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Abstract

Three-dimensional (3D) line segments are helpful for
scene reconstruction. Most of the existing 3D-line-segment-
reconstruction algorithms deal with two views or dozens
of small-size images; while in practice there are usually
hundreds or thousands of large-size images. In this paper,
we propose an efficient line segment reconstruction method
called ELSR 1. ELSR exploits scene planes that are com-
monly seen in city scenes and sparse 3D points that can be
acquired easily from the structure-from-motion (SfM) ap-
proach. For two views, ELSR efficiently finds the local scene
plane to guide the line matching and exploits sparse 3D
points to accelerate and constrain the matching. To recon-
struct a 3D line segment with multiple views, ELSR utilizes
an efficient abstraction approach that selects representative
3D lines based on their spatial consistence. Our experi-
ments demonstrated that ELSR had a higher accuracy and
efficiency than the existing methods. Moreover, our results
showed that ELSR could reconstruct 3D lines efficiently for
large and complex scenes that contain thousands of large-
size images.

1. Introduction
1.1. Motivation and Objective

3D line segments are dominant in most urban scenes. It
provides structure information that is very useful for 3D
scene abstraction [12], dense matching [26], plane detec-
tion [15], and surface reconstruction [27]. But 3D line seg-
ment reconstruction is still a challenging task in computer
vision.

The main drawback of the existing line reconstruction
methods is that they lack an elegant solution for fast and
robust line matching in two views. Line matching is more
complex than point matching because line segments are in-
distinct in both texture and geometry in two views, and
there are few deep-learning-based methods for line match-
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1Available at https://skyearth.org/publication/project/ELSR
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(a) Preprocessing for image sequences.

Fast two-view matching Spatial evaluation  3D lines

(b) Line matching and abstraction.

Figure 1. The pipeline of ELSR. ELSR acquires the camera ma-
trix, the sparse 3D point, and the connection between the images
from the SfM pipeline. ELSR first matches line segments for im-
age pairs and finally abstracts the representative 3D lines by eval-
uating the matches in the image sequence.

Castle #003 (a) LPI, 925 seconds (b) LJL, 583 seconds

Castle #005 (c) GLM, 2290 seconds (d) ELSR, 0.5 seconds

Figure 2. The 3D lines are reconstructed from two-view matching.
ELSR is compared with LPI [7], LJL [17], and GLM [30].

ing. Generally, the line needs to be grouped [7, 21] and the
texture needs to be rectified [17, 23] for robust matching.
However, these operations are computationally expensive
for they lack geometry guidance.

In this paper, we focus on improving the 3D line seg-
ment reconstruction by geometry-guided matching for the
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line segment. Our method is based on two observations: 1)
there are many planes in the city scene, and the line seg-
ments tend to lie in the scene planes; and 2) it is a well-
known fact in computer vision that exploiting the rough
3D model can greatly improve the efficiency and accuracy
of 3D reconstruction. Thus, if we have found the scene
planes, we can use the local homography to guide line
matching and constrain the line candidate to a small region
with sparse 3D points, which can be obtained with the effi-
cient structure-from-motion (SfM) methods, such as Visu-
alSfM [32], Bundler [24], and OpenMVG [20].

However, diving into the above two observations also
brings about two challenges: 1) limited by the complexity
of the city scene, finding all of the scene planes accurately
and efficiently is challenging; and 2) the depth constraint is
quite rough because the 3D points obtained with SfM are
sparse, and the line segment is indistinct in geometry. Thus,
we will propose an efficient method to determine the scene
plane and calculate the homography; we will address the
rough depth-constraint by combining sparse 3D points with
lines and planes as a guidance but not a determination.

1.2. Method Overview

Fig. 1 shows the pipeline of ELSR. Given the image se-
quence, we first acquire the camera poses and the sparse
3D points with the SfM pipeline; then, we match lines for
two views; finally, we abstract representative 3D lines from
all of the matches in the image sequence. In detail, ELSR
contains three components:

• Homography estimation. We use the scene plane ge-
ometry (Sec. 3.1) with two neighborhood lines to effi-
ciently verify the valid homography, during which the
rough point-depth is used for acceleration (Sec. 3.2).

