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Abstract

Reconstructing 3D shape from a single 2D image is
a challenging task, which needs to estimate the detailed
3D structures based on the semantic attributes from 2D
image. So far, most of the previous methods still strug-
gle to extract semantic attributes for 3D reconstruction
task. Since the semantic attributes of a single image are
usually implicit and entangled with each other, it is still
challenging to reconstruct 3D shape with detailed seman-
tic structures represented by the input image. To address
this problem, we propose 3DAttriFlow to disentangle and
extract semantic attributes through different semantic lev-
els in the input images. These disentangled semantic at-
tributes will be integrated into the 3D shape reconstruc-
tion process, which can provide definite guidance to the
reconstruction of specific attribute on 3D shape. As a re-
sult, the 3D decoder can explicitly capture high-level se-
mantic features at the bottom of the network, and utilize
low-level features at the top of the network, which allows
to reconstruct more accurate 3D shapes. Note that the ex-
plicit disentangling is learned without extra labels, where
the only supervision used in our training is the input im-
age and its corresponding 3D shape. Our comprehensive
experiments on ShapeNet dataset demonstrate that 3DAt-
triFlow outperforms the state-of-the-art shape reconstruc-
tion methods, and we also validate its generalization ability
on shape completion task. Code is available at https :
//github.com/junshengzhou/3DAttriFlow.
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1. Introduction

Reconstructing a 3D shape from a 2D image (2D-to-3D
reconstruction) is a crucial task for bridging the gap be-
tween the 2D and 3D visual understanding. The typical
paradigm is to firstly capture the semantic features of the
2D images through an image encoder, and then correctly re-
construct them in 3D space through a 3D decoder. Among
the multiple representation forms of 3D shapes (i.e. voxel,
point cloud and mesh), this paper mainly focuses on re-
constructing 3D point cloud from the input image, due to
its lightweight storage consumption and capability of repre-
senting various complicated shapes.

As addressed by the typical paradigm of most previous
methods [26,37,42,51], the key of 2D-to-3D reconstruction
is how to precisely interpret the semantic attribute from im-
ages into the 3D space. Thanks to the recent progress of 2D
computer vision, there are many well-known methods (e.g.
AlexNet [16], VGG [32] and ResNet [ 12]) to encode seman-
tic attributes into image features, and their efficiencies have
also been proved by a wide range of cross-modal tasks (e.g.
image captioning [34, 53], cross-modal retrieval [35, 57]).
However, for the research of 2D-to-3D reconstruction, how
to interpret visual information from 2D domain to 3D do-
main for accurate 3D reconstruction still remains a difficult
task. Because most previous methods [26,37,38,42,51,52]
only rely on the feature channels (e.g. element-wise add,
feature concatenation and attention mechanism) to convey
the visual information from the image encoder to the 3D de-
coder, which only contains implicit geometric information
with limited semantic attributes as the guidance to shape
reconstruction. For example, an overall geometric infor-
mation such as the number of legs will determine the ta-
ble to have three or four legs. Such geometric informa-
tion can be easily noticed and reconstructed by the decoder.
On the other hand, the detailed semantic attributes like the
length or bending of legs will specifically determine the de-
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Attributes are entangled with each other, and
usually revealed by multiple dimensions in x.

specific dimensions of z.
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(b) 3DAttriFlow decodes 3D shape based on
implicit feature x and explicit attributes z.

Zi= 0.4 Zi= 08
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Figure 1. Comparison between previous methods (a) and our 3DAttriFlow (b). Besides the implicit feature & of input image, 3DAttriFlow
learns an additional attribute code z, which can reveal some hints about more specific semantic attributes of 3D shape in (c).

tailed shape of these legs. However, since these semantic
attributes are deeply entangled with each other in image fea-
tures, they can hardly be noticed by the decoder during the
reconstruction process.

Moreover, semantic attributes are usually distributed
at various semantic levels, and entangle with each other
throughout the pyramidal hierarchy of image encoder. As
a result, they can hardly be fully exploited through implicit
feature channels. As a result, the previous methods usu-
ally suffer from guiding the decoder to reconstruct various
visual information extracted by the encoder, which leads to
the insufficient usage of semantic features for predicting 3D
shapes in the previous methods.

