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Figure 1. By coupling motion continuity attention with hierarchical attentive feature integration, the proposed MPS-Net can achieve more
accurate pose and shape estimations (bottom row), when dealing with in-the-wild videos. For comparison, the results (top row) obtained
by TCMR [6], the state-of-the-art video-based 3D human pose and shape estimation method, are included.

Abstract

Learning to capture human motion is essential to 3D
human pose and shape estimation from monocular video.
However, the existing methods mainly rely on recurrent or
convolutional operation to model such temporal informa-
tion, which limits the ability to capture non-local context
relations of human motion. To address this problem, we
propose a motion pose and shape network (MPS-Net) to
effectively capture humans in motion to estimate accurate
and temporally coherent 3D human pose and shape from a
video. Specifically, we first propose a motion continuity at-
tention (MoCA) module that leverages visual cues observed
from human motion to adaptively recalibrate the range that
needs attention in the sequence to better capture the mo-
tion continuity dependencies. Then, we develop a hierar-
chical attentive feature integration (HAFI) module to effec-
tively combine adjacent past and future feature represen-
tations to strengthen temporal correlation and refine the
feature representation of the current frame. By coupling
the MoCA and HAFI modules, the proposed MPS-Net ex-
cels in estimating 3D human pose and shape in the video.
Though conceptually simple, our MPS-Net not only outper-
forms the state-of-the-art methods on the 3DPW, MPI-INF-
3DHP, and Human3.6M benchmark datasets, but also uses
fewer network parameters. The video demos can be found
at https://mps—net.github.io/MPS—Net/.
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1. Introduction

Estimating 3D human pose and shape by taking a simple
picture/video without relying on sophisticated 3D scanning
devices or multi-view stereo algorithms, has important ap-
plications in computer graphics, AR/VR, physical therapy
and beyond. Generally speaking, the task is to take a single
image or video sequence as input and to estimate the pa-
rameters of a 3D human mesh model as output. Take, for
example, the SMPL model [24]. For each image, it needs
to estimate 85 (including pose, shape, and camera) param-
eters, which control the 6890 vertices that form the full 3D
mesh of a human body [24]. Despite recent progress on 3D
human pose and shape estimation, it is still a frontier chal-
lenge due to depth ambiguity, limited 3D annotations, and
complex motion of non-rigid human body [6, 17,20,21].

Different from 3D human pose and shape estimation
from a single image [11,17,21,29,31], estimating it from
monocular video is a more complex task [6,8,18,20,25,34].
It needs to not only estimate the pose, shape and camera
parameters of each image, but also correlate the continuity
of human motion in the sequence. Although existing sin-
gle image-based methods can predict a reasonable output
from a static image, it is difficult for them to estimate tem-
porally coherent and smooth 3D human pose and shape in
the video sequence due to the lack of modeling the conti-
nuity of human motion in consecutive frames. To solve this
problem, several methods have recently been proposed to
extend the single image-based methods to the video cases,
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Figure 2. Visualization of the attention map generated by the self-
attention module [38] in 3D human pose and shape estimation.
The visualization shows that the attention map is easy to focus at-
tention on less correlated temporal positions (i.e., far apart frames
with very different action poses) and lead to inaccurate 3D human
pose and shape estimation (see frame I.). In the attention map, red
indicates a higher attention value, and blue indicates a lower one.

which mainly rely on recurrent neural network (RNN) or
convolutional neural network (CNN) to model temporal in-
formation (i.e., continuity of human motion) for coherent
predictions [6,8,18,20,25]. However, RNNs and CNNs are
good at dealing with local neighborhoods [36, 38], and the
models alone may not be effective for learning long-range
dependencies (i.e., non-local context relations) between fea-
ture representations to describe the relevance of human mo-
tion. As a result, there is still room for improvement for ex-
isting video-based methods to estimate accurate and smooth
3D human pose and shape (see Figure 1).