• Guided matching (Sec. 3.3). We match the single line
with the potential homographies, and the rough point-
depth is used to constrain the matching.

• Line abstraction (Sec. 4). For multiple views, we first
find the connections of the line matches among image
pairs and score the spatial consistence; then, we select
the representative matches as the final 3D lines.

As shown in Fig. 2, ELSR is more efficient and accurate
than the existing algorithms in two-view matching because
the candidate in the second view is constrained to a very
small region with planes and points guidance.

2. Related work and our contributions
2.1. Two-view matching

As the vital step for line segment reconstruction, line
segment matching in two views has been studied for
decades. While a few past methods [29] relied only on tex-
tures for line matching, many other studies introduced the
camera pose for robust matching. Schmid et al. [23] ex-

ploited the projective transformation induced by epipolar
geometry to improve the gray correlation. OK et al. [21]
improved the texture correlation by constructing the Daisy
descriptor for image lines with epipolar constraint. Mo-
hammed et al. [1] established the candidate based on the in-
tersection of line-pairs and constructed an association graph
for robust matching. Sun et al. [28] used the potential planes
with sparse 3D points and the camera matrix to guide the
line matching. Wei et al. [30] matched lines via the poten-
tial homographies with pairwise line segments under scene
plane assumption.

Some methods attempt to be independent of the camera
pose, which requires a well-designed descriptor or geom-
etry constraint. Zhang et al. [33] created a scale invariant
texture descriptor for an individual line; and an associa-
tion graph was constructed for all matches to enhance the
matching. Li et al. [17] grouped pairwise line segments
and constructed an affine-invariant region descriptor. Be-
cause point matching is more mature and robust than line
matching; some algorithms exploit the line-point geometry
to confirm line matches. Fan et al. [7,8] used two points and
one line to construct the affine invariant structure. Manolis
et al. [18] built the projective invariant structure with two
points and two lines. Ramalingam et al. [22] used projec-
tive geometry like [18] to match both points and lines. Wei
et al. [31] used the point match to construct the association
graph. However, most algorithms are computationally ex-
pensive.

2.2. Multiple-view reconstruction

After line segment matching, a clustering method merges
the 3D lines related to the same line. Schmid et al. [23] and
Wei et al. [31] merged the 3D line based on the projection
in the images. Merging in the image space is intuitive, but
it may fail when the line is near the epipolar plane. This
failure will result in many incorrect 3D lines. Thus, Wei et
al. [31] discarded the image line within a certain distance to
the epipole. Li et al. [17] used the scene plane constraint to
fix the degraded 3D line segment, but the time-consuming
process in confirming scene planes may fail in complex
scenes. Jain et al. [13] merged the 3D line located within
an encircling cylinder; however, it is challenging to deter-
mine the radius when there is no scale information. Hofer
et al. [12] calculated the clustering distance in object space,
which was adaptive to the depth of the 3D lines. However,
the false clustering could not be avoided and the authors
thus used the graph optimization to acquire the result.

2.3. Our contributions

In summary, our contributions are:
• We propose an efficient method to match lines and re-

construct 3D lines from multiple images, which is easy
to use and just requires the result of the SfM pipeline
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as prior knowledge.
• We exploit the geometric relation between 2D lines

and sparse 3D points to find the local homography ef-
ficiently. To our best knowledge, this is the first work
that utilizes this simple yet efficient geometry for line
segment matching.

• When evaluated on large image datasets, ELSR was
over 1000 times faster than the existing algorithms
in two-view matching; in multiple-view reconstruc-
tion, ELSR was 4 times faster than the state-of-the-
art method and the quantity of 3D lines was raised by
360%.

3. Matching with two views
This section describes how to efficiently match line seg-

ments in two views with the guidance of scene planes and
points. We confirm the neighbors of the image based on
the number of the common world-points and connect one
image to its timg neighbors as the image pair for matching.

