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Abstract

Recent studies have shown that adversarial examples
hand-crafted on one white-box model can be used to at-
tack other black-box models. Such cross-model transfer-
ability makes it feasible to perform black-box attacks, which
has raised security concerns for real-world DNNs applica-
tions. Nevertheless, existing works mostly focus on investi-
gating the adversarial transferability across different deep
models that share the same modality of input data. The
cross-modal transferability of adversarial perturbation has
never been explored. This paper investigates the transfer-
ability of adversarial perturbation across different modali-
ties, i.e., leveraging adversarial perturbation generated on
white-box image models to attack black-box video models.
Specifically, motivated by the observation that the low-level
feature space between images and video frames are sim-
ilar, we propose a simple yet effective cross-modal attack
method, named as Image To Video (I2V) attack. I2V gen-
erates adversarial frames by minimizing the cosine simi-
larity between features of pre-trained image models from
adversarial and benign examples, then combines the gen-
erated adversarial frames to perform black-box attacks on
video recognition models. Extensive experiments demon-
strate that I2V can achieve high attack success rates on dif-
ferent black-box video recognition models. On Kinetics-400
and UCF-101, I2V achieves an average attack success rate
of 77.88% and 65.68%, respectively, which sheds light on
the feasibility of cross-modal adversarial attacks.

1. Introduction
Deep learning has achieved significant progress in a

series of computer vision tasks, such as image recogni-
tion [3, 4, 12], video classification [41], object detection
[24], and action recognition [2, 11], etc. However, re-
cent studies have shown that deep neural networks (DNNs)

†Correspondence to: Jingjing Chen.

are highly vulnerable to adversarial examples [21, 28, 29],
which are generated by adding small human-imperceptible
perturbations that can lead to wrong predictions. The ex-
istence of adversarial examples has posed serious security
threats for the application of DNNs, such as autonomous
driving [25], face recognition [8], video analysis [5,31,34],
etc. As a result, adversarial examples have attracted numer-
ous research attentions in recent years.

It has been demonstrated in recent works [22,33] that ad-
versarial examples have the property of transferability, i.e.,
the adversarial example generated from one model can be
used to attack other models. Such cross-model transfer-
ability makes it feasible to perform black-box attacks by
leveraging adversarial examples handcrafted on white-box
models. As a result, how to enhance the transferability of
adversarial examples for efficient black-box attacks has at-
tracted several research interests recently. These works ei-
ther perform data augmentation [7, 20, 38], optimize gradi-
ent calculations [6, 20, 36], or disrupt common properties
among different models [37], to avoid the generated adver-
sarial samples being overfitted to white-box models. Never-
theless, all of these works require the white-box models and
target black-box models to be homomodal, which share the
same modal of input data. Transferability between hetero-
modal models has never been explored.

To bridge this gap, this paper investigates the cross-
modal transferability of adversarial examples. Specifically,
we explore the adversarial transferability between image
models and video models by performing transfer-based
black-box attacks on video models with image models pre-
trained on ImageNet only. This is an extremely challeng-
ing setting since there are no white-box video models for
generating video adversarial samples. There are two ma-
jor obstacles in transferring adversarial perturbations gen-
erated on images models to attack video models. First, in
addition to the domain gap between image and video data,
video data contain additional temporal information, which
leads to differences in the learned features between image
models and video models. The difference makes it diffi-
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Figure 1. Overview of the proposed I2V attack. Given a video clip with a true label of “Catching or throwing baseball”, where each frame
is input into the ImageNet-pretrained image model separately. Then the image model generates adversarial frames by minimizing the
cosine similarity between features from adversarial and benign examples. As the image model and the video model share similar feature
space, the generated video adversarial example can fool the video recognition models, and be misclassified as “Abseiling”.

cult to transfer the adversarial perturbations from images
to videos. Second, existing transfer-based attacks on ho-
momodal models (e.g., image models) are not applicable to
the cross-modal attack scenarios. Unlike existing transfer-
based attacks on images, where image labels are available
for optimizing task-specific loss function (e.g., Cross En-
tropy loss) in the process of adversarial perturbations gen-
eration, in the cross-modal image to video attack, no labels
are available for video frames.

