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Figure 1: Multi-shot video object segmentation (MVOS). In multi-shot videos, MVOS aims to track and segment selected
recurring objects despite changes in appearance (e.g., person in green masks) and disconnected shots (e.g., person in red
masks). We show sample (a) frames, (b) segmentation masks, and (c) timelines for the Gangnam Style video in our dataset.

Abstract

Many video understanding tasks require analyzing multi-
shot videos, but existing datasets for video object segmen-
tation (VOS) only consider single-shot videos. To address
this challenge, we collected a new dataset—YouMVOS—of
200 popular YouTube videos spanning ten genres, where
each video is on average five minutes long and with 75
shots. We selected recurring actors and annotated 431K
segmentation masks at a frame rate of six, exceeding pre-
vious datasets in average video duration, object variation,
and narrative structure complexity. We incorporated good
practices of model architecture design, memory manage-
ment, and multi-shot tracking into an existing video seg-
mentation method to build competitive baseline methods.
Through error analysis, we found that these baselines still
fail to cope with cross-shot appearance variation on our
YouMVOS dataset. Thus, our dataset poses new chal-
lenges in multi-shot segmentation towards better video anal-
ysis. Data, code, and pre-trained models are available at
https://donglaiw.github.io/proj/youMVOS

†Equally contributed.
∗Research completed during internships at Harvard University.

1. Introduction
The broad computer vision goal of video understanding

must include the analysis of multi-shot videos with com-
plex narratives [25, 32], including depictions of people and
objects that vary in their visual appearance and space-time
relationships across shot transitions. Video object segmen-
tation (VOS) [37, 56] plays an essential role in video under-
standing. In multi-shot videos, this task requires accurately
tracking and masking the same object across cuts despite
appearance changes (Fig. 1). If multi-shot VOS is achieved,
then it can ease video applications like editing [6] for privacy
blur, relighting, or semantic color grading, and help in the
analysis of poses and actions of specific objects. In the long
term, multi-shot VOS data and methods can build towards a
more sophisticated high-level video understanding.

Methods for VOS and the related video instance seg-
mentation (VIS) problem are developed on datasets with
single-shot videos that span only several seconds—a limita-
tion highlighted in a recent survey [52]. Consequently, VOS
methods often lose track of object instances in multi-shot
videos, especially in videos with fast cuts and many object
appearance changes, such as in music videos. As there are
no existing multi-shot VOS datasets, it is hard to characterize
these errors and reliably improve performance.
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To foster research in multi-shot VOS, we collect a
new dataset—YouMVOS—consisting of 200 multi-shot
YouTube videos at full length that are on average five min-
utes long and with 75 shots (Tab. 1). The average duration
of videos in YouMVOS is at least 7.7× longer than existing
VOS datasets. To choose representative online videos, we
first pick ten popular video genres, including sports, cook-
ing, and music videos, and then pick 20 popular videos in
each genre with diverse content and temporal structures. Our
multi-shot VOS dataset focuses on actors—human, animal,
or virtual characters—that vary their positions, poses, and
appearances across edited shots. This is similar in intent to
object-specific VOS datasets, e.g., cars and pedestrians for
autonomous driving [50]. To annotate our dataset efficiently,
we build a semi-automatic system with manual proofreading
using modern keyframe selection, mask initialization, and
mask propagation. This produced 431K annotated instance
masks—46% more masks than the latest VIS dataset [38].

To understand the new challenges in YouMVOS, we
first benchmark existing unsupervised VOS methods [58]
and video instance segmentation (VIS) methods [57, 8, 10],
which were developed using short-term single-shot video
datasets. To improve single-shot models, we examine model
architectures and memory management practices to handle
the change of actor position and appearance across shots.
Then, we add multi-shot tracking to further improve base-
line suitability to YouMVOS. The adapted model defines the
baseline performance on YouMVOS. Finally, we perform
error analysis using oracle data to identify where improve-
ments can be made in the future, finding that cross-shot
appearance variation is still a challenge.