3.1. The homography with pairwise lines

Now we introduce the geometry constraint to obtain the
homography for guiding the line matching. Denote the
scene plane as π = (v>, 1)>, where v = (v1, v2, v3)>.
With the fundamental matrix F, the scene plane theory [23]
shows that the homography of the image plane related to π
is calculated by

H = A− e′v>, (1)

where e′ is a homogeneous 3D vector that represents the
epipole of the second view. A is a 3× 3 matrix,

A = [e′] F. (2)

where [e′] is the skew 3× 3 matrix.
Given two line matches denoted as l1 ↔ l′1 and l2 ↔ l′2,

Wei et al. [30] solved for v by listing four equations with

l′>
(
A− e′v>

)
x = 0, (3)

to verify line matches, where the endpoint x = (x, y, 1)>

is on the line l = (a, b, c)>. Then, the two lines in the first
image are mapped with H, and they are verified by the over-
lap and distance. In the rest of the paper, all lines and points
are represented as the homogeneous form, and ′ marks the
second image.

In fact, because v is a 3D vector, it can be determined
with just three equations:[

l′1 l′1 l′2
]> [

A− e′v>
] [

x1,1 x1,2 x2,1

]
= 0, (4)

where the subscript of x is in the form of “line index, end-
point index”. Thus, as Fig. 3 shows, we have a unique end-
point x2,2 to verify H by the angular similarity:

Sang (H) = ∠
(
x′2,2 − x′2,1,H (x2,2)− x′2,1

)
, (5)
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Figure 3. The geometry for pairwise lines. x2,2 ↔ l′2 is not
used in Eq. (4) to determine H. Thus, it just satisfies the epipolar
constraint in the mapping with H.
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Figure 4. Point-guided searching. The depth range of the neighbor
points constrains the intersection search to a small interval.

where ∠ is the clockwise angle of two vectors, and H(∗)
maps the feature with the homography H.

When Sang(H) is smaller than a given threshold tang, we
say the scene plane π is true, and the induced H is valid. It
is more accurate and efficient than [30]. In [30], the v is
overfitted with four equations by the least square method,
and the computation with distance and overlap is less effi-
cient than the angular similarity of our method.

Note, the pairwise lines will be used only if their inter-
section is within tint pixels to each line, because the neigh-
borhood lines are more likely to be coplanar and the compu-
tation can be reduced. In addition, the line segment in ELSR
is with a certain direction based on the gradient direction as
in [9].

3.2. Point-guided searching

Algorithm 1 shows our method to find the homography.
Searching the homography is conducted to find the pairwise
line matches satisfying Sang (H) < tang. As illustrated in
Fig. 4, the coplanar pairwise lines intersect at a definite
point x̂. Thus, the intersection x̂′ in the second view is
searched along the epipolar line. We will show the sparse
3D points obtained by SfM can reduce the search to a small
interval.

Denote the first camera matrix as P, which is a 3 × 4
matrix. Let M and c4 be the left hand 3 × 3 submatrix
and the last column of P, respectively. If the depth of x̂
(dep (x̂)) is available, calculating the position of x̂ in the
object space is straight forward:

X =
[(
−M−1c4 + (dep(x̂)/ cos(r,p)) r

)>
1
]>

. (6)
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Algorithm 1 Point-guided searching
Input: ls , a pair of lines;

Ps , the neighborhood 3D points of ls’s intersection;
M, the intersections’map for the second image;
tang, the angular threshold;

Output: H∗, the valid homography;
1: H∗ ← null
2: [x̂′min, x̂

′
max]← use Eq. (6) with Ps and ls

3: for (x, y) ∈ [x̂′min, x̂
′
max] do

4: if M(x, y) 6= null then
5: ls′ ← M(x, y)
6: H← use Eq. (4) with ls and ls ′

7: if Sang (H) < tang then
8: tang ← Sang (H)
9: H∗ ← H

Algorithm 2 Homography-guided matching
Input: li, a single line, and its depth range is known;