To address the aforementioned challenges and perform
black-box attacks on video models, we propose a simple
yet effective cross-modal attack method, named Image To
Video (I2V) attack. Despite there being a domain gap be-
tween image data and video data, we observed that the inter-
mediate features between images models and video models
are similar to a certain extent. This motivates us to per-
turb the intermediate features of the ImageNet-pretrained
image models to craft adversarial video frames for attack-
ing video recognition models. To this end, the proposed I2V
optimizes the adversarial perturbations by minimizing the
cosine similarity of intermediate features between benign
frames and the generated adversarial frames. The minimiza-
tion of the cosine similarity makes the features extracted
from adversarial video frames orthogonal to that from be-
nign frames. Consequently, it will cause the adversarial
video features to move away from the benign video features
due to the feature similarity between image and video mod-
els. Figure 1 gives an overview of the proposed I2V attack
method. I2V takes individual frames from a video clip as in-
put to the image model and generates adversarial frames one
by one. Then the generated adversarial frames are grouped
into video adversarial examples according to the temporal
information of the benign video clip. We briefly summarize
our primary contributions as follows:

• We investigate the transferability of adversarial pertur-
bations between image models and video models. Spe-
cially, we propose an I2V attack to boost the transfer-
ability of video adversarial examples generated from
image models across different video recognition mod-
els. To the best of our knowledge, this is the first
work on cross-modal transfer-based black-box attacks
for video recognition models.

• We provide insightful analysis on the correlations of
feature maps between image and video models. Based
on this observation, I2V optimizes adversarial frames
on perturbing feature maps of image models to boost
the transferability across different video recognition
models.

• We conduct empirical evaluations using six video
recognition models trained with the Kinetic-400
dataset and UCF-101 dataset. Extensive experiments
demonstrate that our proposed I2V helps to boost the
transferability of video adversarial examples generated
from image models.

2. Related Work
2.1. Transfer-based Attacks on Image Models

Prior works in generating adversarial examples with high
transferability are based on white-box attacks, such as Fast
Gradient Sign Method (FGSM) [10] and Basic Iterative
Method (BIM) [19]. FGSM linearizes the loss function
around the current parameters and performs a one-step up-
date along with the gradient sign of the loss function with
respect to inputs. BIM is the iterative version of FGSM
and overfits the white-box model to generate stronger ad-
versarial examples in attacking the white-box model. To
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further improve the transferability of adversarial examples
in attacking black-box models, several approaches are pro-
posed recently. In general, there are three ways to improve
transferability, which include data augmentation, gradient
modification and common property disruption of discrim-
inative features among different models. The main idea
of data augmentation is to improve the generalization of
adversarial examples and avoid overfitting the white-box
model. For example, Diversity Input (DI) [38] attack con-
ducts random resizing and padding to the input. Scale-
invariant method (SIM) [20] applies the scale transforma-
tion to the input. Translation-invariant (TI) [7] attack per-
forms horizontal and vertical shifts with a short distance to
the input. The second way modifies gradients used for up-
dating adversarial perturbations. For example, Momentum
Iterative (MI) [6] attack integrates the momentum into the
iterative process for stabilizing update directions. As an im-
proved momentum method, Nesterov Accelerated Gradient
(NAG) [20] can be also integrated into the BIM. Skip Gra-
dient Method (SGM) [36] uses more gradients from the skip
connections and emphasizes the gradients of shallow layers.
The main idea of the third way focuses on disrupting the
common property of classification among different models.
For example, Attention-guided Transfer Attack (ATA) [37]
prioritizes the corruption of critical features that are likely
to be adopted by diverse architectures. Other transfer-based
attacks such as Dispersion Reduction (DR) [23], Intermedi-
ate Level Attack (ILA) [13] have improved the transferabil-
ity of adversarial examples in different tasks through per-
turbing feature maps. In contrast, the proposed I2V attack
implements a cross-modal transfer-based attack through a
correlation between the spatial features encoded between
the image model and the video model.

2.2. Transfer-based Attacks on Video Recognition
Models

There is much less work about transfer-based attacks on
video models compared with transfer-based attacks on im-
age models. Temporal Translation (TT) attack method [35]
optimizes the adversarial perturbations over a set of tem-
poral translated video clips for avoiding overfitting to the
white-box model being attacked. Although TT achieves
better results than transfer-based image attack methods, it
increases the computational cost. Different from it, the
proposed I2V attack achieves better performance without
trained video models and is easy to perform.

