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Abstract

Most of the existing Out-Of-Distribution (OOD) detec-
tion algorithms depend on single input source: the feature,
the logit, or the softmax probability. However, the immense
diversity of the OOD examples makes such methods frag-
ile. There are OOD samples that are easy to identify in the
feature space while hard to distinguish in the logit space
and vice versa. Motivated by this observation, we propose
a novel OOD scoring method named Virtual-logit Match-
ing (ViM), which combines the class-agnostic score from
feature space and the In-Distribution (ID) class-dependent
logits. Specifically, an additional logit representing the vir-
tual OOD class is generated from the residual of the fea-
ture against the principal space, and then matched with the
original logits by a constant scaling. The probability of this
virtual logit after softmax is the indicator of OOD-ness.
To facilitate the evaluation of large-scale OOD detection
in academia, we create a new OOD dataset for ImageNet-
1K, which is human-annotated and is 8.8× the size of ex-
isting datasets. We conducted extensive experiments, in-
cluding CNNs and vision transformers, to demonstrate the
effectiveness of the proposed ViM score. In particular, us-
ing the BiT-S model, our method gets an average AUROC
90.91% on four difficult OOD benchmarks, which is 4%
ahead of the best baseline. Code and dataset are available
at https://github.com/haoqiwang/vim.

1. Introduction
Considering most deep image classification models are

trained in the closed-world setting, the out-of-distribution
(OOD) issue arises and deteriorates customer experience
when the models are deployed in production, facing inputs
coming from the open world [9]. For instance, a model may
wrongly but confidently classify an image of crab into the
clapping class, even though no crab-related concepts appear
in the training set. OOD detection is to decide whether an
input belongs to the training distribution. OOD detection
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Figure 1. The AUROC (in percentage) of nine OOD detection al-
gorithms applied to a BiT model trained on ImageNet-1K. The
OOD datasets are ImageNet-O (x-axis) and OpenImage-O (y-
axis). Methods marked with box � use the feature space; methods
with triangle4 use the logit; and methods with diamond ♦ use the
softmax probability. The proposed method ViM (marked with *)
uses information from both features and logits.

complements classification and finds its application in fields
such as autonomous driving [19], medical analysis [30] and
industrial inspection [1]. A comprehensive review of OOD
and related topics including open set recognition, novelty
detection and anomaly detection can be found in [38].

The core of an OOD detector is a scoring function φ that
maps an input feature x to a scalar in R, indicating to what
extent the sample is likely to be OOD. In testing, a threshold
τ is decided, ensuring that the validation set retains at least a
given true-positive rate (TPR), e.g. the typical value of 0.95.
The input example is regarded as OOD if φ(x) > τ and as
ID (i.e., in-distribution) otherwise. In cases where a score
indicating the ID-ness is convenient, we can mentally use
the negative of OOD score as the ID score.

Researchers have designed quite a few scoring functions
by seeking properties that are naturally held by ID examples
and easily violated by OOD examples, or vice versa. Scores
are mainly derived from three sources: (1) the probability,
such as the maximum softmax probabilities [13], the min-
imum KL-divergence between the softmax and the mean
class-conditional distributions [12]; (2) the logit, such as
the maximum logits [12], the logsumexp function over log-
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its [25]; and (3) the feature, such as the norm of the residual
between feature and the pre-image of its low-dimensional
embedding [27], the minimum Mahalanobis distance be-
tween the feature and the class centroids [23], etc. In these
methods, OOD scores can be directly computed from ex-
isting models without re-training, making the deployment
effortless. However, as illustrated in Fig. 1, their perfor-
mances are limited by the singleness of their information
source: using features exclusively disregards the classifi-
cation weights with class-dependent information; using the
logit or the softmax solely misses feature variations in the
null space [3], which carries class-agnostic information;
and the softmax further discards the norm of logits. To cope
with the immense diversity that manifests in OOD samples,
we ask the question, is it helpful to design an OOD score
that utilizes multiple sources?

Built upon the success of prior arts, we design a novel
scoring function termed the Virtual-logit Matching (ViM)
score, which is the softmax score of a constructed virtual
OOD class whose logit is jointly determined by the feature
and the existing logits. To be specific, the scoring function
first extracts the residual of the feature against a principal
subspace, and then converts it to a valid logit by match-
ing its mean over training samples to the average maximum
logits. Finally, the softmax probability of the devised OOD
class is the OOD score. From the construction of ViM, we
can see intuitively that the smaller the original logits and the
greater the residual, the more likely it is to be OOD.