A straightforward solution to this problem is to build
numbers of feature channels between the decoder and all the
network layers in the encoder, which will increase the cost
of tremendous computational time and network complexity.
On the other hand, as proved by many methods of image-
to-image translation (e.g. image super-resolution [40, 50],
image style transferring [58]), we notice that the global fea-
ture is able to encode most of the semantic attributes for
a single image, as they can be used for high quality image
generation/restoration task. Therefore, a promising solution
is to explore deeply into the global features extracted from
the 2D images, and decode the abundant semantic attributes
embedded in the global features, which may provide more
detailed and definite guidance to the reconstruction process
of 3D shapes. Following the above-mentioned intuition, we
propose a novel neural network, named 3DAttriFlow, to de-
compose the semantic attributes from the 2D image, and
utilize these semantic attributes for 3D shape reconstruction
in a controllable way.

Specifically, as shown in Figure 1, previous methods
(Figure 1(a)) usually learn to reconstruct 3D shapes from
an implicit image feature. In contrast, 3DAttriFlow tries to
decompose an attribute code (Figure 1(b)) as hints to cap-
ture some specific semantic attributes (Figure 1(c)). Such
process is accomplished by the attribute flow pipe proposed
in 3DAttriFlow. By piping semantic attributes hints into the
hierarchical generation process of point clouds through the
attribute flow pipe, the decoder is able to selectively inter-
pret semantic attributes following the hierarchy of semantic
levels.

Our idea is inspired by the recent generative method of

EigenGAN [13], which learns to manipulate explicit se-
mantic attributes of human faces in an unsupervised way.
However, due to the discrete nature of point clouds, the co-
ordinates of points are merely organized in an unordered
manner, which is in contrast with the image pixels arranged
in an ordered grid structure. Such nature of point clouds
makes the location of each point unpredictable during the
generation process, until the 3-dimensional coordinates are
finally revealed at the end of the decoder. Therefore, a di-
rect implementation of EigenGAN [13] based decoder may
result in failure, because the network cannot accurately pre-
dict the semantic attribute for a specific point without know-
ing its location. To address this problem, we propose the
deformation pipe as the solution, which follows the idea of
PMP-Net [47] to reconsider the shape generation process as
a shape deformation process. That is, each point is first as-
signed a prior location in 3D space, and then moved to their
destination to regroup as a new shape. Specifically, 3DAt-
triFlow moves the point cloud sampled from a 3D sphere
into the target shape indicated by the 2D images. In all, our
main contributions are summarized as follows.

* We propose a novel deep network, named 3DAttri-
Flow, for reconstructing high-quality 3D shapes from
single 2D images. Compared with the previous meth-
ods, 3DAttriFlow can interpret explicit semantic at-
tributes from images, and effectively use them to guide
the decoder for detailed and high-quality 2D-to-3D
shape reconstruction.

* We propose the attribute flow pipe to explicitly disen-
tangle the semantic attributes embedded in the global
feature of 2D image, which can provide definite guid-
ance about the detailed reconstruction of semantic at-
tributes to the 3D decoder, leading to more accurate
prediction of 3D shape in terms of both overall and de-
tailed shape structures.

* We propose the deformation pipe to offer the location
priors to attribute flow pipe, where the extracted se-
mantic attributes can be assigned to a specific point
by leveraging the location of that point. As a result,
3DAttriFlow avoids the problem of assigning seman-
tics to unordered data, and allows more accurate fea-
ture integration between the attribute flow pipe and the
deformation pipe.
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2. Related Work

Recent improvement of 3D representation learning [7,

, 11,23, 44, 45], reconstruction [0, 8, 9, 18, 24, 25, 48]
and completion [43,46] in 3D computer vision field have
boosted the research of reconstructing 3D shapes from 2D
images, which can be categorized according to the num-
ber of input images as: single-view 3D shape reconstruc-
tion [5,26,37,38,42] and multi-view 3D shape reconstruc-
tion [42,51,52]. On the other hand, according to differ-
ent representation forms of 3D shapes, the related work can
also be categorized as voxel-based 3D shape reconstruc-

tion [26, 38, 51, 52], point cloud based 3D shape recon-
struction [4,5,21,36] and mesh-based 3D shape reconstruc-
tion [37,42]. Specifically, the proposed 3DAttriFlow in this

paper belongs to the single-view 3D shape reconstruction,
which is based on point clouds. The discussion of related
work will be organized according to the output forms of 3D
shape for convenience.

Point cloud based methods. With the rapid develop-
ment of point cloud representation learning [20, 23,30, 31,

], which is triggered by the pioneering work of Point-
Net [30], point cloud generation has been widely studied
in recent years, and boosted the research of reconstructing
point clouds from 2D images. Most of the point cloud based
methods [2,4,5, 14,27] follow the generative way to predict
the point coordinates based on the 2D images, where their
efforts are made either to improve the feature communica-
tions between image encoder and 3D shape decoder [4], or
impose extra supervision/constraint on the generated point
clouds [14,27,55].