Our contributions are 1) the YouMVOS dataset with 200
multi-shot YouTube videos and 431K annotated instance
masks for the main actors, 2) an improved baseline seg-
mentation model on YouMVOS to better handle long-term
multi-shot videos, and 3) an error analysis of the improved
baseline methods. Together, this provides a new challenge
for the computer vision community and another step towards
a more general understanding of complex videos. We also
publicly release our data, code, and models.

2. Related Work
Object Segmentation in Videos. We refer readers to
Wang et al. [52] for the survey on video object segmentation
methods. There are two main settings: generic video ob-
ject segmentation (VOS), where object classes are unknown,
and video instance segmentation (VIS) with known classes.
However, popular datasets only have single-shot videos.

For VOS, the DAVIS Challenge [37] is the de facto bench-
mark with semi-supervised, interactive, and unsupervised
learning settings to segment single-shot video clips. Our task
uses the unsupervised setting, where methods automatically
discover primary objects that are frequently present across

Datasets
Avg.

dur. (sec)
Avg.

#shots
Avg.

#YT views†
Total

#masks

DAVIS17 [37] 2.9 1 N/A 14K
YTVOS [56] 4.5 1 0.1M 197K
YouMVOS (Ours) 333.1 75 433.8M 431K

MOTS [50] 43.4 1 N/A 65K
BDD [57] 40.0 1 N/A 129K
YTVIS [57] 4.6 1 0.1M 131K
OVIS [38] 12.7 1 N/A 296K

A2D [55] 5.0 1 0.5M 16K
J-HMDB [27] 1.0 1 N/A 31K

Table 1: Statistics of VOS, VIS and VAAS datasets. Our
YouMVOS dataset contains full-length YouTube videos with
more shots and masks. († by the time of submission)

frames through co-occurrence, object saliency, or object
detection [59, 33, 51, 17, 43, 34]. Instead of primary ob-
jects, our YouMVOS dataset focuses on segmenting actors,
i.e., leading and supporting actors, from popular full-length
YouTube videos that are mostly edited and multi-shot.

VIS [57], or multi-object tracking and segmentation
(MOTS) [50], aims to segment and track all instances of an
object class in a single shot. For example, the YouTube-VIS
dataset [57] has 40 categories of common objects, while the
MOTS dataset [49] labels pedestrians and cars. Built upon
existing image instance segmentation pipelines [21], early
VIS and MOTS methods add a new tracking head [57, 50].
Recent advances include using better object detection mod-
ules [2, 53] and extracting richer image features [30]. How-
ever, recent state-of-the-art methods [5, 31] employ heavily
engineered models with sophisticated inference schemes,
making them inefficient for long-term videos, e.g. videos in
our YouMVOS dataset. So instead, we start from an efficient
baseline method and add improvements to achieve compara-
ble performance without a heavily engineered scheme.

In addition, the actor-centric segmentation task, e.g.,
video actor-action segmentation (VAAS), has recently re-
ceived attention [55, 18, 26, 12]. In addition to segmenting
actors, this task requires classifying the corresponding ac-
tion classes. However, videos in current datasets [55] are
single-shot with only sparse and coarse mask annotation.

Video Shot Detection. Early shot detection methods clus-
ter frames by color similarity [42], response curves from
low-level visual features [40], and other modalities [45, 29].
In addition, spectral clustering [11] and dynamic program-
ming [19, 48] algorithms have been applied. Popular bench-
mark datasets include IBM OVSD [41] and BBC Planet
Earth [3]. The recent MovieScenes dataset [39] further
groups shots into semantically consistent scenes for detec-
tion. Our baseline method adopts the shot detection results
from an online k-means method.
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Figure 2: YouMVOS dataset. We select ten major video genres with 20 popular videos in each. For each video, the dataset
has high-quality segmentation masks of recurring actors for the whole video at 6 FPS.