Different from the aforementioned methods, another line
of works tailors the features learned by the network to bet-
ter identify ID and OOD by imposing dedicated regulariza-
tion losses [5, 16, 18, 40] or by exposing generated or real
collected OOD samples [22, 37]. As they all require the re-
training of the network, we briefly mention them here and
will not delve into the details.

Recently, OOD detection in large-scale semantic space
has attracted increasing attention [12, 15, 18, 29], advanc-
ing OOD detection methods toward real-world applications.
However, the current shortage of clean and realistic OOD
datasets for large-scale ID datasets becomes an impediment
to the field. Previous OOD datasets were curated from pub-
lic datasets which were collected with a predefined tag list,
such as iNaturalist, Texture, and ImageNet-21k (Tab. 1).
This may lead to a biased performance comparison, specif-
ically, the hackability of small coverage as described in
Sec. 5. To avoid this risk, we build a new OOD benchmark
for ImageNet-1K [4] models, OpenImage-O, from OpenIm-
age dataset [21] with natural class distribution. It contains
17,632 manually filtered images, and is 7.8× larger than the
recent ImageNet-O [15] dataset.

We extensively evaluate our method on various models
using ImageNet-1K as the ID dataset. The model archi-
tectures range from the classical ResNet-50 [11], to the re-

Dataset Image Distribution #Image Labeling Method

OpenImage-O natural class statistics 17, 632 image-level manual
Texture [2] predefined tag list 5, 160 tag-level manual
iNaturalist [18, 34] predefined tag list 10, 000 tag-level manual
ImageNet-O [18] hard adversarial OOD 2, 000 image-level manual

Table 1. OpenImage-O follows natural class statistics, while
ImageNet-O is adversarially built to be hard. Both datasets have
image-level OOD annotation. Texture and iNaturalist are selected
by tags, and their OOD labels are annotated in tag-level.

cent BiT [20], and to the latest ViT-B16 [8], RepVGG [7],
DeiT [33] and Swin Transformer [26]. From the results on
four OOD datasets, including OpenImage-O, ImageNet-O,
Texture, and iNaturalist, we found that model selection af-
fected the performance of many baseline methods, while
our method performs stably well. Specially, our method
achieved an average AUROC of 90.91% using the BiT
model, which greatly surpasses the best baseline whose av-
erage AUROC is 86.62%.

Our contributions are threefold. (1) We proposed a novel
OOD detection method ViM, that works well for a large
range of models and datasets, owing to the effective fusion
of information from both features and logits. The method is
lightweight and fast, requiring neither extra OOD data nor
re-training. (2) We conducted comprehensive experiments
and ablation studies on the ImageNet-1K dataset, includ-
ing CNNs and vision transformers. (3) We curated a new
OOD dataset for ImageNet-1K called OpenImage-O, which
is very diverse and contains complex scenes. We believe it
will facilitate research on large-scale OOD detection.

2. Related Work
OOD/ID Score Design Hendrycks et al. [13] presented
a baseline method using the maximum predicted softmax
probability (MSP) as the ID score. ODIN [24] enhances
MSP by perturbing the inputs and rescaling the logits.
Hendrycks et al. [12] also experimented with the MaxLogit
and the KL matching method on the ImageNet dataset. The
energy score [25] computes the logsumexp on logits, and
ReAct [32] strengthens the energy score by feature clipping.
In [27] the norm of the difference between the feature and
the pre-image of its low-dimensional manifold embedding
is used. Lee et al. [23] computes the minimum Mahalanobis
distance between the feature and the class-wise centroids.
NuSA [3] uses the ratio of the norm of feature projected
onto the column space of the classification weight matrix
to the original norm as the ID score. The gradients are
also used as evidence for ID and OOD distinction in [17].
For methods using logits/probabilities, feature variations on
the null space of the weight matrix are completely ignored;
while for methods that operate on the features space, the
class-dependent information on weight matrix is dropped.
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Our method combines the strengths of feature-based scores
and logit-based scores by the novel mechanism of virtual
logit, and gets substantial improvements.