To address the aforementioned issue, we propose a mo-
tion pose and shape network (MPS-Net) for 3D human pose
and shape estimation from monocular video. Our key in-
sights are two-fold. First, although a self-attention mech-
anism [36, 38] has recently been proposed to compensate
(i.e., better learn long-range dependencies) for the weak-
nesses of recurrent and convolutional operations, we em-
pirically find that it is not always good at modeling human
motion in the action sequence. Because the attention map
computed by the self-attention module is often unstable,
which is easy to focus attention on less correlated tempo-
ral positions (i.e., far apart frames with very different action
poses) and ignore the continuity of human motion in the
action sequence (see Figure 2). To this end, we propose
a motion continuity attention (MoCA) module to achieve
the adaptability to diverse temporal content and relations in
the action sequence. Specifically, the MoCA module con-
tributes in two points. First, a normalized self-similarity
matrix (NSSM) is developed to capture the structure of tem-

poral similarities and dissimilarities of visual representa-
tions in the action sequence, thereby revealing the conti-
nuity of human motion. Second, NSSM is regarded as the
a priori knowledge and applied to guide the learning of the
self-attention module, which allows it to adaptively recali-
brate the range that needs attention in the sequence to cap-
ture the motion continuity dependencies. In the second in-
sight, motivated by the temporal feature integration scheme
in 3D human mesh estimation [6], we develop a hierarchi-
cal attentive feature integration (HAFI) module that utilizes
adjacent feature representations observed from past and fu-
ture frames to strengthen temporal correlation and refine the
feature representation of the current frame. By coupling the
MoCA and HAFI modules, our MPS-Net can effectively
capture humans in motion to estimate accurate and tempo-
rally coherent 3D human pose and shape from monocular
video (see Figure 1). We characterize the main contribu-
tions of our MPS-Net as follows:

* We propose a MoCA module that leverages visual cues
observed from human motion to adaptively recalibrate
the range that needs attention in the sequence to better
capture the motion continuity dependencies.

* We develop a HAFI module that effectively combines
adjacent past and future feature representations in a
hierarchical attentive integration manner to strengthen
temporal correlation and refine the feature representa-
tion of the current frame.

» Extensive experiments on three standard benchmark
datasets demonstrate that our MPS-Net achieves the
state-of-the-art performance against existing methods
and uses fewer network parameters.

2. Related work

3D human pose and shape estimation from a single
image. The existing single image-based 3D human pose
and shape estimation methods are mainly based on paramet-
ric 3D human mesh models, such as SMPL [24], i.e., trains
a deep-net model to estimate pose, shape, and camera pa-
rameters from the input image, and then decodes them into
a 3D mesh of the human body through the SMPL model.
For example, Kanazawa et al. [17] proposed an end-to-end
human mesh recovery (HMR) framework to regress SMPL
parameters from a single RGB image. They employ 3D
to 2D keypoint reprojection loss and adversarial training to
alleviate the limited 3D annotation problem and make the
output 3D human mesh anatomically reasonable. Pavlakos
et al. [31] used 2D joint heatmaps and silhouette as cues
to improve the accuracy of SMPL parameter estimation.
Similarly, Omran et al. [29] used a semantic segmentation
scheme to extract body part information as a cue to estimate
the SMPL parameters. Kolotouros et al. [21] proposed a
self-improving framework that integrates the SMPL param-
eter regressor and iterative fitting scheme to better estimate
3D human pose and shape. Zhang et al. [41] designed a
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pyramidal mesh alignment feedback (PyMAF) loop in the
deep SMPL parameter regressor to exploit multi-scale con-
texts for better mesh-image alignment of the reconstruction.

Several non-parametric 3D human mesh reconstruction
methods [22, 28, 35] have been proposed. For example,
Kolotouros et al. [22] proposed a graph CNN, which takes
the 3D human mesh template and image embedding (ex-
tracted from ResNet-50 [13]) as input to directly regress the
vertex coordinates of the 3D mesh. Moon and Lee [28]
proposed an I2L.-MeshNet, which uses a lixel-based 1D
heatmap to directly localize the vertex coordinates of the
3D mesh in a fully convolutional manner.

Despite the above methods are effective for static im-
ages, they are difficult to generate temporally coherent and
smooth 3D human pose and shape in the video sequence,
i.e., jittery, unstable 3D human motion may occur [6,20].