Person Re-identification (Re-ID). To link the same actor
across video shots, robust face [1] and body [23, 25] visual
features are commonly used. In addition, audio features [35],
text features [15, 20, 16, 46], and relational features [24]
have been explored for the task. Inspired by Xia et al. [54],
our improved baseline method uses multi-modal features
to link actors across shots. To simplify the design, we use
pre-trained Re-ID models as feature extractors.

3. YouMVOS Dataset

3.1. Dataset Construction

Video Selection. We compiled a list of YouTube video
genres from online blogs and selected ten popular gen-
res with high complexity: music video, kid, movie trailer,
cooking, pet, sports, show, how-to, education, and product
(Fig. 2). We excluded video genres with few recurring actors
(e.g., ‘best-of’ video compilations) or with static camera
pose (e.g., talking heads in gaming videos). For each genre,
we selected 20 popular videos—200 total—while balancing
gender, race, and sub-genres. The full-length videos were
downloaded at 1280×720 resolution.

Recurring Actor Selection. Current VOS and VIS
datasets label selected or all object instances within their
single-shot videos. For our dataset, we annotated actors who
appear in at least five shots in the video. In addition to hu-
man actors, we included animals and virtual characters to
increase the diversity and difficulty of the dataset. In the end,
we annotated on average 2.5 actors per video.

Video-Level Statistics. In Fig. 3a, we plot the mean num-
ber of YouTube views to show the popularity gap among
video genres (blue bars) and video shots as a measure of
complexity (red bars). As expected, music video has both
the most number of views and the highest shot change fre-
quency, while videos made by amateurs (e.g., pet) have less
sophisticated video structures. We categorize annotated ac-
tors into adult, child, animal, and virtual characters and plot
a histogram of their occurrence (Fig. 3b). Virtual characters
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Figure 3: Video-level statistics. We plot (a) the average
number of YouTube views and shots for videos in each genre,
and (b) histogram of four different types of actors.

in YouMVOS pose new challenges in appearance that are
absent in current VOS and VIS datasets.

3.2. Dataset Annotation

We annotated objects in representative keyframes and
then propagated annotations to frames within corresponding
video shots. To refine the actor masks, we built a semi-
automatic annotation pipeline for annotators to correct errors
from automatic results. Similar to Xu et al. [56], we anno-
tated frames at 6 FPS.

Step 1: Shot Detection and Selection. The goal is to find
frames at 1 FPS with the selected actors for annotation. We
first divided frames into shots by frame clustering nearest
neighbors. For clustering, we extracted features from the
average pooling layer in a ResNet-18 network trained on
ImageNet and computed the cosine distance among features.
We built a Web visualization tool to correct the shot detec-
tion results and select shots containing actors of interest.
Then, we pick frames that are closest to cluster centers as
keyframes (Fig. 4a). These represent 0.01% of all frames,
which reduces downstream mask initialization work.

Step 2: Mask Initialization. To create initial annotations,
we run a pre-trained PointRend network [28] to generate
segmentation masks on selected keyframes (Fig. 4b). Then,
using the VAST volumetric segmentation annotation soft-
ware [4] on our video data, human annotators selected masks
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6 FPS

(c) Mask propagation (STM [36]+manual)

1 FPSKeyframe

(b) Mask initialization

PointRend
[28]

Keyframe

(a) Shot detection and selection

+Manual Correction 1 FPS

targetsource

…

Correction Correction

Recurring
actors

Input video

Shot 0
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Figure 4: Annotation pipeline. (a) We divide frames into shots at 1-FPS, and then select shots with recurring actors. (b) We
segment one keyframe per selected shot with a pre-trained PointRend network [28] and manual correction. (c) We iteratively
propagate masks from keyframes at 1-FPS to 6-FPS frames with a pre-trained STM network [36] and manual correction.

for recurring actors from the PointRend result and manually
corrected the masks. Due to the challenging scene compo-
sition and actor appearance, we found it not uncommon for
automatic prediction to fail totally; in these cases, our human
annotators manually segmented the actors.