Network/Loss Design Many works redesign the training
loss to be OOD-aware [5] or add regularization terms [18,
40] to push part ID/OOD features. DeVries et al. [5] aug-
ment the network with a confidence estimation branch that
uses misclassified in-distribution examples as a proxy for
out-of-distribution examples. MOS [18] modifies the loss
to use the pre-defined group structure so that the minimum
group-wise “else” class probability can indicate the OOD-
ness. Zaeemzadeh et al. [40] forces the ID samples to em-
bed into a union of 1-dimensional subspaces during training
and computes the minimum angular distance from the fea-
ture to the class-wise subspaces. Generalized ODIN [16]
uses a dividend/divisor structure to encode the prior knowl-
edge of decomposing the confidence of class probability.
Different from these methods, our method does not require
model retraining, thus not only is it easier to apply, but the
ID classification accuracy is also preserved.

OOD Data Exposure Outlier Exposure [14] utilizes an
auxiliary OOD dataset to improve OOD detection. Dhamija
et al. [6] regularize samples from extra background classes
to have uniform logits and to have small feature norms.
Lee et al. [22] use GAN to generate OOD samples that lie
near the ID samples and push the prediction of OOD sam-
ples to the uniform distribution. Several methods, including
MCD [39], NGC [36] and UDG [37], can utilize external
unlabeled noisy data to enhance the OOD detection perfor-
mances. Different from these methods, our method does not
require additional OOD data and thus avoids biases towards
the introduced OOD samples [31].

3. Motivation: The Missing Info in Logits
For a series of OOD detection methods that are based

on logits or softmax probabilities, we find that their perfor-
mances are limited. In Fig. 1, feature-based OOD scores
such as Mahalanobis and Residual are good at detecting
OOD in ImageNet-O, while all methods that are based on
logit/probability lag behind. This is not an accident, as is
again shown in Fig. 2. The AUROC of the state-of-the-art
probability-based method KL Matching is still lower than
straightforwardly designed OOD scores in feature space on
Texture dataset. This motivates us to study the influence of
the lost information going from features to logits.

Consider a C-class classification model whose logit l ∈
RC is transformed from the feature x ∈ RN by a fully
connected layer with weight W ∈ RN×C and bias b ∈
RC , i.e. l = W Tx + b. The predicted probability is
p(x) = softmax(l). For convenience, we set the point
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Figure 2. Comparison of AUROC for OOD detection algorithms
that are based on probability (marked with diamond ♦), logit (4),
and feature (�) of 9 OOD detection algorithms applied to a BiT
model trained on ImageNet-1K. The OOD datasets are Texture (x-
axis) and iNaturalist (y-axis). Example images for the ID dataset
ImageNet-1K and the two OOD datasets are illustrated at the top.

o := −(W T )+b, where (·)+ is the Moore-Penrose inverse,
as the origin of a new coordinate system of feature space,

l = W Tx′ = W T (x− o), ∀x. (1)

Geometrically, each logit li is the inner product between
the feature x′ and the class vector wi (the i-th column of
W ). Later when generalizing logits to virtual logits, we will
replace wi with a subspace, and replace the inner product
with a projection. The bias term is safely omitted in the new
coordinate system. In the remaining part of the paper, we
assume the feature space uses the new coordinate system.

Logits contain class-dependent information, yet there is
class-agnostic information in feature space that is not re-
coverable from logits. We study two cases (null space and
principal space) and discuss the two OOD scores (NuSA
and Residual) that rely on them, respectively.

OOD Score Based on Null Space A feature x can be de-
composed into x = xW

⊥
+ xW , where W is the column

space of W , xW
⊥

and xW are projections of x to W⊥ and
W , respectively. W⊥ is the null space of W T , and we have
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W TxW
⊥
= 0. The component xW

⊥
does not affect classi-

fication, but it influences OOD detection. It is demonstrated
in [3] that one can perturb an image intensely yet constrain
the difference between the features in W⊥. The resulting
outlier images are not like any of the ID images but retains
high confidence in classification. Taking advantage of this,
they define an ID score NuSA (null space analysis) as

NuSA(x) =

√
‖x‖2 − ‖xW⊥‖2

‖x‖
. (2)

Intuitively, NuSA uses the angle (= arccos(NuSA(x))) be-
tween x and W to indicate the OOD-ness. From Fig. 2
we can see that the simple angle information clearly distin-
guishes OOD examples in Texture with an AUROC 95.50%,
surpassing methods based on logits and the competitive
method KL Matching based on softmax probability.