Hs , the thom neighborhood homograpies of li;
M , the line map for the second image;

Output: j∗, the index of the best line for li;
1: Spos(i, :)← 0
2: Status(:)← 0
3: for Hsk ∈ Hs do
4: l̄ki ← use Eq. (7) with li and Hsk
5: for (x, y) ∈ l̄ki do
6: l′j ←M(x, y)
7: if l′j 6= null and Status(j) 6= 1 then
8: Status(j)← 1
9: if l′j and l̄ki satisfy Eqs. (8) and (9) then

10: Spos(i, j)← update with Eq. (11)
11: j∗ = argmax(Spos(i, j))

where r is the unit 3D-vector passing through the camera
center (−M−1c4) and x̂, and p is the unit 3D-vector of the
principal ray. Then, x̂′ in the second image can be obtained
by projection with X.

The depth of x̂ is unfortunately unknown. However, the
tpts neighborhood points of x̂ can give a depth range, with
which Eq. (6) can calculate the interval of x̂ as x̂′min and
x̂′max. x̂ may be beyond x̂′min and x̂′max when the depth is
discontinuous. Thus, the search is extended along x̂′min and
x̂′max for several pixels, e.g.10 pixels are sufficient.

3.3. Homography-guided matching

Algorithm 2 shows the matching process. Let the k-th
neighbourhood homography of line li be Hk, which can be
queried efficiently by building a KD-tree for the intersec-
tions. Denote the mapping of li with Hk as

l̄ki = Hk (li) . (7)

H 

!"
#

!$

%!$
&

d'

Search

extent

B

 

A

!

Figure 5. The homography-guided matching. l′j is searched within
the buffer of l̄ki . The maximum distance |BD| and the overlap rate
|AB|/|CD|, are calculated for validation. The overlap rate is the
length ratio between the overlap and the shorter of l̄ki and l′j .
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Figure 6. With ϕ obtained from pixel shift, dmin is shrank and
dmax is extended. ϕ = d − d cos2 β, d̄min = dmin − ϕ, and
d̄max = dmax + ϕ .

As Fig. 5 shows, li ↔ l′j is considered as a potential match
when

d⊥(̄lki , l
′
j) < tpos and o⊥(̄lki , l

′
j) > tove, (8)

where d⊥ calculates the maximum distance between line
segments, o⊥ gives the overlap rate, and tpos and tove are the
thresholds of the position and overlap rate, respectively.

Now we control false matches with the depth constraint.
Let the endpoint of l be x. Let the depth range of its tpts
neighbourhood 3D points be dmin and dmax. The depth
range can be exploited to constrain x. But it need to be
extended because x may be beyond the depth range, espe-
cially when the local scene is discontinuous. However, we
may not know the unit of the object space. Thus, we exploit
the connection between the pixel unit and the object dis-
tance to determine the extension. As in Fig. 6, we shift the
principal point horizontally by tpix pixels to obtain β. Then,
we could calculate the depth shift ϕ corresponding to the
pixel shift. Finally, dmin and dmax are shrank and extended
with ϕ, respectively, to obtain the depth range.

dep(x) ∈
[
dmin cos2 β, dmax

(
2− cos2 β

)]
. (9)

The line’s endpoint-depth is

dep (x) = m3τ (x,Fx× l′,P,P′) , (10)

where m3 is the last row of P, τ is the triangulation func-
tion to obtain the 3D point, and Fx× l′ calculates the point
related to x on l′.

There are generally several homographies to the same
line, and some of them may be incorrect. Thus, we use the
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thom neighbourhood homographies to guide li and score the
match by the summary of the positional similarity:

Spos (i, j) =

thom∑
k=1

exp
(
−d⊥(̄lki , l

′
j)/2tpos

)
. (11)

li ↔ l′j that has the maximum Spos (i, j) is selected as the
correct match.