Step 3: Mask Propagation. We propagate masks using
a Space-Time Memory network (STM) [36]. However, its
results can quickly degenerate due to complex actor appear-
ance. Thus, we take a coarse-to-fine approach to mask propa-
gation: from keyframes to labeling a frame every second, and
then to labeling a frame around every 0.17 seconds to achieve
the final 6 FPS annotations (Fig. 4c). After each propagation
step, annotators correct the segmentation in corresponding
frames. As mask density increases during annotation, the
STM results improve significantly. For post-processing, we
remove mask regions that are tiny.

Annotation Quality. To ensure the high quality of labeled
masks, our annotators examined and corrected the segmenta-
tion results on all frames for each video. On average, each
frame was inspected by three different annotators. Our anno-
tation team had ten annotators who were trained for a week
before the formal annotation. To examine annotation con-
sistency, we select representative images and compare the
segmentation mask IoU from our semi-automatic annotation
pipeline and those from different annotators labeled from
scratch. Overall, the IoU score is 0.93, which shows that
our annotation pipeline results are similar to a fully-manual
approach. we repeat the same annotation consistency eval-
uation protocol for the YouTube-VOS dataset, which has
similar mask quality (0.89) to our dataset. We refer readers
to the supplementary material for details.

3.3. Challenges in Multi-shot VOS
Actor Changes in Different Shots. Cross-shot tracking
is challenging due to the on-and-off presence of actors and
their sudden appearance and position change (Fig. 5a). We
plot a histogram of the number of presence switches for
all actors. For appearance change, we compute the cosine
distance of pre-trained ResNet-18 features between cropped
neighboring frames and average them for each actor for
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Figure 5: Challenges in multi-shot VOS. (a) Even in
frames from consecutive shots, actors can switch locations
(e.g., a jump cut) and change appearance. We plot the num-
ber of switches per actor, and the frequencies of actor ap-
pearance feature distances and center location distance for
same-shot and cross-shot frames. (b) Beyond the cut shot
transition, the dip, cross-dissolve, and wipe transitions can
be confusing for models to track and segment actors.

same-shot and cross-shot pairs. We quantize the distance
and plot the distance frequency. For position, we compute
the center change for same-shot and cross-shot cases and plot
the distance. Actors undergo more appearance and position
changes across shots than within same-shot frames.

Shot Transitions. Our dataset contains four visual shot
transition effects: cut, dip, cross-dissolve, and wipe. We
plot a histogram of transition types (Fig. 5b). Dip, cross-
dissolve, and wipe are challenging for VOS and VIS models.
For example, cross-dissolve transition blends light intensity,
which can lead to false linking of different actors.
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3.4. Task Setting and Evaluation Metrics

For simplicity, we adopt the unsupervised online set-
ting of VOS for our dataset, which does not need the initial
mask input. We use the evaluation metrics defined for the
unsupervised track in the DAVIS VOS challenge [7]: region
similarity score J and contour accuracy F . For each video,
we use the Hungarian algorithm to match the ground truth
video segments to the predicted ones. For each ground truth
actor, we average J and F with the best-matched proposals.
The final score is the weighted average over all ground-truth
actors in all videos according to their number of appearances.
Due to the annotation difficulty on certain frames, e.g., am-
biguous actor boundary in both space and time, we exclude
these frames for evaluation.

4. Improved Baseline Model
As a dataset paper, we also provide a baseline method for

the community to compare against. In this section, we first
examine existing models (Sec. 4.1), and then improve the
module designs of one baseline model for both single-shot
(Sec. 4.2) and multi-shot (Sec. 4.3) videos.