OOD Score Based on Principal Space It is generally as-
sumed that features lie in low-dimensional manifolds [27,
40]. For simplicity, we use linear subspace (in the new co-
ordinate system) passing through the origin o as the model.
We define the principal space as the D-dimensional sub-
space P spanned by eigenvectors of the largest D eigenval-
ues of the matrix XTX , where X is the ID data matrix.
Features that deviate from the principal space are likely to
be OOD examples. We can define

Residual(x) = ‖xP
⊥
‖, (3)

to capture the deviation of features from the principal space.
Here x = xP + xP

⊥
and xP

⊥
is the projection of x to

P⊥. The residual score is similar to the reconstruction error
in [27] except that they employ nonlinear manifold learn-
ing for dimension reduction. Note that after the projection
onto logits, this deviation is corrupted since the matrix W T

projects to a lower dimensional space than the feature space.
Fig. 2 shows that Residual score improves over the NuSA
score on both datasets, making the performance contrast be-
tween feature-based methods with logit/probability-based
methods more striking.

Fusing Class-dependent and Class-agnostic Information
In contrast to methods on logit/probability, both the NuSA
and the Residual do not consider information that is specific
to individual ID classes, namely they are class-agnostic. As
a consequence, these scores ignore the feature similarity to
each ID class, and are ignorant about which class the input
resembles most. This gives an explanation of their worse
performance on the iNaturalist OOD benchmark, as iNat-
uralist samples need to distinguish subtle differences be-
tween fine-grained classes. We hypothesize that unifying
the information from feature space and the logits could im-
prove the detection performance on a broader type of OOD

samples. Such a solution is presented in Sec. 4 using the
concept of virtual logit.

4. Virtual-logit Matching
To unify the class-agnostic and class-dependent infor-

mation for OOD detection, we propose an OOD score by
Virtual-logit Matching, abbreviated as ViM. The pipeline is
illustrated in Fig. 3, where there are three steps, operating
at the feature, the logit, and the probability, respectively. To
be specific, for feature x, (1) extract the residual xP

⊥
of

x against the principal subspace P ; (2) convert the norm
‖xP⊥‖ to a virtual logit by rescaling; and (3) output the
softmax probability of the virtual logit as the ViM score.
Below we give more details. Recall the notations: C is the
number of classes, N is the feature dimension, and W and
b are the classification weight and bias, respectively.

Principal Subspace and Residual Firstly we offset the
feature space by a vector o = −(W T )+b so that it is bias-
free in the computation of logits as Eq. (1). The principal
subspace P is defined by the training set X , where rows are
features in the new coordinate system with origin o. Sup-
pose the eigendecomposition on the matrix XTX is

XTX = QΛQ−1, (4)

where eigenvalues in Λ are sorted decreasingly, then the
span of the first D columns is the D-dimensional principal
subspace P . The residual xP

⊥
is the projection of x onto

P⊥, Let the (D + 1)-th column to the last column of Q

in Eq. (4) be a new matrix R ∈ RN×(N−D), then xP
⊥

=

RRTx. The residual xP
⊥

is sent to the next step.

Virtual-logit Matching The virtual logit

l0 := α‖xP
⊥
‖ = α

√
xTRRTx (5)

is the norm of the residual rescaled by a per-model constant
α. The norm ‖xP⊥‖ cannot be used as a new logit directly
since the latter softmax will normalize over the exponential
of logits and thus is very sensitive to the scale of logits. If
the residual is very small compared to the largest logit, then
after the softmax the residual will be buried in the noise of
logits. To match the scales of the virtual logit, we compute
the average norm of the virtual logit on the training set and
also the mean of the maximum logit on the training set, then

α :=

∑K
i=1 maxj=1,...,C{lij}∑K

i=1 ‖xP
⊥

i ‖
, (6)

where x1,x2, . . . ,xK are uniformly sampled K training
examples, and lij is the j-th logit of xi. In this way, on aver-
age, the scale of the virtual logit is the same as the maximum
of the original logits.

4924



Network Softmax

OOD score

ID score
… … …

Input Feature Logit Probability

Figure 3. The pipeline of ViM. The principal space P and the matching constant α are determined by the training set beforehand using
Eq. (4) and Eq. (6). In inference, feature x is computed by the network, and the virtual logit α‖xP⊥

‖ is computed by projection and
scaling. After softmax, the probability corresponding to the virtual logit is the OOD score. It is OOD if the score is larger than threshold τ .