3D human pose and shape estimation from monocu-
lar video. Similar to the single image-based methods, the
existing video-based 3D human pose and shape estimation
methods are mainly based on the SMPL model. For ex-
ample, Kanazawa et al. [18] proposed a convolution-based
temporal encoder to learn human motion kinematics by fur-
ther estimating SMPL parameters in adjacent past and fu-
ture frames. Doersch et al. [8] trained their model on a se-
quence of 2D keypoint heatmaps and optical flow by com-
bining CNN and long short-term memory (LSTM) network
to demonstrate that considering pre-processed motion infor-
mation can improve SMPL parameter estimation. Sun ef al.
[34] proposed a skeleton-disentangling framework, which
divides the task into multi-level spatial and temporal sub-
problems. They further proposed an unsupervised adver-
sarial training strategy, namely temporal shuffles and order
recovery, to encourage temporal feature learning. Kocabas
et al. [20] proposed a temporal encoder composed of bidi-
rectional gated recurrent units (GRU) to encode static fea-
tures into a series of temporally correlated latent features,
and feed them to the regressor to estimate SMPL param-
eters. They further integrated adversarial training strategy
that leverages the AMASS dataset [26] to distinguish be-
tween real human motion and those estimated by its regres-
sor to encourage the generation of reasonable 3D human
motion. Luo et al. [25] proposed a two-stage model that first
estimates the coarse 3D human motion through a variational
motion estimator, and then uses a motion residual regres-
sor to refine the motion estimates. Recently, Choi et al. [6]
proposed a temporally consistent mesh recovery (TCMR)
system that uses GRU-based temporal encoders with three
different encoding strategies to encourage the network to
better learn temporal features. In addition, they proposed a
temporal feature integration scheme that combines the out-
put of three temporal encoders to help the SMPL parameter
regressor estimate accurate and smooth 3D human pose and
shape.

Despite the success of RNNs and CNNs, both recur-
rent and convolutional operations can only deal with local
neighborhoods [36,38], which makes it difficult for them to
learn long-range dependencies (i.e., non-local context re-
lations) between feature representations in the action se-
quence. Therefore, existing methods are still struggling to
estimate accurate and smooth 3D human pose and shape.

Attention mechanism. The attention mechanism has
enjoyed widespread adoption as a computational module
for natural language processing [2,7,32,36,40] and vision-
related tasks [5, 9, 14, 15,33, 38, 39] because of its ability
to capture long-range dependencies and selectively concen-
trate on the relevant subset of the input. There are vari-
ous ways to implement the attention mechanism. Here we
focus on self-attention [36, 38]. For example, Vaswani et
al. [36] proposed a self-attention-based architecture called
Transformer, in which the self-attention module is designed
to update each sentence’s element through the entire sen-
tence’s aggregated information to draw global dependen-
cies between input and output. The Transformer entirely
replaces the recurrent operation with the self-attention mod-
ule, and greatly improves the performance of machine trans-
lation. Later, Wang et al. [38] showed that self-attention
is an instantiation of non-local mean [3], and proposed a
non-local block for the CNN to capture long-range depen-
dencies. Like the self-attention module proposed in Trans-
former, the non-local operation computes the correlation
between each position in the input feature representation to
generate an attention map, and then performs the attention-
guided dense context information aggregation to draw long-
range dependencies.

Despite the self-attention mechanism performs well, we
empirically find that the attention map computed by the self-
attention module (e.g., non-local block) is often unstable,
which means that it is easy to focus attention on less cor-
related temporal positions (i.e., far apart frames with very
different action poses) and ignore the continuity of human
motion in the action sequence (see Figure 2). In this work,
we propose the MoCA module, which extends the learn-
ing of the self-attention module by introducing the a priori
knowledge of NSSM to adaptively recalibrate the range that
needs attention in the sequence, so as to capture motion con-
tinuity dependencies. The HAFI module is further proposed
to strengthen the temporal correlation and refine the feature
representation of each frame through its neighbors.

3. Method

Figure 3 shows the overall pipeline of our MPS-Net. We
elaborate each module in MPS-Net as follows.