4.1. Baseline VIS Models

For the unsupervised online actor segmentation task, we
can directly apply unsupervised video object segmentation
(VOS) methods or video instance segmentation (VIS) meth-
ods without using class labels. Empirically, we find it hard to
adapt unsupervised VOS methods to our multi-shot dataset,
as they either require offline processing [43, 34] or have
undesirable performance due to the lack of a tracking mod-
ule [61]. Thus, we evaluate VIS baseline models developed
on the YouTube-VIS dataset [57] whose object categories
overlap with ours.

The state-of-the-art VIS methods MaskProp [5] and
Propose-Reduce [31] have not publicly released their train-
ing codes, making it hard to finetune on YouMVOS. Further,
we find the recent transformer-based method VISTR [53]
runs significantly slower than the CNN-based methods, mak-
ing it impractical for long-term videos. Thus, we benchmark
MaskTrack R-CNN [57], SipMask [8], and ObjProp [10]
that have training code publicly available and run at accept-
able speeds for long videos. From these, we choose the
ObjProp [10] model as a baseline—best performing among
the three—and improve it for both single-shot and cross-shot
predictions (Fig 6).

The ObjProp model explicitly tracks instances based on
pairwise matching scores between actors on the current
frame and those stored in a memory queue. During inference,
the final matching score between n-th actor in memory and
i-th actor in the current frame is defined as

SVIS(i, n) = SDET + αSCLS + βSBOX + γSTRK, (1)

Multi-modal
Feature matching

Shot-aware
Object Linking

Re-ID Model

Image Single-shot VIS Model

Frame Clustering

Bounding box

Image feature

Figure 6: Improved baseline model. Given a single-shot
VIS model, we first improve its single-shot module design
(SMD), then add a pre-trained Re-ID network to better han-
dle actor appearance change, then finally add frame cluster-
ing to handle actor position changes across different shots in
a multi-shot module design (MMD).

where SDET is the detection score, SCLS is the class score that
is one only if actor i and n have the same class label (zero
otherwise), SBOX is the bounding box intersection over union
(IoU) between actors, and STRK is the tracking score for actor
appearance. The hyperparameters α = 10, β = 2, γ = 1
are the same as previous methods [57, 10]. The predicted
instance is assigned to the actor with the best SVIS score.

4.2. Improved Single-shot Module Design (SMD)

We incorporate existing good practices for single-shot
segmentation and tracking to improve the ObjProp model.

Model Architecture. Following MaskProp [5], we use
the hybrid task cascade (HTC) framework [13] to improve
single-frame instance detection and segmentation results.
Further, we split the shared bounding box head and classifi-
cation head to reduce errors from misclassification.

Memory Management. Most existing VIS methods [57,
50] only keep the latest object features in a queue to link
to the current frame predictions. To encourage actor re-
detection, we use a memory bank to store information of
all instances of actors detected until that frame. With this,
the baseline model can link detected actors in disconnected
frames when the detection module fails on frames in between.
To achieve a high recall score for actor detection, the baseline
model produces many spurious detections that are linked
across only few frames forming short tracklets. To speed
up the tracking score computation and improve the tracking
accuracy by pruning spurious tracklets, we remove tracklets
that are shorter than 7 frames during the postprocessing,
where the threshold is set empirically.

4.3. Improved Multi-shot Module Design (MMD)

Due to the appearance and location changes of actors
across shots, we add multi-modal features [54] for more
robust tracking and a frame clustering module to enable
bounding box tracking for frames from different shots.
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Shot-aware Object Linking (SOL). Linking objects
across shots requires two changes: 1) making sure that frame-
to-frame bounding box IoU scores SBOX for an instance are
computed only within the same shot, and 2) refraining from
propagating object across shots to fill in empty masks as is
done in [10] for same-shot frames. Thus, we detect shot
changes with a simple online k-means method that assigns
the latest frame either to an existing shot cluster or to a new
shot cluster if the cosine distance is above a distance thresh-
old θc. For this, we obtain each frame’s features from the
tracking head module by using a bounding box to cover the
input image. Then, we use a long-term memory bank to store
the frame feature centers and corresponding frame numbers.