The ViM Score We append the virtual logit to the origi-
nal logits and compute the softmax. The probability corre-
sponding to the virtual logit is defined as ViM. Mathemati-
cally, let the i-th logit of x be li, and then the score is

ViM(x) =
eα
√
xTRRTx∑C

i=1 e
li + eα

√
xTRRTx

. (7)

This equation reveals that two factors affect the ViM score:
if its original logits are larger, then it is less of an OOD
example; while if the norm of residual is larger, it is more
likely to be OOD. The computational overhead is compara-
ble to the last fully-connected layer (mapping from feature
to logit) in the classification network, which is small.

Connection to Existing Methods Note that applying a
strictly increasing function to the scores does not affect the
OOD evaluation. Apply the function t(x) = − ln

(
1
x − 1

)
to the ViM score, then we have an equivalent expression

α‖xP
⊥
‖ − ln

C∑
i=1

eli . (8)

The first term is the virtual logit in Eq. (5) while the second
term is the energy score [25]. ViM completes the energy
method by feeding extra residual information from features.
The performance is much superior to energy and residual.

5. OpenImage-O Dataset
We build a new OOD dataset called OpenImage-O for

the ID dataset ImageNet-1K. It is manually annotated,
comes with a naturally diverse distribution, and has a large
scale with 17,632 images. It is built to overcome several
shortcomings of existing OOD benchmarks. OpenImage-O
is selected image-by-image from the test set of OpenImage-
V3, including 125,436 images collected from Flickr without
a predefined list of class names or tags, leading to natural
class statistics and avoiding an initial design bias.

Necessity for Image-Level Annotation Some previous
works on large-scale OOD detection select a portion of
other datasets solely based on class labels. While class-
level annotation costs less, the resulting dataset might be
much noisier than expected. For example, the Places and
the SUN dataset selected by [18] have a large portion of im-
ages that are indistinguishable from ID samples. Another
example is the Texture [2, 18], in which the bubbly texture
overlaps with the bubble class in ImageNet. Thus creating
OOD datasets by querying tags is not reliable and per-image
human inspection is needed for the confirmation of validity.

Hackability of Small Coverage If the OOD dataset has
a central topic such as the Texture, featuring a less diverse
distribution, then it might be easy to be “hacked”. In Tab. 2,
the gap between the highest and the average AUROC over
nine methods for BiT are: OpenImage-O 5.61, iNaturalist
6.06, Texture 10.52, and ImageNet-O 14.39. Having larger
gaps implies that the dataset is easier to improve.

Construction Process of OpenImage-O We construct
the OpenImage-O based on the OpenImage-v3 dataset [21].
For every image in its testing set, we let human labelers to
determine whether it is an OOD sample. To assist label-
ing, we simplified the task as distinguishing the image from
the top-10 categories predicted by an ImageNet-1K classi-
fication model, i.e., the image is OOD if it does not belong
to any of the 10 categories. Category labels as well as the
most similar image to the test image in each category, mea-
sured by cosine similarity in the feature space, were pre-
sented for visualization. To further improve the annotation
quality, we design several schemes: (1) Labelers can choose
“Difficult”, if they cannot decide whether the image belongs
to any of the 10 categories; (2) Each image was labeled by
at least two labelers independently, and we took the set of
OOD images having consensus from the two; (3) Random
inspection was performed to guarantee the quality.
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6. Experiment

In this section, we compare our algorithm with state-of-
the-art OOD detection algorithms. Following the prior work
on large-scale OOD detection, we choose ImageNet-1K as
the ID dataset. We benchmark the algorithms using both
the CNN-based and the transformer-based models. Detailed
experimental settings are as follows.

OOD Datasets Four OOD datasets (Tab. 1) are used to
comprehensively benchmark the algorithms. OpenImage-O
is our newly collected large-scale OOD dataset. Texture [2]
consists of natural textural images and we removed four cat-
egories (bubbly, honeycombed, cobwebbed, spiralled) that
overlapped with ImageNet. iNaturalist [34] is a fine-grained
species classification dataset. We use the subset from [18].
Images in ImageNet-O [15] are adversarially filtered so that
they can fool OOD detectors.

Evaluation Metrics Two commonly used metrics are re-
ported. The AUROC is a threshold-free metric that com-
putes the area under the receiver operating characteristic
curve. Higher value indicates better detection performance.
FPR95 is short for FPR@TPR95, which is the false positive
rate when the true positive rate is 95%. The smaller FPR95
the better. We report both their numbers in percentage.