2.3. Video Recognition Models

Video action recognition models have made significant
progress in recent years. Previous studies [16, 40] adopt
a 2D + 1D paradigm, where 2D CNNs are applied over
per-frame input to extract features, followed by a 1D mod-
ule (e.g., RNNs) that integrates per-frame features. Current

studies use 3D CNNs to jointly capture the dynamic seman-
tic of videos. For example, I3D [2] leverages ImageNet ar-
chitecture designs and their parameters to encode spatio-
temporal features by inflating the 2D convolution kernels
into 3D. Non-local (NL) [30] network inserts a non-local
operation into I3D for encoding long-range temporal de-
pendencies between video frames. SlowFast [9] contrasts
the visual tempos along the temporal axis, which involves
a slow pathway and a fast pathway to capture spatial se-
mantics and motion at fine temporal resolution respectively.
Temporal Pyramid Network (TPN) [39] capture action in-
stances at various tempos through a feature hierarchy ar-
chitecture. In this paper, we use six representative video
action recognition models for experiments, including NL,
SlowFast, TPN with 3D Resnet-50 and Resnet-101 as back-
bones.

3. Methodology
3.1. Preliminary

Given a video sample x ∈ X ⊂ RT×H×W×C with the
true label y ∈ Y = {1, 2, ...,K}, where T , H , W , C denote
the number of frames, height, width and channels respec-
tively. K represents the number of classes. Let g denote the
ImageNet-pretrained image model (e.g., ResNet, VGG), f
denote the video recognition model. We use f(x) : X → Y
to denote the prediction of the video recognition model for
an input video. Thus, the proposed I2V attack aims to gen-
erate the adversarial example xadv = x+ δ by g, which can
fool the video model f into f(xadv) ̸= y without knowl-
edge about f , where δ denotes the adversarial perturbation.
To ensure that the adversarial perturbation δ is impercepti-
ble, we restrict it by ||δ||p ≤ ϵ, where || · ||p denotes the
Lp norm, and ϵ is a constant of the norm constraint. We
adopt L∞ norm and untargeted adversarial attacks, which
are commonly used in [7, 20, 36–38]. In a white-box set-
ting, the objective of untargeted adversarial attacks can be
formulated as follows:

argmax
δ

J(f(x+ δ), y), s.t. ||δ||∞ ≤ ϵ, (1)

where J is the loss function (e.g., cross-entropy loss) of the
video model f . However, in this paper, the adversary cannot
access knowledge about f . The proposed I2V attack lever-
ages adversarial examples generated from g to attack f in
the black-box setting.

3.2. Correlation Analysis between Image and Video
Models

Before introducing the proposed method, we firstly give
an empirical analysis of the correlation between image and
video models. It has been demonstrated in the prior work
[15] that utilizing ImageNet-pretrained image models to
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Figure 2. Cosine similarity analysis of intermediate features be-
tween image models and video models on benign examples and
adversarial examples. The cosine similarities are calculated on
the averaged intermediate features extracted from 400 randomly
selected videos in Kinetics-400. Adversarial video samples are
generated by FGSM and BIM, using video models as white-box
models. Darker color represents a higher cosine similarity.

generate tentative perturbations assumes fewer queries for
attacking black-box video recognition models. This basi-
cally suggests that the intermediate features between im-
ages models and video models may be similar to a certain
extent. Hence perturbing intermediate feature maps of im-
age models could affect that of video models. To verify this
assumption, we analyze the intermediate features’ similar-
ity of both benign and adversarial frames between image
and video models with cosine similarity.

Figure 2 shows the cosine similarity of intermediate fea-
tures between image and video models. The intermediate
features are extracted from 400 randomly selected videos
in Kinetics-400 and then averaged for calculating cosine
similarity. For all video models, the intermediate features
are extracted from the first 3D-Resnet block, while for dif-
ferent image models, the features are extracted from dif-
ferent intermediate layers, which are summarized in Ta-
ble 2 (marked in red color). Here we choose different inter-
mediate layers for different image models for the purpose
of maximizing the similarity between image features and
video features. From figure 2, it can be observed that, for
both benign samples and adversarial samples, their interme-
diate layer features extracted from image models and video
models are similar to a certain extent. This is mainly be-
cause the convolution operations in image models and video
models are somehow similar. It is worthwhile to mention
that the cosine similarities obtained from benign samples
and adversarial samples are quite similar. This basically
suggests that adversarial perturbations have little effect on
the similarity of feature space between image and video
models. Similar trends can be also observed when using
other intermediate layers of video models.