Voxel/mesh based methods. As for voxel-based recon-
struction methods, the grid structure of 3D voxels is natu-
rally applied in convolutional neural network, which sim-
plifies the problem as translating 2D grid data to 3D grid
data. Typical practice along this line is to directly utilize
the CNN structure in both 2D and 3D domain, which aims
to extract 2D grid feature from the input image, and re-
construct the corresponding 3D grid shape. Typical meth-
ods like 3DR2N2 [3], Pix2Vox [51] and Pix2Vox++ [52]
have comprehensively explored the 3D reconstruction per-
formance using single or multiple images as inputs. How-
ever, suffering from the cubic growth of input voxel data,
the resolution for voxel data is usually limited, while further
increasing the resolution will lead to unacceptable compu-
tational cost. As for mesh based methods, most of them
follow the idea of deforming from a prior shape. For exam-
ple, Pixel2Mesh [37] and its successor Pixel2Mesh++ [42]
consider to deform an ellipsoid mesh into a target shape,
which is combined with a multi-stage fusion strategy to in-
troduce image features into the mesh deformation network.
Li et al. [19] further extend such framework to capture the
semantic part of object in 2D images. Pan et al. [28] im-
prove the ability to generate complex shape by deforming

mesh while modifying its typology. However, the intersec-
tion of meshes and the hypothesis of manifold surface will
hinder the generation of 3D shape with inner or irregular
structures.

Discussion. The reconstruction of 3D shapes from 2D
images requires the deep understanding of semantic at-
tributes in 2D images, and the correct interpretation of se-
mantic attributes in 3D space. The above-mentioned meth-
ods either choose to directly decode the 3D shape from a
global feature, or rely on feature channels to bridge the net-
work layers between image encoder and the shape decoder.
The problem is that, all these practices can only convey the
implicit features from 2D images to 3D shapes, resulting in
ambiguous guidance to reconstruct specific and detailed se-
mantic attributes of 3D shape. Different from these previous
methods, 3DAttriFlow proposes the solution to directly de-
compose the semantic attributes from the image feature, and
integrate them into the shape reconstruction process, which
can offer a definite guidance to the reconstruction of spe-
cific semantic attribute according to the 2D image. More-
over, the ability of attribute decomposition in 3DAttriFlow
enables the decoder to flexibly reconstruct the semantic at-
tributes following the hierarchy of semantic levels, which
is in contrast to the network with fixed channels that only
allows decoder to learn from fixed layers of encoder.

3. Architecture of 3DAttriFlow

The overall architecture of 3DAttriFlow is shown in Fig-
ure 2, which reconstructs a 3D point cloud with /N points
according to the input image. 3DAttriFlow mainly consists
of two pipelines as follows. (1) The attribute flow pipe (see
Figure 2(a)) serves to disentangle the semantic attributes
from the input feature, which is usually the global feature
extracted by an image encoder. (2) The deformation pipe
(see Figure 2(b)) serves to deform the initial point cloud
sampled from a 3D sphere into the target shape, which is
guided by the semantic attributes from the attribute flow
pipe. The structures for each pipeline are detailed below.

3.1. Attribute Flow Pipe

As shown in Figure 2(a), the attribute flow pipe aims
to extract geometric code {0, u} and semantic features s;
step-by-step from the image feature x and sphere point
cloud {p,}, where i denotes the i step. Then, the ex-
tracted feature and code will be integrated into the defor-
mation pipe to guide the deformation of the spherical point
cloud {p,}. The basic architecture of attribute flow pipe
consists of a feature extractor and three attribute flow mod-
ules (AF module). Specifically, for the input image, 3DAt-
triFlow uses ResNet18 to extract an image feature x from
the input image. Then, the AF module extracts and inter-
prets the visual information from the image feature x to
the geometric information and semantic attributes, which is
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Figure 2. The overall architecture of 3DAttriFlow. 3DAttriFlow consists of two pipelines: (a) the attribute flow (AF) pipe extracts
geometric code and semantic features based on the input image and initial sphere point cloud; (b) the deformation pipe deforms the point
cloud according to the output of attribute flow pipe into the target shape. The detailed structure of AF module is shown in (c).

accomplished by the geometric sub-pipe and the semantic
sub-pipe, as shown in Figure 2(c).