4. Abstraction from multiple views
Each match in two views will reconstruct a 3D line seg-

ment; therefore, the 3D line segments related to the same
line need to be merged as a cluster [12, 13, 31]. However, it
is easy to fail for three reasons: 1) the fixed threshold can
easily produce incorrect clusters; 2) the wrong match will
result in bad reconstruction; and 3) there is currently no
robust RANSAC method to confirm the inliers of the line
cluster. Thus, ELSR abstracts the representative lines from
the cluster instead of merging them, which could be more
robust and efficient. The abstraction contains two steps: 1)
calculate the spatial similarity between 3D lines and 2) ab-
stract the representative 3D line across all views based on
its spatial similarity with others.

4.1. The spatial similarity of 3D lines

Denote the 3D line triangulated from la1 and la2 as La.
The similarity of La and Lb is scored by the angular simi-
larity in object space and the positional similarity in image
space.

Sang (a, b) = ∠
(
~La, ~Lb

)
(12)

Spos (a, b) = max
{
d⊥(̄la1, lb1), d⊥(̄la2, lb2)

}
, (13)

where l̄a1 and l̄a2 are the projections of La to the two views
of Lb. Note, o⊥(̄la1, lb1) and o⊥(̄la2, lb2) should be bigger
than tove. The 3D line has a direction because the endpoint
of the image line has been reordered based on the gradient
orientation along the line sehment.

We use a regularization function to unify Eqs. (12)
and (13):

S(a, b) = e−max{Sang(a,b)/tang,Spos(a,b)/tpos}/2. (14)

With Eq. (14), the spatial score of La is a summary of the
spatial similarity with other 3D lines:

Sa = ln (θa/2tepi)

n∑
b=1

S (a, b) s.t. S (a, b) > 0.5. (15)

where θa is the minimum angle of the line segment and the
epipolar line, i.e.

θa = min
{
∠
(
Fx1

a1, la2
)
,∠
(
Fx2

a1, la2
)}
, (16)

in which x1
a1 and x2

a1 are the two endpoints on la1. We
introduce θa for the accuracy of the 3D line is closely re-
lated to their distance to the epipolar plane [10]. tepi is a
regularization threshold for the epipolar angle.

4.2. Greedy assignment

We obtain the vector s = [S1, S2, ..., Sn] after calculat-
ing the spatial score for each 3D line. Then, the representa-
tive 3D line is confirmed with a greedy strategy:

1) Find a∗ = argmaxa∈[1,n](s(a)). Stop the selection if
s(a∗) 6 0. Otherwise, select La∗

as a representative
3D line and set s(a∗) = 0.

2) Set all 3D lines that are consistent with La∗
, i.e.,

s(b∗) = 0 when Sa∗,b∗ > 0.5.
3) Go back to step 1).

For robustness, the representative 3D line will be used
only if its spatial score is bigger than 1, which means it has
a spatial similarity with other lines.

5. Experiments
We evaluated ELSR on five datasets and compared it

with four existing algorithms. Tab. 1 describes the datasets,
and Fig. 7 visualizes their cameras and sparse points ac-
quired with VisualSfM [32]. The first three datasets are
open-source; we captured the other two with unmanned
aerial vehicles. We detected line segments with LSD [9]
without setting a threshold. Sec. 5.3 discusses the hyper-
parameters in ELSR. Our test system was a desktop ma-
chine with an Intel(R) Core(TM) i7-10700KF CPU that
supports 16 threads, 32 GB of main memory, and a Nvidia
RTX 3070 GPU.

Figure 7. The cameras and the sparse 3D points.

5.1. Matching with two views

To evaluate the two-view matching, we made 165 image
pairs from Herz-Jesu and Castle datasets by setting (timg)
as 3. We compared ELSR with LPI [6, 7], LJL [14, 17],
and GLM(Graph-based Line Matching) [5, 30]. We did not
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Dataset Imgs Size (px) ANTP

Herz-Jesu [25] 25 3072× 2048 3895
Castle [25] 30 3072× 2048 3892
Dublin [16] 369 9000× 6732 3478
Guangzhou 500 10336× 7788 3139
Ningbo 1454 11608× 8708 3197

Table 1. The image dataset for evaluation. “ANTP” is the average
number of the tie-points obtained by VisualSfM.