To demonstrate that the adversarial perturbations on the
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Figure 3. The magnitudes (y-axis) of channel-wise activation at
the penultimate layer (2048 channels at x-axis) for both image and
video models. The magnitude is calculated by the global average
pooling at each channel. In each plot, the channel-wise magni-
tudes are averaged from randomly selected 400 videos of Kinetics-
400 and displayed separately for benign and adversarial examples
(generated by BIM). The 2048 channels are sorted in descending
order of magnitude for benign examples.

feature maps are translatable between video and image
models, we further compare the magnitude changes in the
channel-wise activation of image and video models before
and after adding the same adversarial perturbations to the
video frames. The results are shown in Figure 3. As can be
seen, the adversarial examples generated on NL-101 per-
turb the channel-wise activation magnitude not only in NL-
101 but also in Resnet-101. Since each channel of features
captures a specific pattern of the object and contributes dif-
ferently to the final classification, the magnitude changes of
image and video models are likely to result in wrong predic-
tions, demonstrating possibilities in transferring adversarial
perturbations between image and video models.

3.3. Image To Video (I2V) Attack

Based on the above observations, we propose the Im-
age To Video (I2V) attack, which generates video adversar-
ial examples from an ImageNet-pretrained image model, to
boost the transferability of hetero-modal models and attack
video models in the black-box setting. By perturbing inter-
mediate features of image models, I2V generates adversar-
ial examples to disturb intermediate features of black-box
video models with high probability. In particular, I2V opti-
mizes the i-th adversarial frame by:

argmin
δ

CosSim(gl(x
i + δ), gl(x

i)), s.t. ||δ||∞ ≤ ϵ, (2)
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Algorithm 1: Image to Video (I2V) attack.
Input : A video example x, image model g.
Parameter: Perturbation budget ϵ, iteration number

I , step size α, the number of layer l.
Output : The adversarial example xadv .

1 for i = 1 to T do
2 xi = the i-th frame of x

3 δi0 = (0.01255 )
H×W×C

4 for j = 0 to I − 1 do
5 Update δij by Adam optimizer:

δij+1 = ADAM(δij , α, CosSim(gl(x
i +

δij), gl(x
i)))

6 end
7 Project xi

adv to the ϵ-ball of xi:
8 xi

adv = clipxi,ϵ(x
i + δiI)

9 end
10 return xadv = (x1

adv, ..., x
i
adv, ..., x

T
adv)

where gl(x
i) denotes the intermediate feature map of

the l-th layer with respect to xi in the image model,
xi ∈ RH×W×C denotes the i-th frame of x, the function
CosSim calculates the cosine similarity between gl(x

i+δ)
and gl(x

i).

In this way, the minimization of the cosine similarity
makes it possible to optimize adversarial examples with
features that are orthogonal to ones of benign examples.
Consider that gl(xi) is the output of the penultimate layer
and let W = (W1, ...,Wy, ...,WK) denote the weight
of the classification layer, thus Wy and gl(x

i) are highly
aligned for making a true prediction. With minimizing
CosSim(gl(x

i + δ), gl(x
i)) = gl(x

i+δ)T gl(x
i)

||gl(xi+δ)||·||gl(xi)|| , we can
get minimizing gl(x

i + δ)T gl(x
i) if gl(xi + δ) and gl(x

i)
have unit length. Due to the high alignment between Wy

and gl(x
i), the minimization of the cosine similarity in-

duces that the value of Wy · gl(xi + δ) decreases a lot
to fool the image model g into making error predictions.
Based on the similarity of feature space between image and
video models, the generated adversarial examples xadv =
(x1

adv, ..., x
i
adv, ..., x

T
adv) may fool video models with high

probability by perturbing video intermediate features.

Following [32], we initialize the adversarial perturba-
tions δ with a small constant value 0.01

255 and use the Adam
optimizer [17] to solve the Equation 2 and updates δij . Al-
gorithm 1 illustrates the generation of adversarial examples
of the proposed I2V attack. Where I denotes the iteration
number of Adam optimizer, clipxi,ϵ denote to project xi+δiI
to the vicinity of xi for meeting ||δiI ||∞ ≤ ϵ. In the end, I2V
attack combines all generated adversarial frames xi

adv into
a video adversarial examples xadv .