Experiment Settings BiT (Big Transfer) [20] is a vari-
ant of ResNet-v2, which employs group normalization and
weight standardization. The BiT-S model series is pre-
trained on ImageNet-1K, and we take the officially released
checkpoint of BiT-S-R101×1 for experiments. ViT (Vision
Transformer) [8] is a transformer-based image classification
model which treats images as sequences of patches. We
use the officially released ViT-B/16 model, which is pre-
trained on ImageNet-21K and fine-tuned on ImageNet-1K.
Since the compared algorithms do not require re-training,
the ID accuracies are not affected. Results on more model
architectures, including CNN-based RepVGG [7], ResNet-
50d [11], and transformer based Swin [26] and DeiT [33],
are listed in Sec. 6.3. Their pre-trained weights are ob-
tained from the timm repo [35]. When estimating the prin-
cipal space, K = 200, 000 images are randomly sampled
from the training set. For features spaces with dimension
N > 1500, we set the dimension of principal space to
D = 1000, and set D = 512 otherwise.

Baseline Methods We compare ViM with eight baselines
that do not require fine-tuning. They are MSP [13], En-
ergy [25], ODIN [24], MaxLogit [12], KL Matching [12],
Residual, ReAct [32] and Mahalanobis [23]. For Maha-
lanobis, we followed the setting in [10], which uses only

the final feature instead of an ensemble of multiple lay-
ers [18, 23]. For ReAct, we use the Energy+ReAct setting
with rectification percentile p = 99. The Residual is defined
in Eq. (3).

6.1. Results on BiT

We present the results of the BiT model at the first half
of Tab. 2. The best AUROC is shown in bold and the second
and third place ones are shown with underlines.

ViM vs. Baselines On three datasets, including
OpenImage-O, Texture, and ImageNet-O, ViM achieves the
largest AUROC and the smallest FPR95. On average ViM
has 90.91% AUROC, which surpasses the second place
by 4.29%. The average FPR95 is also the lowest among
them. In particular, regarding Eq. (8), an interpretation
of ViM in terms of the Residual score and the Energy
score, the results show that ViM is significantly better than
the two methods on all datasets. This indicates that ViM
non-trivially combined the OOD information in Residual
and in Energy. However, on iNaturalist, ViM is only on the
third place. We hypothesize that its moderate performance
on iNaturalist relates to how much information is contained
in the residual, because iNaturalist has the smallest average
residual norm among four OOD datasets (iNaturalist 4.65,
OpenImage-O 5.04, ImageNet-O 5.16, and Texture 8.16).

Effect of Information Source For OOD detection perfor-
mances on BiT model, Tab. 2 shows an interesting pattern
regarding the information source. If feature variations in the
null space are absent, such as in methods that rely on log-
its and softmax, performances on Texture and ImageNet-
O are restricted. For example, on the Texture dataset, the
best performing method that relies on logit and softmax is
KL Matching, which has 86.92% AUROC and is far be-
hind ViM, Mahalanobis, and Residual, which operate on
the feature space. In contrast, if the class-dependent infor-
mation is dropped, such as in the Residual method, perfor-
mances in iNaturalist and OpenImage-O are also limited.
The proposed ViM score, however, is competent regardless
of dataset types.

6.2. Results on ViT

[10] has discussed the benefit of large-scale pre-trained
transformers on OOD tasks. However, their experiments are
conducted on CIFAR100/10 and only two baseline methods
are compared. We provide a comprehensive OOD evalua-
tion on ImageNet-1K over a wide range of methods in the
second half of Tab. 2.

ViM vs. Baselines The two best-performing methods for
the ViT model are ViM and Mahalanobis. Their AU-
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Model Method Source OpenImage-O Texture iNaturalist ImageNet-O Average
AUROC↑FPR95↓ AUROC↑FPR95↓ AUROC↑FPR95↓ AUROC↑FPR95↓ AUROC↑FPR95↓

BiT

MSP [13] prob 84.16 73.72 79.80 76.65 87.92 64.09 57.12 96.85 77.25 77.83
Energy [25] logit 84.77 73.42 81.09 73.91 84.47 74.98 63.59 96.40 78.48 79.68
ODIN [24] prob+grad 85.64 72.83 81.60 74.07 86.73 70.75 63.00 96.85 79.24 78.63
MaxLogit [12] logit 85.67 72.68 81.66 73.72 86.76 70.59 63.01 96.85 79.27 78.46
KL Matching [12] prob 88.96 51.51 86.92 51.05 92.95 33.28 65.68 86.65 83.63 55.62
Residual† feat 80.58 67.85 97.66 11.16 76.76 80.41 81.57 65.50 84.14 56.23
ReAct [32] feat+logit 88.94 54.97 90.64 50.25 91.45 48.60 67.07 91.70 84.53 61.38
Mahalanobis [23] feat+label 83.10 64.32 97.33 14.05 85.70 64.95 80.37 70.05 86.62 53.34
ViM (Ours) feat+logit 91.54 43.96 98.92 4.69 89.30 55.71 83.87 61.50 90.91 41.46