For our multi-shot videos, we add the bounding box IoU
score only when the predicted instance i and the instance to
match n are in the same shot cluster gi = gn. Thus, the new
scores become

S
′

BOX(i, n) = δ(gi, gn)SBOX(i, n) (2)

where δ(gi, gn) = 1 only if frame i and n belong to the same
frame cluster, and δ(gi, gn) = 0 otherwise.

Multi-modal Feature Tracking (MFT). The ObjProp
model consists of a tracking branch [57] to learn the tracking
feature fi for each instance i. Consequently, the appear-
ance tracking score for the predicted current-frame instance
i and the n-th instances in the memory bank is the n-th
value in the log softmax of the dot product: STRK(i, n) =
log softmax(fTi F)(n), where tracking features for N actors
is F = [f0, f1, · · · , fN−1,0], where 0 is for the new actor.

As actors in our dataset are mostly human, we follow
Xia et al. [54] to improve the appearance tracking by in-
corporating human pose and face features via pre-trained
person re-identification (Re-ID) models. Specifically, we
crop the predicted instance patch and extract the pose [47]
and face [44] feature vectors as fposei and f facei To bal-
ance the weight among three features, we normalize each
feature to obtain the new multi-modal appearance feature
f
′

i =
[

fi
∥fi∥ ,

fpose
i

∥fpose
j ∥ ,

f facei

∥f facei ∥

]
. To adjust the number of new

tracklets, we add a threshold θt to the new actor instance, the
last element of the tracking score. The updated score is

S
′

TRK(i, n) = log softmax(f
′T
i F

′
+ [⃗0, θt])(n) (3)

by plugging in the new multi-modal appearance features.

5. Experiments

We present the performance of our baselines adapted to
YouMVOS, and then describe the remaining challenges with
error analysis (Sec. 5.2), ablation studies (Sec. 5.3), and a
comparison to the YouTube-VIS dataset (Sec. 5.4).

Method
Val set Test set

J F J F

SipMask [8] 20.9 20.0 16.1 15.1
MaskTrack R-CNN [57] 21.4 20.2 20.1 19.2
ObjProp [10] 21.8 20.9 21.2 20.0

[10]+SMD (Ours) 25.8 24.8 25.0 24.9
[10]+SMD+MMD (Ours) 31.8 30.8 30.9 30.6

Table 2: Quantitative results on YouMVOS. The proposed
single-shot (SMD) and multi-shot (MMD) module designs
significantly improve the baseline ObjProp [10].

5.1. Experiment Setup

Dataset Splits and Metrics. For each of the ten video
genres, we randomly split the 20 videos into 14 training, 3
validation, and 3 test videos. In total, YouMVOS has 140
training videos (353 actors and 9,042 shots), 30 validation
videos (61 actors and 2,002 shots), and 30 test videos (78
actors and 2,406 shots). The final region similarity score J
and the contour accuracy F are averaged over all actors in
the test videos (Sec. 3.4).

Implementation Details. For the baseline models [57, 8,
43, 58], we use official implementations. The single-shot
VIS Models (SipMask, MaskTrack R-CNN, and ObjProp)
are pre-trained on YouTube-VIS [57] for 12 epochs, and
the tracking and segmentation heads are finetuned on our
YouMVOS for another two epochs, with a learning rate of
5 × 10−4 . For the HTC-based models, we additionally
finetune the bounding box head. Please see the supplemental
materials for more details.