Algorithm Herz-Jesu Castle
Total Average Total Average

LPI 14.78 h 11.98 m 15.73 h 10.49 m
LJL 10.37 h 8.41 m 32.65 h 21.76 m
GLM 39.83 h 32.29 m 56.39 h 37.59 m
ELSR 29.12 s 0.39 s 40.82 s 0.45 s

Table 2. The run time of matching with the 165 pairs. “h,”“m,”
and “s” denote “hour,”“minute,” and “second.” The time does not
include line detection while contains the run time of Visual SfM.
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Figure 8. The evaluation of two-view matching with the 165
image pairs. “Q” and “P” denote “Quantity” and “Proportion”.
“ELSR(2)” runs without N-view SfM. Note, the proportion con-
tains the summary before the error interval.

evaluate Line3D++ because it cannot match lines with two
views. As in [12, 13], we evaluated the match in object
space. We reconstructed the 3D line segments with the
matching results and acquired the dense points with Con-
textCapture [4]. Then, we calculated the maximum dis-
tance from the 3D line segment to the mesh as the error.
We present the error distribution in different intervals be-
cause it may be inaccurate to determine the correct/incorrect
matches with a fixed threshold. Note, LPI, GLM, and ELSR
required points or cameras as prior knowledge, which were
acquired with VisualSfM in our experiment.

Fig. 8 depicts the evaluation result. ELSR produced the
best accuracy. As shown in Fig. 2, ELSR produced less dis-
ordered 3D lines. However, ELSR was not the best in line

LPI LJL

GLM ELSR

Figure 9. The failure case of ELSR: it may fail when the scene has
only one plane and the lines in the plane have repeated patterns.

quantity because the depth constraint of the sparse tie-point
may bring about the false negative. As for computation time
(Tab. 2), ELSR was at least 1000 times faster than the other
three algorithms for the two datasets. Fig. 9 shows one fail-
ure case of ELSR.

Running with the F matrix and point from N-view SfM is
unfair for LJL, since it requires no prior cues. Thus, we also
ran ELSR with SIFT [19]+GCRANSAC [2]+MAGSAC [3]
to obtain accurate F matrix and points; the match amount
was roughly the same, but the proportions in different error
intervals decreased by 0.1%-3%.

5.2. Reconstruction from multiple views

We evaluated ELSR for 3D line segment reconstruction
with all the datasets in Tab. 1. We also compared its results
with that of Line3D++ [12] for which the code is avail-
able and is currently the most efficient algorithm for line
reconstruction. Both ELSR and Line3D++ used the result
(cameras and sparse 3D points) of VisualSfM as input. In
Line3D++, we set the two parameters, the maximum num-
ber of line segments and the maximum image-width, to a
significantly large number to avoid its controlling for image
size and line-segment numbers. Line3D++ ran with both
CPU and GPU, while ELSR only ran with a CPU.

As shown in Fig. 10, ELSR always obtained more 3D
lines than Line3D++, especially for the aerial image dataset.
See Fig. 11 for some of the details in the local areas. ELSR
obtained more 3D lines about the details of the scenes, such
as windows, roads, and playfields. Fig. 12 plots the profiles
of the endpoints on the 3D lines, which demonstrates that
the depth constraint of ELSR is effective in controlling the
false positives.

For quantitative evaluation, we reconstructed the 3D
mesh of the first three datasets with ContexCapture and cal-
culated the maximum distance from the 3D line to the mesh.
The results are shown in Fig. 13. ELSR reconstructed 3D
lines with more errors; however, we thought this sacrifice
was acceptable because ELSR produced much more correct
lines than Line3D++.