Geometric sub-pipe. The geometric sub-pipe aims to
interpret the overall visual information from images into the
geometric information, which can be utilized for 3D shape
reconstruction by the deformation pipe. Inspired by the
style transferring based generative methods [15, 1 7], which
learns the local styles from the latent random vector, we
propose to interpret the visual information encoded by im-
age feature x into the geometric styles {o;, w,}, which is
according to the location prior given by the initial point
cloud {p,}. As shown by the geometric sub-pipe in Fig-
ure 2(c), at stage i, the image feature x is first repeated
and concatenated with location priors {p,} as {[x : p.]},
where “:” denotes the feature concatenation. Then, fol-
lowed by several multi-layer perceptrons (MLPs) and re-
shape operation, the image feature coupled with location
priors is interpreted as geometric styles {o;|o; € RYV*Ci}
and {p;|p; € RV*C}, where C; denotes the dimension of
point features in deformation pipe at stage <.

Semantic sub-pipe. The semantic sub-pipe aims to de-
compose explicit semantic attributes from the image feature
x, and represent them by the activation at certain dimension
of attribute code z. As a result, the deformation pipe can
produce a precise 3D semantic attribute under the definite
guidance given by the attribute code. Specifically, as shown
in the lower-branch of Figure 2(c), at stage ¢, the seman-
tic sub-pipe first squeezes the image feature  into attribute
code z; as:

zi = o(xl6)), (1)

where ¢ denotes the MLP layer, and 6; denotes the weights
of MLP layer for generating z;. According to He et al. [13],
for the activation z;; at j™ dimension of the attribute code
z;, an orthogonal basis u;; € RY*% from a linear sub-
space U; = {u;;} will be use to discover the semantic at-
tribute £;; lying behind z;; as:

Zij = zijlijugg, 2)

where [;; is a learnable weight denoting the significance of
the semantic attribute discovered by the orthogonal basis

u;;. By adding the semantic attributes £; across all dimen-
sions of attribute code z;, the semantic sub-pipe outputs the
semantic feature s; encoded with explicit attribute informa-
tion, which is formulated as:

si=Y Zij+bs, 3)
J

where b; is a learnable bias. The semantic feature s; will be
flowed into the deformation pipe to guide the reconstruction
of 3D semantic attributes.

3.2. Deformation Pipe

The architecture of the deformation pipe is shown in
Figure 2(b). The input at the bottom of the deformation
pipe is a point set P = {p, }, which is uniformly sampled
from a 3D sphere. Note that we choose sphere as a start-
ing shape because each point on the sphere can be regarded
as a L2-regularized vector, which guarantees an isotropic
shape prior input to the network. The output at the top of
the deformation pipe is a set of displacement vector {Ap, }.
The output of the deformation pipe is a deformed point set
P° = {(p; + Ap,)}, which has the same shape as target
point cloud P* = {p}}.

To predict the displacement vector { Ap;, } for each point,
we follow Wang et al. [41] to extract point features from
multiple input point set P through the graph attention mod-
ules, which forms a three-stages point feature learning
framework. At i stage, the deformation pipe takes both
the geometric styles {o7;, p,; } and semantic feature s; as in-
put, and infers the displacement for each point, according
to the geometric information and semantic attribute inter-
preted from the image feature. For convenience, we denote
the point features generated in stage i as Q' = {q} }.

For the geometric styles {o;, u;}, we follow the prac-
tice of style transfer [15] to introduce the adaptive instance
normalization, which is used to adapt point features accord-
ing to the geometric information encoded in the geometric
styles. The formulation is given as:

a4, — 1(qy)
— o . : ) 4
q, = 0k o(q) + Kigs )

3806



Table 1. 2D-to-3D reconstruction on ShapeNet dataset in

terms of per-point L1 Chamfer distance x 10* (lower is better).

Chair Display Lamp Loud. Rifle Sofa Table Tele. Vessel

Methods ‘ Average ‘ Plane Bench Cabinet Car
3DR2N2 [3] 5.41 4.94 4.80 4.25 4.73
PSGN [4] 4.07 2.78 3.73 4.12 3.27
Pixel2mesh [37] 5.27 5.36 5.14 4.85 4.69
AtlasNet [5] 3.59 2.60 3.20 3.66 3.07
OccNet [26] 4.15 3.19 331 3.54 3.69

5.75 5.85 10.64 596  4.02 472 529 437 5.07
4.68 4.74 5.60 562 253 444 381 381 3.84
5.77 5.28 6.87 6.17 421 534 513 422 5.48
4.09 4.16 4.98 491 220 380 336 3.20 3.40
4.08 4.84 7.55 547 297 397 374 3.16 4.43