5.2. Benchmark Results

Quantitative Results. The state-of-the-art VIS meth-
ods [8, 57, 10] designed for single-shot videos achieve
around 20 J and F scores for our multi-shot videos (Tab. 2).
Adding the single-shot module design (SMD) and multi-shot
module design (MMD) improves ObjProp [10] by around 10
points in absolute J and F scores for both the validation and
test sets. The large performance gap shows the effectiveness
of the proposed improved model designs for multi-shot data.
Although our proposed adaptations also improve SipMask
on YouMVOS to a lesser extent, the single-stage SipMask
performs worse than the two-stage MaskTrack R-CNN due
to many false positive object proposals.

Qualitative Results. We show the predicted segmentation
masks overlaid with frames from different videos (Fig. 7).
Specifically, our multi-shot module design (MMD) improves
segmentation by using pose Re-ID features when the face is
not visible or too small (Fig. 7a), using face Re-ID features to
link characters despite costume and scene changes (Fig. 7b–
c), and clustering frames into camera shots (Fig. 7d). In
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Figure 7: Qualitative results of our improved baseline on YouMVOS validation set. (a-d) For success cases, each row
shows five sample frames from different shots in the same video sequence. (e) For failure cases, errors can come from poor
detection results due to uncommon actor appearance and camera poses, and poor tracking due to special visual effects.

Single-frame Tracking J F
Baseline Baseline 31.8 30.77
Baseline Oracle 65.1 62.2

Oracle Box Baseline 35.2 35.1
Oracle Box Oracle 80.9 81.3

Oracle Mask Baseline 44.7 45.5
Oracle Mask Oracle 100 100

Table 3: Oracle analysis on YouMVOS val dataset. Most
remaining errors come from actor tracking due to the multi-
shot and minute-level long videos in the dataset.

Fig. 7e, we show typical failure cases, including ambiguous
appearance (first image), rare camera poses in the music
video (second image), drastic change of instance scales in
the soccer game video (third image), and an unexpected
split-screen video effect that breaks the one-to-one tracking
assumption (last two images).

Oracle Analysis. We examine the source of errors in our
improved baseline method on the YouMVOS validation data
by using oracle—known correct—results for different com-
ponents (Tab. 3). We focus on tracking error caused by
long-term cross-shot videos, and produce results with ora-
cle tracking, oracle bounding boxes, and oracle masks. For

oracle tracking, we match per-frame predictions to their clos-
est ground truth objects with a 0.5 IoU threshold, and then
aggregate instances using ground truth object identities.

We find that resolving tracking errors leads to a significant
30+ points boost on both region similarity J and contour
accuracy F , showing that errors are caused mostly by misat-
tributions across shots and across long sequences. Second,
providing oracle bounding boxes for segmentation improve
baseline performance slightly, but cause another 15 points
increase when combined with oracle tracking. This sug-
gests that both tracking and localization improvements are
required in the future. Finally, providing oracle masks on
top produces perfect scores as expected, but without oracle
tracking, many attribution errors remain. In summary, there
is still large space for improving existing approaches from
different perspectives, and tracking error is currently the
dominating factor for the unsatisfactory scores.

5.3. Ablation Studies

We analyze the effectiveness of each component of the
improved baseline on our YouMVOS validation set.

Cumulative Results. We sequentially add the single-shot
module design (SMD), shot-aware object linking (SOL), and
multi-modal feature tracking (MFT). Adding SMD leads to
a 1 point improvement by reducing lost track errors given
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(a) Cumulative results.

Single-shot Multi-shot Tracking (MT) J FHTC Mem SOL MFT

21.8 20.9
✓ 24.3 23.2
✓ ✓ 25.8 24.8
✓ ✓ ✓ 28.7 27.6
✓ ✓ ✓ +pose [47] 29.6 28.7
✓ ✓ ✓ +face [44] 29.9 28.9
✓ ✓ ✓ +pose [47] +face [44] 31.8 30.8

(b) Clustering hyperparameter for SOL.

θc 0.88 0.90 0.92
J /F 30.6/29.6 31.8/30.8 31.5/30.6

(c) Multi-modal Feature Tracking (MFT).