ViT

MSP [13] prob 92.53 34.18 87.10 48.55 96.11 19.04 81.86 64.85 89.40 41.65
Energy [25] logit 97.11 14.04 93.39 28.22 98.66 6.16 90.46 41.30 94.90 22.43
ODIN [24] prob+grad 96.86 15.68 93.01 30.60 98.57 6.58 89.85 44.15 94.57 24.25
MaxLogit [12] logit 96.87 15.68 93.01 30.60 98.57 6.58 89.85 44.15 94.57 24.25
KL Matching [12] prob 93.80 28.49 88.76 44.09 96.88 14.79 84.12 55.70 90.89 35.77
Residual† feat 92.72 32.63 92.21 33.80 98.57 6.63 88.23 47.85 92.93 30.23
ReAct [32] feat+logit 97.38 13.50 93.34 28.49 99.00 4.31 90.71 42.60 95.11 22.22
Mahalanobis [23] feat+label 97.48 13.54 94.24 25.17 99.54 2.12 92.81 36.95 96.02 19.45
ViM (Ours) feat+logit 97.61 12.61 95.34 20.31 99.41 2.60 92.55 36.75 96.23 18.07

Table 2. OOD detection for ViM and baseline methods. The ID dataset is ImageNet-1K, and OOD datasets are OpenImage-O, Texture,
iNaturalist and ImageNet-O. Both metrics AUROC and FPR95 are in percentage. A pre-trained BiT-S-R101×1 model and a pre-trained
ViT-B/16 model is tested. The best method is emphasized in bold, and the 2nd and 3rd ones are underlined. ODIN needs backpropagation
for producing input perturbations, so it is prob+grad. ReAct clips feature and uses Energy subsequently, so it is feat+logit. Mahalanobis
need gt labels to compute the class-wise mean feature, so it is feat+label. †: Residual is defined in Eq. (3).

Method RepVGG [7] Res50d [11] Swin [26] DeiT [33]
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

MSP 78.10 70.55 77.99 67.96 87.57 43.44 79.48 66.43
Energy 76.38 78.99 71.08 78.39 87.77 35.08 72.80 70.14
ODIN 77.72 72.68 75.27 68.56 88.00 36.58 77.13 63.92
MaxLogit 77.56 73.50 75.39 69.34 88.40 35.28 76.79 64.49
KL Matching 81.35 61.65 82.72 64.41 88.87 46.99 83.49 64.80
Residual 84.19 59.00 87.01 58.55 92.88 37.38 84.15 74.13
ReAct 49.14 98.96 82.93 58.63 90.17 31.36 77.37 67.00
Mahalanobis 86.07 59.39 88.33 55.70 92.16 40.39 85.03 73.18
ViM (Ours) 87.81 50.50 89.22 52.61 94.11 31.04 85.25 69.95

Table 3. Results on RepVGG, ResNet50-d, Swin and DeiT. Due
to space limitation, only their average AUROC (A↑) and average
FPR95 (F↓) are reported. The numbers are in percentage. All
models are using pre-trained weights taken from timm [35].

ROCs are close on all four datasets. However, Maha-
lanobis needs to compute the class-wise Mahalanobis dis-
tance, which makes its computation costly. In contrast, our
method is lightweight and fast. Four methods, ReAct, En-
ergy, MaxLogit, and ODIN, are the second best ones, and
the remaining three methods have relatively low AUROCs.

Difference between ViT and BiT Since the ViT model
is pre-trained on the ImageNet-21K dataset, the semantics

it has seen is much larger than the BiT model. The OOD
performance is relatively saturated. Although on most OOD
datasets ViT is significantly better than BiT, we observe that
ViT performs less competitively on the Texture dataset. We
hypothesize that it is related to the observation in [28] that
higher layers of ViT maintain spatial location information
more faithfully than ResNets. ViT has high responses for
local patches. However, textural images with similar local
patches but not revealing the whole object are regarded as
OOD of ImageNet (see example images in Fig. 2).