3.1. Temporal encoder

Given an input video sequence V. = {I;}7_, with T
frames. We first use ResNet-50 [13] pre-trained by Kolo-
touros et al. [21] to extract the static feature of each frame to
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Figure 3. Overview of our motion pose and shape network (MPS-Net). MPS-Net estimates pose, shape, and camera parameters © in
the video sequence based on the static feature extractor, temporal encoder, temporal feature integration, and SMPL parameter regressor to

generate 3D human pose and shape.
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Figure 4. A MoCA module. X is shown as the shape of T" x 2048
for 2048 channels. g, ¢, 6, and p denote convolutional opera-
tions, ® denotes matrix multiplication, and & denotes element-
wise sum. The computation of softmax is performed on each row.

form a static feature representation sequence X = {x;}~_;,
where x; € R?%48. Then, the extracted X is sent to the
proposed MoCA module to calculate the temporal feature
representation sequence Z = {z;}_;, where z, € R2048,

MoCA Module. We propose a MoCA operation to extend
the non-local operation [38] in two ways. First, we intro-
duce an NSSM to capture the structure of temporal similari-
ties and dissimilarities of visual representations in the action
sequence to reveal the continuity of human motion. Second,
we regard NSSM as the a priori knowledge and combine it
with the attention map generated by the non-local operation
to adaptively recalibrate the range that needs attention in the

action sequence.
We formulate the proposed MoCA module as follows

(see Figure 4). Given the static feature representation se-

quence X € RT*2048 'the goal of the MoCA oﬁperation is
. T x 048
to obtain a non-local contextresponse Y € R

m, which
aims to capture the motion continuity dependencies across
the whole representation sequence by weighted sum of the
static features at all temporal positions,

Y = p([f(X,X), F(0(X), o(X)))g(X), (D)

where m is a reduction ratio used to reduce computational
complexity [38], and it is set to 2 in our experiments. g(-),
@(+), and 6(-) are learnable transformations, which are im-

plemented by using the convolutional operation [38]. Thus,
the transformations can be written as
9(X) = XW, € R" 5, @
$(X) = XW,4 € RT**0% 3)
and 0(X) = XW, € RT3 )

parameterized by the weight matrices W, W, and Wy €
R2048x 258 respectively. f(-, -) represents a pairwise func-
tion, which computes the affinity between all positions. We
use dot product [38] as the operation for f, i.e.,

F0(X), (X)) = 0(X)¢(X)", 5)
where the size of the resulting pairwise function
f(O(X), (X)) is denoted as RT**i" x R*xT
RT*T which encodes the mutual similarity between tem-
poral positions under the transformed static feature repre-
sentation sequence. Then, the softmax operation is used to
normalize it into an attention map (see Figure 4).

We empirically find that although calculating the simi-
larity in the transformed feature space provides an oppor-
tunity for insight into implicit long-range dependencies, it
may sometimes be unstable and lead to attention on less
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Figure 5. A HAFI module. It utilizes the temporal features observed from the past and future frames to refine the temporal feature of the
current frame z; in a hierarchical attentive integration manner. Where ® denotes matrix multiplication.

correlated temporal positions (see Figure 2). To this end,
we introduce NSSM into the MoCA operation to enable the
MoCA module to learn to focus attention on a more appro-
priate range of action sequence.

Regarding NSSM construction, unlike the non-local op-
eration [38], we directly use the static feature representa-
tion sequence X extracted from the input video to reveal the
explicit dependencies between the frames through the self-
similarity matrix [10] construction f(X,X) = XXT ¢
RTXT | In this way, the continuity of human motion in
the input video can be more straightforwardly revealed.
Similarly, we normalize the resultant self-similarity matrix
through the softmax operation to form an NSSM (see Fig-
ure 4) to facilitate subsequent combination with the atten-
tion map.

For the combination of NSSM and attention map, we
first regard NSSM as the a priori knowledge to concate-
nate the attention map through the operation [-, -], and then
use the learnable transformation p(-), i.e., 1 x 1 convolu-
tion to recalibrate the attention map by referring to NSSM
(see Figure 4 and Eq. (1)). The resultant p(-) is then nor-
malized through the softmax operation, which is called the
MoCA map. By jointly considering the characteristics of
the NSSM and the attention map, the MoCA map can reveal
the non-local context relations related to the human motion
of the input video in a more appropriate range. To this end,
the non-local context response Y € RT**%" can be cal-
culated from the linear combination between the matrices
resulted from p(-) and g(-).