Model UCF-101 Kinetics-400

NL-50 81.26 75.17
NL-101 82.21 75.81
SlowFast-50 85.25 76.66
SlowFast-101 86.10 76.95
TPN-50 87.13 78.90
TPN-101 90.28 79.70

Table 1. Top-1 validation accuracy(%) of video recognition mod-
els on UCF-101 and Kinetics-400.

3.4. Attacking an Ensemble of Models

MIFGSM [6] shows that attacking an ensemble of mod-
els can boost the transferability of generated adversarial
examples. When a generated example remains adversar-
ial over an ensemble of models, it may transfer to attack
other models. Based on this, we propose to use multi-
ple ImageNet-pretrained image models to perform the I2V
attack, named ENS-I2V, which optimizes i-th adversarial
frame by:

argmin
δ

N∑
n=1

CosSim(gnl (x
i + δ), gnl (x

i)), s.t. ||δ||∞ ≤ ϵ,

(3)
where N is the number of used image models, gnl (·) returns
the intermediate features of the l-th layer in the n-th image
model. The intermediate features of the adversarial frames
generated by ENS-I2V are orthogonal to the ensemble of
features from benign examples, thus ENS-I2V allows the
generation of highly transferable adversarial examples.

4. Experiments
4.1. Experimental Setting

Dataset. We evaluate our approach using UCF-101
[27] and Kinetics-400 [2] datasets, which are widely used
datasets for video recognition. UCF-101 consists of 13,320
videos from 101 actions. Kinetics-400 contains approxi-
mately 240,000 videos from 400 human actions.

ImageNet-pretrained image models. We perform
our proposed methods on four ImageNet-pretrained image
models: Alexnet [18], Resnet-101 [12], Squeezenet 1.1 [14]
and Vgg-16 [26]. Where Squeezenet 1.1 has 2.4x less com-
putation and slightly fewer parameters than SqueezeNet 1.0,
without sacrificing accuracy. These four models are com-
monly used in the image classification.

Video recognition models. Our proposed methods are
evaluated on three different architectures of video recog-
nition models: Non-local (NL) [30], SlowFast [9], TPN
[39]. NL, SlowFast and TPN use 3D Resnet-50/101 as the
backbone. We train these video models from scratch with
Kinetics-400 and fine-tune them on UCF-101. For Kinetics-
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Figure 4. AASR (%) of the I2V attack with various step sizes and
iteration numbers.

400, we skip every other frame from randomly selected 64
consecutive frames into constructing input clips. For UCF-
101, we use 32 consecutive frames as input clips. The spa-
tial size of the input is 224 × 224. Table 1 summarizes
top-1 validation accuracy of these six models on UCF-101
and Kinetics-400.

Attack setting. In our experiments, we use the Attack
Success Rate (ASR) to evaluate the attack performance,
which is the rate of adversarial examples that are suc-
cessfully misclassified by the black-box video recognition
model. Thus higher ASR means better adversarial transfer-
ability. If not specifically stated, average ASR (AASR) is
the average ASR over all black-box video models. Follow-
ing [7, 38], we randomly sample one video, which is cor-
rectly classified by all models, from each class to conduct
our experiments, and set the norm constraint ϵ = 16.

4.2. Ablation Study

We first investigate the effects of step size α, iteration
number I and different attacked layers l of image models.
The evaluations are conducted on video models trained on
Kinetics-400.

Step size and iteration number. Equation 2 is solved
by the Adam optimizer, which can be affected by the step
size α and iteration number I . Figure 4 shows the results of
using Block-2 of Resnet-101 as the perturbed layer of the
image model with different step sizes and iteration num-
bers. It can be seen that smaller α and I have poorer AASR
because of under-fitting. While larger α can achieve better
AASR with a smaller I . To achieve the best performance,
we adopt α = 0.005 and I = 60 in subsequent experiments.

Intermediate layer selection. For each image model,
we select four layers from bottom to top layer (as shown
in Table 2) to craft the adversarial perturbations. Figure
5 shows the results of performing attack on different lay-
ers. Attacking the middle layers (layer 2 or layer 3) of im-
age models is better than attacking bottom or top layers.
Based on the results, we attack the middle layers, which are
marked in Red in Table 2 for each model.

