Fig. 6, our model can successfully produce
synthetic avatar videos that reflect the associated underly-
ing blood volume changes. Estimated pulse waves from the
synthetic videos are closely aligned with the ground truth.
The power spectrum of the PPG waves with a clear peak
near the gold-standard HR value also validates the effec-
tiveness of the incorporation of pulsatile signals.

5. Discussion
Limitations: Though our synthetic dataset could be used
to achieve state-of-the-art results (on UBFC-rPPG datasets,
it alone can generalize even better than the model trained on
real dataset) for heart rate estimation, the facial appearance
is not photo-realistic, which may still degrade the perfor-
mance due to sim2real gap. We are not focused on modeling
the background in the generated videos in this work. How-
ever, it is found in [29] that the background can be utilized
for better pulsatile signals extraction. Also we vary the UV
blood map linearly according to the target rPPG signals in
the synthetic generation method. While this yields reason-
able empirical results, we believe biophysical model based
manipulation of the UV blood map could further improve

the performance of the synthetic generation.

Ethics Statement: This paper’s novelty is to generate
synthetic face videos that are physiologically consistent
with heartbeat, and we hope it can be a tool to address
some social issues, such as biases around race and gen-
der in medicine. It should also be noted that even though
the research here was solely used to improve remote health
technologies, it might be used to fool rPPG-based deepfake
detectors. We strongly advise against using this technology
for such applications.

Conclusion: We propose a method to generate large-scale
synthetic rPPG videos with high-fidelity to the underlying
rPPG signals. The synthetic generation pipeline enables the
scalable generation of rPPG facial videos with any given
image and rPPG signal. We validate the effectiveness of
the synthetic videos on UCLA-rPPG dataset we collect that
contains diverse skin tones and UBFC-rPPG dataset. The
experimental results show that the synthetic dataset can im-
prove the performance on both datasets and help reduce the
bias among different demographic groups.
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