3DAtriFlow(Ours) | 3.02 | 211 271 266  2.50

3.33 3.60 4.55 416 194 324 285 266 296

peated image feature {x;}
(b)

Per-point features {f;}

Point cloud feature X
(a)t AF module

Image feature x° m Point Transf
oint Transformer
ol Si
Graph- Feature propagation
Attention

Figure 3. Illustration of extending 3DAttriFlow to 3D shape com-
pletion task. This is achieved by (a) replacing the input of attribute
flow pipe with the global point cloud feature learned by the Point-
Transformer, and (b) by replacing the image feature with the per-
point feature learned by feature propagation module, respectively.

where 1(qt) and o(qi) denote the mean and deviations
of g, estimated by moving average algorithm, respectively.
o, and ;. denote the vector at k™ row of o; and p,, re-
spectively.

After the adaptation of point feature according to the ge-
ometric styles, the semantic feature s; is integrated into the
point feature g, through MLP layer and element-wise add,
given as:

@), < 4, + d(si]0s, ). (5)

At the top of the deformation pipe, we use MLP layers
to transform point features into 3-dimensional displacement
vectors {Ap, }, and finally output the deformed shape as

{pr + Apy}.
3.3. Extension to Shape Completion

3DAttriFlow can also be used to predict the missing part
of an incomplete shape, which can be achieved by replacing
the image encoder with the 3D point cloud encoder (such as
PointTransformer [56]) in the attribute flow pipe. As a re-
sult, the input image feature x is replaced by the point cloud
feature &. Inspired by PMP-Net [47], we find that the per-
point features of incomplete point cloud can be used as the
location prior to guide the move-based completion. There-
fore, we replace the repeated image feature {x;} with the
per-point features { f,}, which are learned by the feature
propagation module specified in PointNet++ [31]. After
that, we concatenate {f,} with sphere point cloud {p,}
as {[f1 : pi]}. The modification to the attribute flow pipe
is illustrated in Figure 3. To further improve the completion
performance, we follow the coarse-to-fine strategy adopted

by most of the completion methods [29,49] to introduce an
additional refining module from VRCNet [29], which aims
to refine the detailed shape of predicted point clouds.

3.4. Training loss

The orthogonality of I/; is guaranteed by the regulariza-
tion of orthogonality loss, which is defined as:

Lown= > Ut 1. ©)
1€1,2,3
The deformed shape conditioned by images and incom-
plete shapes is regularized by the ground truth point cloud
through Chamfer distance (CD) defined as:

1
r PO Pty — . ot
on (P, PY) =55 p(;)oplglelgt Ip° —p'll,
: t )
+ % min_[[p° — p°|,.

2N poEPO
pt E'pt

The total training loss is formulated as
L = Lcp + aLorth, ®)

where « is a balance factor to determine the weight of
Lortn- In this paper, « is set to 100 for all experiments.

4. Experiments

In this section, we experimentally evaluate the effective-
ness of 3DAttriFlow in 2D-to-3D reconstruction task, and
analyze its generalization ability through point cloud com-
pletion task. The ablation studies will focus on the effec-
tiveness of each part of 3DAttriFlow, and visually analyze
the extracted semantic attributes by shape manipulation.

4.1. 2D-to-3D Reconstruction on ShapeNet dataset

Dataset briefs and evaluation metric. We follow the
experimental settings of OccNet [26] to evaluate our 3DAt-
triFlow on ShapeNet dataset [ 1 ]. The whole dataset consists
of 43,783 mesh object with 13 categories, which will be
divided into training, validation and testing following the
same strategy of OccNet [26]. Since our method focuses
on the reconstruction of 3D point cloud from 2D images,
we follow AtlasNet [5] to uniformly sample 30k points on
the mesh surface of 3D object as the ground truth for train-
ing. Following previous methods [26,37], we use L1 Cham-
fer distance described by Eq. (7) as the evaluation metric.
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Table 2. Point cloud completion on MVP dataset in terms of per-point L2 Chamfer distance x 10" (lower is better).