Model Layer 1 Layer 2 Layer 3 Layer 4

Alexnet ReLU-1 ReLU-2 ReLU-3 ReLU-5
Resnet-101 Block-1 Block-2 Block-3 Block-4
Squeezenet Fire-1 Fire-3 Fire-5 Fire-8
Vgg-16 ReLU-1 ReLU-5 ReLU-9 ReLU-13

Table 2. Intermediate layer selection. For each image model, the
selected intermediate layer used for crafting adversarial perturba-
tions in the proposed I2V attack is in Red.
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Figure 5. AASR (%) of the I2V attack with various attack layers l
in different image models.

4.3. Performance Comparison

Since transferability between hetero-modal models has
never been explored, we compare our proposed I2V and
ENS-I2V attacks with DR [23], which is originally pro-
posed to enhance cross-task transferability. DR minimizes
the standard deviation of intermediate features to degrade
the recognizability of images. We extend DR to opti-
mize adversarial examples on the Imagenet-pretrained im-
age models and use the same setting as the I2V attack.

The results of attacking UCF-101 and Kinetics-400
datasets are shown in Table 3 and 4, respectively. From
the results, we have the following observations. First, the
proposed I2V and ENS-I2V attacks achieve much higher
ASR than DR by a large margin. For example, compared
with DR, I2V can boost AASR of more than 63.33% and
42.51% for UCF-101 and Kinetics-400 separately. Sec-
ond, I2V using Resnet-101 as the white-box image model
outperforms all the other I2V attacks, which suggests that
2D Resnet101 and 3D Resnet-101 in the backbone of video
models share more similar feature space than other 2D im-
age models. Third, ENS-I2V further improves the aver-
age AASR to 65.68% against UCF101 and 77.88% against
Kinetics-400. Which demonstrates the validity of attack-
ing an ensemble of image models. In general, our method,
which considers minimizing the cosine similarity between
features from adversarial and benign examples, consistently
outperforms DR. These experiments validate the effective-
ness of the proposed I2V attack.
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Attack Image Model Black-box Video Model

NL-101 NL-50 SlowFast-101 SlowFast-50 TPN-101 TPN-50

DR [23]

Alexnet 29.70 26.73 19.80 25.74 8.91 13.86
Resnet-101 14.85 23.76 18.81 27.72 15.84 20.79
Squeezenet 12.87 24.75 12.87 15.84 4.95 13.86

Vgg-16 14.85 29.70 13.86 22.77 6.93 15.84

I2V

Alexnet 50.49 53.46 35.64 43.56 28.71 44.50
Resnet-101 71.28 60.39 50.49 57.42 61.38 71.28
Squeezenet 43.56 54.45 36.63 37.62 23.76 35.64

Vgg-16 43.56 48.51 28.71 39.60 21.78 32.67
ENS-I2V Ensemble 71.28 76.23 56.43 62.37 52.47 75.24

Table 3. ASR (%) against video recognition models on UCF-101.

Attack Image Model Black-box Video Model

NL-101 NL-50 SlowFast-101 SlowFast-50 TPN-101 TPN-50

DR [23]

Alexnet 22.00 31.50 43.00 41.75 31.00 39.00
Resnet-101 25.50 37.25 49.00 52.25 41.50 42.75
Squeezenet 17.00 25.00 37.00 36.50 24.25 29.50

Vgg-16 16.75 23.00 36.75 35.75 23.75 29.00

I2V

Alexnet 44.00 54.75 61.50 59.50 59.75 69.50
Resnet-101 56.25 64.50 74.75 77.00 87.25 90.25
Squeezenet 37.75 51.00 62.50 60.25 55.50 58.50

Vgg-16 39.00 46.25 57.75 59.00 59.00 70.50
ENS-I2V Ensemble 65.00 72.25 79.75 76.50 85.75 88.00

Table 4. ASR (%) against video recognition models on Kinetics-400.

4.4. Comparing against Stronger Baselines

We further compare the proposed I2V attack against sev-
eral existing transfer-based attacks that are designed for ho-
momodal models (e.g., images models or video models).
It’s worthwhile to mention that the comparisons are un-
fair because the existing transfer-based attacks require the
white-box video recognition models to generate the adver-
sarial perturbations. For the comparison, several transfer-
based attacks, such as FGSM [10], BIM [19], MI [6], DI
[38], TI [7], SIM [20], SGM [36], TAP [42], ATA [37], and
TT [35] are used as baselines. For these baselines, NL-101,
SlowFast-101 and TPN-101 are used as the white-box mod-
els. It has been illustrated in ILA [13], the transferability
of generated adversarial examples can be further enhanced
through the proposed fine-tuning methods ILAP and ILAF.
Compared to ILAP, ILAF achieves better performance by
maintaining the existing adversarial direction and increases
the magnitude of feature perturbations under L2 norm [13].
Therefore, for the compared baseline methods, we use ILAF
to fine-tune the generated adversarial examples.