Finally, as in the design of the non-local block [38], we
use residual connection [13] to generate the output tempo-
ral feature representation sequence Z € R7*2048 (see Fig-
ure 4) in the MoCA module as follows:

Z=YW,+X, (6)
where W, is a learnable weight matrix implemented by
using the convolutional operation [38], and the number of

channels in W, is scaled up to match the number of chan-
nels (i.e., 2048) in X. “4+X” denotes a residual connection.
The residual connection allows us to insert the MoCA mod-
ule into any pre-trained network, without breaking its initial
behavior (e.g., if W, is initialized as zero). As a result,
by further considering the non-local context response Y, Z
will contain rich temporal information, so Z can be regarded
as enhanced X.

3.2. Temporal feature integration

Given the temporal feature representation sequence Z €
RT>2048 'the goal of the HAFI module is to refine the tem-
poral feature of the current frame z; by integrating the adja-
cent temporal features observed from past and future frames
to strengthen their temporal correlation and obtain better
pose and shape estimation, as shown in Figure 3.

HAFI Module. Specifically, we use 7'/2 adjacent frames
(i.e., {zti% 1) to refine the temporal feature of the current
frame z; in a hierarchical attentive integration manner, as
shown in Figure 5. For each branch in the HAFI module,
we consider the temporal features of three adjacent frames
as a group (adjacent frames between groups do not overlap),
and resize them from 2048 dimensions to 256 dimensions
respectively through a shared fully connected (FC) layer
to reduce computational complexity. The resized temporal
features are concatenated (z°°"°®* ¢ R768) and passed to
three FC layers and a softmax activation to calculate the at-
tention values a = {ay }3_, by exploring the dependencies
among them. Then, the attention value is weighted back to
each corresponding frame to amplify the contribution of im-
portant frames in the temporal feature integration to obtain
the aggregated temporal feature (see Figure 5). The aggre-
gated temporal features produced by the bottom branches
will be passed to the upper layer and integrated in the same
way to produce the final refined z;. By gradually integrating
temporal features in adjacent frames to strengthen temporal
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correlation, it will provide opportunities for the SMPL pa-
rameter regressor to learn to estimate accurate and tempo-
rally coherent 3D human pose and shape.

In this work, like Kocabas et al. [20], we use the SMPL
parameter regressor proposed in [17,21] as our regressor
to estimate pose, shape, and camera parameters ©; € R3°
according to each refined z, (see Figure 3). In the training
phase, we initialize the SMPL parameter regressor with pre-
trained weights from HMR [17,21].

3.3. Loss functions

In terms of MPS-Net training, for each estimated ©;, fol-
lowing the method proposed by Kocabas ef al. [20], we im-
pose Lo loss between the estimated and ground-truth SMPL
parameters and 3D/2D joint coordinates to supervise MPS-
Net to generate reasonable real-world poses. The 3D joint
coordinates are obtained by forwarding the estimated SMPL
parameters to the SMPL model [24], and the 2D joint coor-
dinates are obtained through the 2D projection of the 3D
joints using the predicted camera parameters [20]. In addi-
tion, like Kocabas et al. [20], we also apply adversarial loss
Ladv, i-e., using the AMASS [26] dataset to train a discrim-
inator to distinguish between real human motion and those
generated by MPS-Net’s SMPL parameter regressor to en-
courage the generation of reasonable 3D human motion.

4. Implementation details

Following the previous works [6,20], we set T" = 16
as the sequence length. We use ResNet-50 [13] pre-trained
by Kolotouros et al. [21] to serve as our static feature ex-
tractor. The static feature extractor is fixed and outputs a
2048-dimensional feature for each frame, i.e., x; € R2048,
The SMPL parameter regressor has two FC layers, each
with 1024 neurons, and followed an output layer to out-
put 85 pose, shape, and camera parameters ©; for each
frame [17,21]. The discriminator architecture we use is the
same as [20]. The parameters of MPS-Net and discrimina-
tor are optimized by the Adam solver [19] at a learning rate
of 5 x 107° and 1 x 10™4, respectively. The mini-batch
size is set to 32. During training, if the performance does
not improve within 5 epochs, the learning rate of both the
MPS-Net and the discriminator will be reduced by a factor
of 10. We use an NVIDIA Titan RTX GPU to train the en-
tire network for 30 epochs. PyTorch [30] is used for code
implementation.

5. Experiments

We first illustrate the datasets used for training and eval-
uation and the evaluation metrics. Then, we compare our
MPS-Net against other state-of-the-art video-based meth-
ods and single image-based methods to demonstrate its ad-
vantages in addressing 3D human pose and shape estima-
tion. We also provide an ablation study to confirm the effec-
tiveness of each module in MPS-Net. Finally, we visualize
some examples to show the qualitative evaluation results.