6.3. Results on More Model Architectures

We show more results on a variety of model architec-
tures. In particular, we choose two CNN-based models
RepVGG [7] and ResNet-50d [11] and two transformer-
based models Swin Transformer [26] and DeiT [33]. Their
average AUROCs and average FPR95s over the four OOD
datasets are listed in Tab. 3. It is shown that ViM is robust
to model architecture changes. The detailed experiment set-
ting and results are in the supplementary materials.

6.4. The Effect of Hyperparameter

The Dimension D of Principal Space In [40] the feature
of each class is represented by a 1-dimensional subspace,
so a natural choice for the dimension D of principal space
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Figure 4. Robustness against principal space dimension. Left is
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varies in a wide range of values.

75

80

85

90

95

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

A
U

R
O

C

Perturbation of Matching Parameter for BiT

OpenImage-O Texture

iNaturalist ImageNet-O
90

92

94

96

98

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Perturbation of Matching Parameter for ViT

Figure 5. Perturbation of α by multiplying a factor. Left is BiT,
and right is ViT. For both models, the proposed matching parame-
ter fits well for the trends.

is the number of classes C. For models like ViT whose fea-
ture dimension N may be less than the number of classes
C, we empirically suggest taking a number in the range
[N/3, 2N/3]. We show in Fig. 4 that our method is robust
to the selection of dimensions. However, if the application
permits, one can adjust this parameter according to a hold-
out OOD dataset. In our experiments, we set D = 1000 for
BiT and D = 512 for ViT.

The Matching Parameter α The matching parameter
controls the relative importance of the trade-off between
different OOD features. Since OOD distribution is un-
known, we suggest keeping them to be of equal importance.
This is how α is defined in Eq. (6). It is easy to tune the pa-
rameter to fit some types of OOD datasets, but it is hard to
improve all datasets at the same time. We show the result of
perturbing the matching parameter by multiplying a factor
in Fig. 5. If the multiple is larger, then information from
the feature space is given more weight. Otherwise, infor-
mation from logits is given more importance. Overall the
best choice is no perturbation, suggesting that the defined α
is a good choice.

6.5. The Effect of Grouping

In addition, we also compare with MOS [18], which
exploits grouping structure in large-scale semantic spaces.
Two methods are added to the comparison. (1) MaxGroup
is the group version of MSP, which first obtains the group-
wise probability by summing over the constituent classes,
and then takes the maximum group probability as the ID

Method OpenImage-O Texture iNaturalist ImageNet-O
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

MOS* [18] 89.14 41.97 82.35 59.30 98.15 9.28 60.62 86.65
MaxGroup 84.75 71.22 80.42 77.87 89.50 57.18 63.93 92.45
ViM+Group 91.92 42.26 98.91 4.69 90.16 52.74 83.43 62.00

Table 4. AUROC of methods with grouping information. A↑ is
AUROC and F↓ is FPR95. All numbers are in percentage. BiT
is used and the grouping is defined in [18] based on taxonomy. *
MOS needs fine-tuning while others do not.

score. (2) ViM+Group also takes the maximum group prob-
ability as the ID score, except that the probabilities are taken
from the (C+1) dimensional vector, with an extra ViM vir-
tual class participating in the softmax normalization.

MaxGroup and ViM+Group are evaluated on the pre-
trained weights of BiT, while MOS needs to fine-tune the
model using group-based learning. Results are shown in
Tab. 4. We observe that (1) the average AUROC of Max-
Group improves over the vanilla MSP from 77.25% to
79.23%, showing the usefulness of group information; and
(2) both our original ViM and the group version of ViM are
better than MOS on three of four datasets by large margins.

6.6. Limitation of ViM

As we have noticed in Sec. 6.1, ViM shows less per-
formance gains on OOD datasets that have small residuals,
such as iNaturalist. Besides, the property that ViM does not
need training is a double-edged sword. It means that ViM
is limited by the feature quality of the original network.

7. Conclusion
In this paper, we present a novel OOD detection method:

the Virtual-logit Matching (ViM) score. It combines the
information from both the feature space and the logits,
which provides the class-agnostic information and the class-
dependent information, respectively. Extensive experiments
on the large-scale OOD benchmarks show the effectiveness
and robustness of the method. Especially, we tested ViM
on both CNN-based models and transformer-based models,
showing its robustness across model architectures. To facil-
itate the evaluation of large-scale OOD detection, we cre-
ate the OpenImage-O dataset for ImageNet-1K, which is of
high-quality and large-scale.
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