Figure 6 shows the comparison results. From the results,
we have the following observations. First, despite the com-
parisons being unfair since our method does not require any

white-box video models, the proposed ENS-I2V still per-
forms much better than ILAF for most cases. As shown
in Figure 6(a)(b)(d)(f), on both UCF-101 and Kinetics-400,
ENS-I2V exceeds ILAF by a large margin when using NL-
101 or SlowFast-101 as the white-box model. Second, our
I2V attack performs worse than baseline methods when they
use TPN-101 as the white-box model on Kinetics-400 (Fig-
ure 6f). This may be because that Kinetics-400 contains
richer motion information than UCF-101 and such motion
information are unlikely to be well captured by image mod-
els. On the contrary, by fusing multi-layer features, TPN-
101 can better capture the motion information. As a result,
disrupting motion information (Figure 6f) can achieve bet-
ter performances.

4.5. Discussion

To experimentally demonstrate the effectiveness of the
optimized object function (Equation 2), we investigate the
changes in the cosine similarity of the adversarial im-
age/video features to the benign image/video features by
increasing the iteration number. Pearson Correlation Co-
efficient (PCC) [1] is used to measure the linear correla-
tion of cosine similarity trends computed from image and
video models. Figure 7 shows the PCC analysis of cosine

15070



FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

20

30

40

50

60

70

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

61.63

UCF-101

Method
ENS-I2V
ILAF

(a) NL-101

FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

20

30

40

50

60

70

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

66.58

UCF-101

Method
ENS-I2V
ILAF

(b) SlowFast-101

FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

20

30

40

50

60

70

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
) 68.81

UCF-101

Method
ENS-I2V
ILAF

(c) TPN-101

FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

50

60

70

80

90

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

82.50

Kinetics-400

Method
ENS-I2V
ILAF

(d) NL-101

FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

50

60

70

80

90

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

77.75

Kinetics-400

Method
ENS-I2V
ILAF

(e) SlowFast-101

FGSMBIM MI DI TI SIM SGM TAP ATA TT
Transfer-based Attacks

50

60

70

80

90

Av
er

ag
e 

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

73.38

Kinetics-400

Method
ENS-I2V
ILAF

(f) TPN-101

Figure 6. AASR (%) against video recognition models with fine-tuning attack methods. The top and bottom rows are the results on
UCF-101 and Kinetics-400 respectively. The three columns use the NL-101, SlowFast-101, and TPN-101 models as white-box models
respectively. AASR is calculated by averaging ASR over black-box video models that have a different architecture from the white-box
model. Red dashed lines denote the performance of our proposed ENS-I2V.
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Figure 7. Pearson correlation coefficient (PCC) analysis between
cosine similarity trends computed from image and video models.
The used intermediate layers of image models are summarized in
Tab. 2 (marked in red). NL-101 uses the second 3D-Resnet block.

similarity trends using 4 image models and a video model
(NL-101). As can be seen, all PCCs are close to 1, which
implies an exact positive linear relationship between the di-
rectional changes of image and video intermediate features.
It suggests that minimizing the cosine similarity of image
models can make intermediate features of video adversarial
examples generated from Imagenet-pretrained models or-
thogonal to their benign video features. Similar trends are
observed when using other video models.

5. Conclusion

In this paper, we identify the existence of a similar fea-
ture space between image and video models, which can
be leveraged to generate adversarial examples from image
models to attack black-box video models. More specifi-
cally, we proposed the Image To Video (I2V) attack, which
optimizes adversarial frames on the ImageNet-pretrained
image model by minimizing the cosine similarity between
features from adversarial and benign examples for perturb-
ing intermediate feature space. Besides, we proposed ENS-
I2V to attack an ensemble of image models for boosting
transferability. The results indicate that cross-modal adver-
sarial transferability occurs even across image and video
domains. In the future, we will combine temporal infor-
mation of videos into image models to further boost trans-
ferability. Code is available at https://github.com/
zhipeng-wei/Image-to-Video-I2V-attack.
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