Methods ‘ Average ‘ Plane Cabinet Car Chair Lamp Sofa  Table Water. Bed Bench Shelf Bus Guitar Motor. Pistol Skate.
PCN [54] 9.80 422 8.92 6.49 1246 1954 992 1245 8.78 19.0 9.0 1339 515 1.87 6.03 6.04 4.70
TopNet [33] 10.34 4.09 9.71 736 1346 2053 11.21 1246  8.50 1898  8.58 15.15 547 213 7.19 7.33 4.15
MSN [22] 7.98 2.59 8.86 6.54 1022 12.64 9.08 9.69 7.08 1558  6.38 11.31 523 1.37 4.63 4.72 3.06
CRN [39] 7.34 2.45 8.62 597 895 11.16  8.63 9.30 6.43 1493 6.11 1039 497 1.67 4.33 4.47 3.39
VRCNet [29] 5.96 2.17 7.83 552 731 8.29 7.42 7.07 5.15 11.18 476 7.03 440 1.15 3.75 3.54 2.31
PMPNet [47] 6.24 1.99 8.84 636  7.77 6.18 8.72 7.71 5.19 11.77  5.07 834 527 1.27 3.95 3.57 2.35
SnowflakeNet [49] 5.86 2.04 7.76 561  7.07 7.42 6.92 7.13 5.05 1132 4.87 772 446 1.16 3.94 3.52 3.64
3DALttriFlow(Ours) ‘ 5.06 ‘ 1.59 7.40 544  6.05 5.01 6.81 6.14 425 10.62 3.73 6.53 430 095 3.27 2.78 1.78
Input R2N2 AtlasNet OccNet 3DAttriFlow Input PCN TopNet VRCNet ~ PMP-Net SnowflakeNet 3DAttriFlow

PSGN
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Figure 4. Visual comparison of 2D-to-3D reconstruction results
with different methods under ShapeNet dataset.

In order to compare with other methods of reconstructing
3D voxel or mesh, we follow OccNet [26] to sample 2,048
points from their output surface, and then calculate the L1
Chamfer distance with the ground truth. As for voxel-based
methods, we additionally transfer their voxel output into
mesh, then apply the point cloud sampling on the mesh sur-
face.

Quantitative comparison. The results of 2D-to-3D re-
construction are shown in Table 1, in which 3DAttriFlow
achieves the superior performance over the other compared
counterpart methods. Especially, PSGN [4] and AtlasNet
[5] are point cloud based methods, which are most relevant
to 3DAttriFlow. However, 3DAttriFlow achieves more than
25% performance gain over these two methods. As we dis-
cussed in Sec. 1, the above-mentioned two methods adopt
the typical paradigm for 2D-to-3D reconstruction, where

%

M

Figure 5. Visual comparison of point cloud completion results
with different methods under MVP dataset.

AtlasNet [5] directly decodes the whole shape based on the
implicit input of global feature, and PSGN [4] exploits the
feature channels between encoder and decoder for introduc-
ing various levels of semantics. None of these practices can
learn the explicit semantic features from the image, but only
tries to decode shapes from implicit global feature or inter-
mediate layers of encoder. In contrast, 3DAttriFlow can ex-
ploit both implicit and explicit semantic attributes learned
from the image, which is through the geometric sub-pipe
and semantic sub-pipe, respectively. As a result, 3DAttri-
Flow is able to predict the details of 3D shape based on more
definite guidance from the explicit semantic attributes, and
achieves better performance than its counterparts.
Qualitative comparison. The visual comparison of 2D-
to-3D reconstruction is shown in Figure 4. Note that for
AtlasNet, we follow its original visualization settings to ex-
hibit the reconstructed mesh instead of point cloud. Com-
pared with the other methods, 3DAttriFlow reconstructs the
better details on a wide range of object categories. For ex-
ample, on the chair category (the 5 row of Figure 4), the
legs are missing in the prediction of OccNet, while the chair
predictions of PSGN and AtlasNet are ambiguous and full
of noise. As for the plane category, both PSGN and Atlas-
Net fail to reconstruct the detailed shape of engines in the
15t and the 2% row, while OccNet cannot make the correct
prediction of engines steadily (failure in the 2" row).

4.2. 3D Completion on MVP dataset

Dataset briefs and evaluation metric. We follow the
experimental settings of VRCNet [29] to evaluate our 3DAt-
triFlow on MVP dataset [29]. The dataset consists of 16
categories of incomplete/complete point clouds generated
by models selected from ShapeNet, and is then divided into
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training set (62,400 shape pairs), and testing set (41,600
shape pairs). Following previous methods [29, 33,47], we
use L2 Chamfer distance as the evaluation metric.