Pose LightMBN [22] ABDNet [14] CoSAM [47]
J /F 31.2/30.2 31.1/30.2 31.8/30.8

Face VGGFace2 [9] CASIA-WebFace [60]
J /F 31.8/30.8 31.1/30.2

Table 4: Ablation studies on YouMVOS validation set. (a) We show the cumulative improved results by adding each
component. Starting from the best model, we modify it with different (b) SOL hyper-parameters and (c) MFT features.

more instances to match (Tab. 4). SOL further leads to
a 2 point improvement by using the location consistency
of the object within frame clusters. There can be cases
where these assumptions cause errors, but we observe overall
improvement. Compared with the original MFT tracking
features, the face [44] and pose [47] Re-ID features improve
performance by 2–3 points each, and by 10 points combined.

Shot-aware Object Linking (SOL). We try three differ-
ent cosine similarity thresholds (θ) for deciding features in
the same cluster in our online nearest neighbor frame cluster-
ing method. Intuitively, a bigger θc will lead to finer cluster
results, but with less utilization of the IoU between bounding
boxes in the matching score to take advantage of the locality
consistency. We empirically find that θc = 0.9 achieves the
best overall score (Tab. 4b).

Multi-modal Feature Tracking (MFT). Starting from
the best baseline model, we compare popular Re-ID mod-
els for pose and face by replacing them one at a time
with the current the model. We find that adding pose fea-
tures [47] achieves around a 3 point improvement over
other pose Re-ID features [22, 14, 47]. For face Re-ID fea-
tures, the FaceNet model [44] pre-trained on VGGFace2 [9]
achieves around 5 points improvement over that pre-trained
on CASIA-WebFace dataset [60] (Tab. 4c).

5.4. Results on YouTube-VIS Single-shot Dataset

To demonstrate the effectiveness of our improved module
design for single-shot videos (SMD), we benchmark upon
the YouTube-VIS dataset [57] with the ResNet-50 backbone
without using any external data for a fair comparison (Tab. 5).
On the validation split, adding our single-shot module design
(SMD) significantly boosts model performance by 8.7 mAP
for ObjProp [10]. State-of-the-art methods MaskProp [5]
and Propose-Reduce [31] do not provide code and so could
not be improved; in any case, they use sophisticated and
computationally-heavy inference schemes that are more dif-
ficult to apply to long videos.

Method mAP↑ AP50 AP75 AR1 AR10

MaskTrack R-CNN [57] 30.3 51.1 32.6 31.0 35.5
STEm-Seg [2] 30.6 50.7 33.5 31.6 37.1
SipMask [8] 33.7 54.1 35.8 35.4 40.1
ObjProp [10] 35.1 56.2 38.6 38.6 44.9
VisTR [53] 36.2 59.8 36.9 37.2 42.4

MaskProp† [5] 40.0 - 42.9 - -
Propose-Reduce† [31] 40.4 63.0 43.8 41.1 49.7

[10] + SMD (Ours) 39.0 61.2 42.9 38.9 47.6

Table 5: Benchmark results on YouTube-VIS Val [57].
Our single-shot module design (SMD) boosts baseline model
performance to much closer to the state of the art (ResNet-50
backbone without external training data). The training code
for methods with † is unavailable during our submission.

6. Conclusion

We have expanded the problem of video object segmenta-
tion to long-term multi-shot videos with a new actor-centric
200-video segmentation dataset containing 431K segmen-
tation masks. This provides a new challenge for the com-
puter vision community in addressing objects with location
or pose changes, appearance variations, and more complex
presence/absence within different narrative structures. Given
baseline methods, we analyze sources of error. We discover
that cross-shot tracking error is the dominant cause of multi-
shot segmentation error. Overall, better analysis of multi-
shot videos moves us towards longer-term and more-complex
computational video understanding—our YouMVOS seg-
mentation dataset provides an early step towards this goal.
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