Datasets. Following the previous works [6,20], we adopt
batches of mixed 3D and 2D datasets for training. For 3D
datasets, we use 3DPW [37], MPI-INF-3DHP [27], Hu-
man3.6M [16], and AMASS [26] for training, where 3DPW
and AMASS provide SMPL parameter annotations, while
MPI-INF-3DHP and Human3.6M include 3D joint annota-
tions. For 2D datasets, we use PoseTrack [1] and InstaVa-
riety [18] for training, where PoseTrack provides ground-
truth 2D joints, while InstaVariety includes pseudo ground-
truth 2D joints annotated using a 2D keypoint detector [4].
In terms of evaluation, the 3DPW, MPI-INF-3DHP, and Hu-
man3.6M datasets are used. Among them, Human3.6M is
an indoor dataset, while 3DPW and MPI-INF-3DHP con-
tain challenging outdoor videos. More detailed settings are
in the supplementary material.

Evaluation metrics. For the evaluation, four standard met-
rics are used [6,20,25], including the mean per joint position
error (MPJPE), the Procrustes-aligned mean per joint posi-
tion error (PA-MPJPE), the mean per vertex position error
(MPVPE), and the acceleration error (ACC-ERR). Among
them, MPJPE, PA-MPJPE, and MPVPE are mainly used
to express the accuracy of the estimated 3D human pose
and shape (measured in millimeter (mm)), and ACC-ERR
(mm/s?) is used to express the smoothness and temporal
coherence of 3D human motion. A detailed description of
each metric is included in the supplementary material.

5.1. Comparison with state-of-the-art methods

Video-based methods. Table 1 shows the performance
comparison between our MPS-Net and the state-of-the-art
video-based methods on the 3DPW, MPI-INF-3DHP, and
Human3.6M datasets. Following TCMR [6], all methods
are trained on the training set including 3DPW, but do not
use the Human3.6M SMPL parameters obtained from Mosh
[23] for supervision. Because the SMPL parameters from
Mosh have been removed from public access due to legal
issues [25]. The values of the comparison method are from
TCMR [6], but we validated them independently.

The results in Table 1 show that our MPS-Net outper-
forms the existing video-based methods in almost all met-
rics and datasets. This demonstrates that by capturing the
motion continuity dependencies and integrating temporal
features from adjacent past and future, performance can
indeed be improved. Although TCMR [6] has also made
great progress, it is limited by the ability of recurrent opera-
tion (i.e., GRU) to capture non-local context relations in the
action sequence [36, 38], thereby reducing the accuracy of
the estimated 3D human pose and shape (i.e., PA-MPJPE,
MPIPE, and MPVPE are higher than MPS-Net). In addi-
tion, the number of network parameters and model size of
TCMR are also about 3 times that of MPS-Net (see Table 2),
which is relatively heavy. Regarding MEVA [25], as shown
in Table 1, MEVA requires at least 90 input frames, which
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| 3DPW

MPI-INF-3DHP

Human3.6M ‘ Number of

Method | PA-MPIPE | MPJPE | MPVPE | ACC-ERR | | PA-MPIPE | MPIPE | ACC-ERR | | PA-MPIPE | MPJPE | ACC-ERR | | Input Frames
VIBE [20] 57.6 91.9 - 254 68.9 103.9 273 53.3 78.0 273 16
MEVA [25] 54.7 86.9 = 11.6 65.4 96.4 11.1 53.2 76.0 153 90
TCMR [6] 52.7 86.5 103.2 6.8 63.5 97.6 8.5 52.0 73.6 3.9 16
MPS-Net (Ours) 52.1 84.3 99.7 7.4 62.8 96.7 9.6 47.4 69.4 3.6 16

Table 1. Evaluation of state-of-the-art video-based methods on 3DPW [

], MPI-INF-3DHP [27], and Human3.6M [16] datasets. Follow-

ing Choi et al. [6], all methods are trained on the training set including 3DPW, but do not use the Human3.6M SMPL parameters obtained

ization property of our MPS-Net.