Quantitative comparison. The comparison of point
cloud completion is shown in Table 2. Compare with
the current state-of-the-art completion method Snowflak-
eNet [49], 3DAttriFlow further improves the performance
by 13.7% in terms of L2-CD. The intuition behind the com-
pletion task is the same as the 2D-to-3D reconstruction task,
which is to predict a 3D shape based on a given input. In the
case of point cloud completion, the input is the incomplete
3D shape. The better performance achieved by 3DAttriFlow
can be dedicated to more comprehensive and explicit under-
standing about the semantic attributes, which is through the
semantic sub-pipe in AF module. For example, in order to
infer the length of an missing chair legs, a semantic code
explicitly controlling such attribute is able to guide the de-
coder to make a more precise prediction. In contrast, for the
compared methods in Table 2, their decoders have to make
the prediction from the implicit features, where the attribute
of legs are entangled with the others in the implicit features.

Qualitative comparison. In Figure 5, we qualitatively
compare 3DAttriFlow with the other completion methods
on MVP dataset, from which we can find that 3DAttriFlow
produces more precise and consistent complete shapes than
other methods. Take the completion of chairs in the 2" and
the 3™ rows as examples, the predictions of chair-back and
the missing chair armrest made by 3DAttriFlow are appar-
ently better than the other methods. As for the skateboard
in the 5" row, all of the five compared methods mess the
wheels with the board, while 3DAttriFlow can produce a
clean and detailed shape of the target skateboard.

4.3. Ablation Studies

In this subsection, all quantitative analysis results are
typically conducted under four categories (i.e. plane, car,
chair and table). By default, all the experimental settings
are kept the same as in Sec. 4.1, except for modified part
described in each ablation experiment below.

Analysis of each sub-pipe in AF module. We analyze
the effectiveness of each sub-pipe of 3DAttriFlow by re-
moving/replacing modules from the original network struc-
ture (denoted as Full). Specifically, we develop four dif-
ferent variations for comparison: (1) w/o semantic sub-pipe
is the variation removing semantic sub-pipe from the AF
module; (2) w/o geometric sub-pipe is the variation remov-
ing geometric sub-pipe from the AF module; (3) semantic
MLPs is the variation replacing semantic sub-pipe with sim-
ple MLP layer, where the output is directly added to the fea-
tures in deformation pipe; (4) geometric MLPs is the varia-
tion replacing geometric sub-pipe with simple MLPs, where
the output is added to the features in deformation pipe. The
results are shown in Table 3, from which we can find that

our Full model achieves the best results over all four vari-
ations. Such result proves the effectiveness of each part to
3DAttriFlow.

Moreover, we additionally address two conclusions.
First, by comparing w/o geometric sub-pipe and w/o se-
mantic sub-pipe to the Full model, we can find that semantic
sub-pipe has a relatively less impact on the performance of
2D-to-3D reconstruction than geometric sub-pipe. The rea-
son is that, although semantic sub-pipe can explicitly disen-
tangle and extract the semantic attribute from 2D images,
there always exist certain semantic attributes that cannot
be explicitly captured or disentangled. Therefore, an im-
plicit representation is still necessary for encoding such im-
plicit semantic attributes in images. Second, by comparing
geometric-MLP and semantic-MLP to the only-MLPs, we
can find that both geometric sub-pipe and semantic sub-pipe
are more effective than simple MLPs, which proves the ef-
fectiveness of the network designation of the two sub-pipes.

Table 3. The effect of each sub-pipe to 3DAttriFlow in terms of
L1-CDx10°.

Steps. avg. plane car chair table

w/o semantic sub-pipe ~ 3.16 2.58 280 3.89 335
w/o geometric sub-pipe  3.41  2.66 3.07 423 3.68

semantic-MLP 312 253 285 381 330
geometric-MLP 308 247 273 380 330
only-MLP 321 267 282 391 345
Full 3.03 249 269 373 323