For the run time, Line3D++ was about three times slower
than ELSR in the first two datasets. In the aerial images that
were large in size and quantity, Line3D++ was several hours
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(a) 1911 lines, 27 seconds 2742 lines, 5 seconds

(b) 3085 lines, 26 seconds 4822 lines, 6 seconds

(c) 29944 lines, 25 minutes 124255 lines, 9 minutes

(d) 25294 lines, 42 minutes 90421 lines, 10 minutes

(e) 75803 lines, 5.5 hours 268233 lines, 1.6 hours

Line3D++ ELSR

Figure 10. The quantity and time of the line reconstruction.
Line3D++ used a GPU. The index is aligned with that in Fig. 7.

slower than ELSR. These were the expected results for the
following reasons. First, Sec. 5.1 showed the line match-
ing in ELSR to be very efficient. Second, many functions
in ELSR are independent and processed in multithread. Si-
multaneously, Line3D++ only uses an epipolar constraint
to reduce the candidates and requires at least three views to
establish 3D line candidates.

(a) Local aera (b) Line3D++ (c) ELSR

Figure 11. The 3D line segments in local areas.

(a) Line3D++

(b) ELSR

Figure 12. The profile of the 3D lines in Dublin, Guangzhou, and
Ningbo. The outliers are drawn in red.

5.3. Influence of the hyper-parameters

ELSR has some intuitive hyper-parameters. To ex-
plore their impacts and limitations, we altered the hyper-
parameters to evaluate their influences on ELSR using the
Castle dataset. The values of the positional similarity
(tpos = 2), the intersection distance (tint = 10), and the
overlap rate (tove = 0.5) are common parameters, and they
have been studied in several past works [30] for two-view
matching. Thus, we set them as the common value and ex-
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(a) The local 3D mesh
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(c) Castle
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(d) Dublin

Figure 13. The maximum distance from the line to the 3D mesh
was computed as the error.

plore the influence of the other six parameters.
Fig. 14 shows the RMSE and quantity for different

thresholds. The shift of pixels (tpix) had a little influence
on the results. Because the range of the point depth cov-
ered the line depth in most cases. Increasing the support ho-
mographies (thom) raised the quantity since it increased the
possibility of finding the correct match. A loose threshold
for the support points(tpts) and epipolar angle (tepi) brought
about more 3D line segments while the accuracy generally
decreased. However, this result did not hold for the angu-
lar similarity (tang). Because a loose threshold causes more
false matches, and many of them will obtain a low spatial
score.

Among these parameters, the number of support images
(timg) in building the image pair most influences the results
because more image pairs produce more matches. Thus, we
relied on our experience to set timg as 1 and 3 for large and
small image datasets, respectively.

6. Limitations
As shown in the above section, ELSR is not a parameter-

free algorithm. Because it has several hyper-parameters and
requires parameter-tuning for the best performance. The
number of support images can significantly influence the
quantity of 3D lines, and turning up this parameter will ob-
tain more 3D lines at the cost of run time.

Also, ELSR selects representative 3D lines for better
speed and robustness. Since the single 3D line is only re-
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Figure 14. The evaluation with the Castle dataset by altering the
hyper-parameters.

constructed with two views, the positional accuracy may not
be as accurate as merging the cluster. Thus, exploiting the
multiple-view optimization, such as the bundle adjustment,
would be a future work to improve the accuracy.

Finally, ELSR requires running point-based SfM in ad-
vance, which makes it not applicable when the point is dif-
ficult to detect.

7. Conclusions

In this paper, we proposed a novel algorithm called
ELSR for efficient line segment reconstruction. ELSR can
efficiently match line segments by utilizing scene planes
and sparse points, and ELSR abstracts representative 3D
lines that is robust to false matches. Our results show
that our method was more efficient and accurate than other
methods in two-view matching. Compared with the most
efficient existing algorithm in line segment reconstruction
(Line3D++), ELSR also showed the superiority in the speed
of reconstruction and the quantity of 3D lines. In the fu-
ture, we will first improve the reconstruction accuracy with
multiple-view optimization, and then, exploit the accurate
3D lines to give a better building reconstruction.
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