To analyze the effectiveness of the
MoCA and HAFI modules in MPS-Net, we conduct ab-
lation studies on MPS-Net under the challenging in-the-
wild 3DPW dataset. Specifically, we evaluate the impact
on MPS-Net by replacing the MoCA module with the non-
], considering only the MoCA module (with-
out using HAFI), and replacing the HAFI module with the
temporal feature integration scheme proposed by Choi et
al. [6]. For performance comparison, it is obvious from
Table 3 that the proposed MoCA module (i.e., MPS-Net-
only MoCA) is superior to non-local block (i.e., MPS-Net-
only Non-local) in all metrics. The results confirm that
by further introducing the a priori knowledge of NSSM
to guide self-attention learning, the MoCA module can in-
deed improve 3D human pose and shape estimation. On

from Mosh [23]. The number of input frames follows the original protocol of each method.
‘ #Parameters (M)  FLOPs (G)  Model Size (MB)
VIBE [20] 72.43 417 776 Ablation analysis.
MEVA [25] 85.72 4.46 858.8
TCMR [6] 108.89 4.99 1073
MPS-Net (Ours) 39.63 4.45 331
Table 2. Comparison of the number of network parameters,
FLOPs, and model size. local block [
| 3DPW
Method | PA-MPIPE | MPIPE | MPVPE | ACC-ERR |
MPS-Net
4.1 7. 103.1 24.1
- only Non-local [38] 3 87.6 03
MPS-Net
! 7 102.2 23.
- only MoCA 53.0 86 0 3.5
MPS-Net
24 X 101. 10.
- MoCA + TF-intgr. [6] 3 86.0 015 03
MPS-Net (Ours)
52.1 4. b7/ 74
- MoCA + HAFI 843 9

Table 3. Ablation study for different modules of the MPS-Net on

the 3DPW [37] dataset. The training and evaluation settings are
the same as the experiments on the 3DPW dataset in Table 1.
| 3DPW
Method | PA-MPIPE | MPJPE | MPVPE | ACC-ERR |
g HMR[I7] 76.7 130.0 - 374
g 2 GraphCMR [27] 70.2 - - -
E é SPIN [21] 59.2 96.9 116.4 29.8
£ PyMAF[4]] 58.9 92.8 110.1 -
”  I2L-MeshNet [28] 57.7 932 110.1 30.9
HMMR [18] 72.6 116.5 1393 15.2
?A) Doersch et al. [8] 74.7 - -
£ Suneral [34] 69.5 - - -
£ VIBE[20] 56.5 93.5 113.4 27.1
= TCMR [6] 55.8 95.0 111.3 6.7
MPS-Net (Ours) 54.0 91.6 109.6 75

Table 4. Evaluation of state-of-the-art single image-based and
video-based methods on the 3DPW [37] dataset. All methods do
not use 3DPW for training.

means it cannot be trained and tested on short videos. This
greatly reduces the value in practical applications. Overall,
our MPS-Net can effectively estimate accurate (lower PA-
MPJPE, MPJPE, and MPVPE) and smooth (lower ACC-
ERR) 3D human pose and shape from a video, and is rel-
atively lightweight (fewer network parameters). The com-
parisons on the three datasets also show the strong general-

the other hand, the results also show that our HAFI mod-
ule (i.e., MPS-Net-MoCA+HAFI) outperforms the tempo-
ral feature integration scheme (i.e., MPS-Net-MoCA+TF-
intgr.), which demonstrates that the gradual integration of
adjacent features through a hierarchical attentive integra-
tion manner can indeed strengthen temporal correlation and
make the generated 3D human motion smoother (i.e., lower
ACC-ERR). Overall, the ablation analysis confirmed the ef-
fectiveness of the proposed MoCA and HAFI modules.

Single image-based and video-based methods. We fur-
ther compare our MPS-Net with the methods including sin-
gle image-based methods on the challenging in-the-wild
3DPW dataset. Notice that a number of previous works
[6,8,17,18,20-22,28,34,41] did not use the 3DPW training
set to train their models, so in the comparison in Table 4, all
methods are not trained on 3DPW.