Visualization of semantic attributes controlled by se-
mantic code z. The semantic code z is expected to encode
explicit semantic attribute into the activation of a single di-
mension, which aims to provide definite guidance for the
reconstruction of 3D shape. In order to visually analyze the
encoded semantic attributes captured by z, we go through
the dimensions of z and observe the shape deformations
caused by interpolating single dimensions of z, as shown
in Figure 6. Specifically, we illustrate our observations of
3 attributes for each of the 3 categories, which proves that
semantic code z successfully captures the explicit semantic
attribute, and effectively reveals the reconstruction of the
corresponding part of 3D shape. For example, as for the
reconstruction of chair (Figure 6(a)), the code z learns two
specific semantic attributes of legs, which are the bending
(encoded by 6™ dimension at stage 2) and the length (en-
coded by the 5" dimension at stage 3), respectively. From
the visualization results of Figure 6(c), we can find that
changing the value of activation will result in obvious de-
formation of corresponding semantic attributes. Moreover,
by observing the extracted semantic attributes across three
categories, we can find that semantic code z is able to gen-
eralize its learned attributes into multiple categories, as the
same attributes of bending and length can also be found in
the table and plane categories.
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Figure 6. Visualization of 3D shape manipulation through semantic code z. Each row of the sub-figure shows corresponding shape
deformation results caused changing the value of a single dimension of semantic code z, which proves that semantic code is able to control
explicit semantic attributes during the 2D-to-3D reconstruction process. Since we cannot control which semantic attribute is encoded by
network, we manually go through the dimensions of semantic code z and reveal the learned semantic attributes.

Table 4. The effect of code dimension in terms of L1-CDx 102
(baseline marked by “*”).

Dims. avg. plane car chair table

4 314 260 281 384 330
8 311 251 273 383 335
18%* 303 249 269 373 323
32 320 258 275 385 334

Analysis of semantic code z. Since each dimension of
semantic code z can potentially encode a certain semantic
attribute, in this part, we discuss the capability of seman-
tic code z for encoding semantic attributes in terms of code
dimensions. We report the results under code dimension
of 4, 8 and 32 following the power of 2, and compare it
with our default setting 18 in Table 4. From the results we
can find that with 18-dimensional semantic code 3DAttri-
Flow achieves the best performance, while the other set-
tings cause a relatively small performance drop. The reason
is that for small dimensions, the semantic code can only en-
code the limited semantic attributes, which is insufficient
for predicting a detailed 3D shape. On the other hand, large
dimensions may have the problems for learning orthogonal
bases to represent the semantic attributes. Moreover, we vi-
sualize the effect for swapping code z and p from different
objects in Figure 7, from which we can observe that several
geometric/semantic attributes are clearly controlled by code
w and z, respectively.

5. Conclusions and Limitations

In this paper, we propose 3DAttriFlow to reconstruct 3D
shapes from 2D images. Compared with the previous meth-
ods, which merely learn to reconstruct the 3D shape based
on the implicit features, 3DAttriFlow takes the advantage
of a novel attribute flow pipe to explicitly extract seman-
tic attributes from the implicit feature, which makes the 3D
shape prediction more accurate based on the extracted se-
mantic attributes. To overcome the problem of generating
discrete point cloud data, the deformation pipe is proposed
to combine with the attribute pipe, which provides location

chalr al Wy determines the chair-b1
overall shape. z; determines the
existence of armrest.

J uh H ‘[
Z _- My
chalr a2 § I chair-b2 Z, o
1 J ch: r-\b4
chair-b3

chalr a3
Zy zz determines the chair back.

Y
] % 7, determines the
absence of armrest.

(a) Visual effect of pand z.  (b) Visual effect of semantic features controlled by

Figure 7. Effect of replacing semantic/geometric code z/u. In
(a), we replace the semantic code z; of chair-al with the code
zo from chair-a2. The output chair-a3 shows that geometric code
1 controls the overall shape, and the semantic code z2 controls
the shape of chair back. In (b), we further compare the semantic
attributes controlled by different semantic code z. Chair-b3 in (b)
inherits the armrest from the chair-bl through semantic code z1,
while chair-b4 drops the armrest according to the semantic code
zo from chair-b2.

priors for the extracted semantic attributes. Comprehen-
sive experiments on ShapeNet dataset for 2D-to-3D recon-
struction and MVP dataset for point cloud completion have
proved the effectiveness of 3DAttriFlow, and the visualiza-
tion of shape manipulation also demonstrates the ability of
3DAttriFlow to extract and control the explicit semantic at-
tributes of 3D shapes.

The limitations and possible future work of 3DAttri-
Flow can be addressed as follows. Although the se-
mantic code z is able to learn the explicit semantic at-
tributes and encode them into certain dimensions, it can-
not always learn a meaningful or disentangled semantic at-
tributes for every dimension. In experiments, we observe
that some dimensions may have effect to several attributes,
while others may have little effect on the output shape.
In our opinion, this can be dedicated to the information
loss/compression during the extraction process of global
image feature, which may cause the semantic attribute miss-
ing or deeply entangled with each other. Therefore, the fea-
ture channels connecting multiple layers of encoder to the
attribute flow pipe is still necessary, in order to fully uti-
lize the ability of semantic attribute extraction of 3DAttri-
Flow.
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