Similar to the results in Table 1, the results in Table 4
demonstrate that our MPS-Net performs favorably against
existing single image-based and video-based methods on
the PA-MPJPE, MPJPE, and MPVPE evaluation metrics.
Although TCMR achieves the lowest ACC-ERR, it tends to
be overly smooth, thereby sacrificing the accuracy of pose
and shape estimation. Specifically, when TCMR reduces
ACC-ERR 0.8 mm/s? compared to MPS-Net, MPS-Net
reduces PA-MPJPE, MPJPE, and MPVPE by 1.8 mm, 3.4
mm, and 1.7 mm, respectively. Table 4 further confirms the
importance of considering temporal information in consec-
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Figure 6. Qualitative comparison of TCMR [6] (left) and
our MPS-Net (right) on the challenging in-the-wild 3DPW [37]
dataset (the 1st and 2nd clips) and MPI-INF-3DHP [27] dataset
(the 3rd clip). This is an embedded video, please refer to our arxiv
paper to view the video.

Camera
View

Alternate
Viewpoint

Camera
View

Alternate

Viewpoint
Figure 7. Qualitative results of MPS-Net on the challenging in-
the-wild 3DPW [37] dataset and MPI-INF-3DHP [27] dataset. For
each sequence, the top row shows input images, the middle row
shows the estimated body mesh from the camera view, and the
bottom row shows the estimated mesh from an alternate viewpoint.

utive frames, i.e., compared with single-image-based meth-
ods, video-based methods have lower ACC-ERR. In sum-
mary, MPS-Net achieves a better balance in the accuracy
and smoothness of 3D human pose and shape estimation.

5.2. Qualitative evaluation

We present 1) visual comparisons with the TCMR [6], 2)
visual effects of MPS-Net in alternative viewpoints, and 3)
visual results of the learned human motion continuity.

Visual comparisons with the TCMR. The qualitative
comparison between TCMR and our MPS-Net on the
3DPW and MPI-INF-3DHP datasets is shown in Figure 6.
From the results, we observe that the 3D human pose and
shape estimated by MPS-Net can fit the input images well,
especially on the limbs. TCMR seems to be too focused on
generating smooth 3D human motion, so the estimated pose
has relatively small changes from frame to frame, which
limits its ability to fit the input images.

Visual effects of MPS-Net in alternative viewpoints. We
visualize the 3D human body estimated by MPS-Net from
different viewpoints in Figure 7. The results show that

Input

0]

VIBE

AAAARAAAADY
ESSEEESTEY)

time
Figure 8. An example of visualization of the VIBE [20] and our
MPS-Net on the continuity of human motion.

(Ours)

-
@
=z
an
o
=

MPS-Net can estimate the correct global body rotation.
This is quantitatively demonstrated by the improvements in
the PA-MPJPE, MPJPE, and MPVPE (see Table 1).

Visual results of the learned human motion continuity.
We use a relatively extreme example to show the continu-
ity of human motion learned by MPS-Net. In this exam-
ple, we randomly downloaded two pictures with different
poses from the Internet, and copied the pictures multiple
times to form a sequence. Then, we send the sequence to
VIBE [20] and MPS-Net for 3D human pose and shape es-
timation. As shown in Figure 8, compared with VIBE, it
is obvious from the estimation results that our MPS-Net
produces a transition effect between pose exchanges, and
this transition conforms to the continuity of human kine-
matics. It demonstrates that MPS-Net has indeed learned
the continuity of human motion, and explains why MPS-
Net can achieve lower ACC-ERR in the benchmark (action)
datasets (see Table 1). This result is also similar to using a
3D motion predictor to estimate reasonable human motion
in-betweening of two key frames [12]. In contrast, VIBE
relies too much on the features of the current frame, mak-
ing it unable to truly learn the continuity of human motion.
Thus, its ACC-ERR is still high (see Table 1).

For more results and video demos can be found at
https://mps—net.github.io/MPS—-Net/.

6. Conclusion

We propose the MPS-Net for estimating 3D human pose
and shape from monocular video. The main contributions of
this work lie in the design of the MoCA and HAFI modules.
The former leverages visual cues observed from human mo-
tion to adaptively recalibrate the range that needs attention
in the sequence to capture the motion continuity dependen-
cies, and the later allows our model to strengthen tempo-
ral correlation and refine feature representation for produc-
ing temporally coherent estimates. Compared with exist-
ing methods, the integration of MoCA and HAFI modules
demonstrates the advantages of our MPS-Net in achieving
the state-of-the-art 3D human pose and shape estimation.
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