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Figure 1: Trained on synthetic shapes, NKF can reconstruct objects in and out of the training distribution, and scanned scenes.

Abstract
We present Neural Kernel Fields: a novel method for

reconstructing implicit 3D shapes based on a learned kernel
ridge regression. Our technique achieves state-of-the-art
results when reconstructing 3D objects and large scenes from
sparse oriented points, and can reconstruct shape categories
outside the training set with almost no drop in accuracy.
The core insight of our approach is that kernel methods
are extremely effective for reconstructing shapes when the
chosen kernel has an appropriate inductive bias. We thus
factor the problem of shape reconstruction into two parts: (1)
a backbone neural network which learns kernel parameters
from data, and (2) a kernel ridge regression that fits the
input points on-the-fly by solving a simple positive definite
linear system using the learned kernel. As a result of this
factorization, our reconstruction gains the benefits of data-
driven methods under sparse point density while maintaining
interpolatory behavior, which converges to the ground truth
shape as input sampling density increases. Our experiments
demonstrate a strong generalization capability to objects
outside the train-set category and scanned scenes. Source
code and pretrained models are available at https://
nv-tlabs.github.io/nkf.

1. Introduction
The goal of 3D reconstruction is to recover geometry from

partial measurements of a shape. In this work, we aim to
map a sparse set of oriented points sampled from the surface

of a shape to a 3D implicit surface for that shape. Surface
reconstruction from point clouds is a well studied topic in
computer vision and graphics, with applications in robotics,
entertainment, and manufacturing. Techniques for surface
reconstruction broadly fall into two types: implicit meth-
ods which aim to recover a volumetric function whose zero
level-set encodes the surface, and explicit methods which
directly recover a triangle mesh from the input points. While
implicit approaches can adapt to arbitrary topologies, the
requirement to store a dense volumetric field led many past
works to favor explicit approaches [42, 19]. More recently,
implicit approaches have regained popularity due to a num-
ber of works demonstrating that neural networks are com-
pact and effective at encoding signed-distance [43, 55] and
occupancy fields [39, 46]. These works pair neural field1 rep-
resentations with modern advances in point cloud processing
architectures to produce powerful reconstruction techniques.
Current state-of-the-art shape reconstructions methods can
be categorized along three axes (Fig. 3):
(1) Feed-forward vs. test-time optimization: Feed-forward
methods leverage shape priors to directly predict a surface
from input points. While these methods are fast, they are
not strictly constrained by their input and thus may perform
a task more akin to retrieval than reconstruction (see [57]

1A neural field refers to the parameterization of a continuous function
of spatial coordinates using a neural network. In this work we focus on
scalar functions mapping coordinates to real numbers.

*Denotes equal contribution.
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and Fig. 2, top). This results in decreased generalization
performance on out-of-distribution shapes and input point
densities. In contrast, test-time optimization via latent space
traversal allows adaptation to the input, but is slow and can
converge to poor local minima (See e.g. [16] and Fig. 2,
bottom).
(2) Whether or not to leverage data priors: Data-free meth-
ods recover the surface by minimizing the residuals between
the reconstructed surface and input points, leveraging a pre-
determined prior to control the behavior away from the input
points (e.g. a smooth space of functions [33, 62] or, emergent
regularization arising from neural architectures [61, 25]).
Such fixed priors are, however, difficult to tailor to specific
tasks, like completion of partial shapes (Fig. 2, middle).
Data-driven approaches, on the other hand, can learn task-
specific priors to predict shapes that resemble a given dataset.
(3) Which scale to process and represent data. Local-scale
methods [32, 4] use the idea that complex structures can
be reduced to a collection of simpler geometric primitives.
These methods learn local models which are used to recon-
struct a surface in patches. While this approach can general-
ize better, patch-size plays a critical role and must be care-
fully tuned per object (Fig. 2, bottom). Furthermore, without
any notion of global context, these methods are unable to
complete larger missing regions, leaving a fundamental gap
in their generalization performance.

Based on these axes and the motivating examples in Fig. 2,
we identify the need for a method that can learn good priors
from a simple collection of shapes to drive 3D reconstruc-
tion of both in-distribution and out-of distribution shapes
and scenes. In particular, the priors learned by this method
should respect the input points, performing reconstruction
rather than retrieval.

We thus propose a method using a novel representation of
neural fields based on learned kernels, which we call Neural
Kernel Fields (NKFs). In brief, NKFs work by learning a pos-
itive definite kernel conditioned on an input point cloud, and
then using that kernel to predict an implicit shape by solv-
ing a simple linear system (Fig. 4). Our approach provides
several key benefits: First, since predicted kernels are con-
ditioned on the input and learned from data, they enjoy the
versatility of learning-based methods. Second, since NKFs
leverage a kernel for shape prediction, any reconstructed
surfaces respect the input points by construction. Third,
unlike gradient descent-based latent space optimization, at
test-time NKF kernel weights are solved in closed form via
a simple convex least-squares problem, guaranteeing good
minima. Finally, our kernel acts as a global aggregator of
spatially local features, allowing our method to work at a
wide variety of sampling densities without tuning any scale
parameters. The result is a generalizable method that can be
trained only on synthetic shapes to seamlessly reconstruct
out of distribution shapes and large scale scenes, while being

SPSR [33] NS [62] Ours

C-OccNet [46]OccNet [39] Ours

LIG [32] (0.3)LIG [32] (0.1) Ours

Figure 2: Comparison of our approach with methods along
three Axes in Sec. 1. Top Row: Data free methods [33, 62]
respect the input points but their simple fixed priors cannot
complete the partial shape. Middle Row: Feed-forward
methods [46, 46] learn from data, but miss the slats on the
slightly out of distribution canoe. Bottom Row: LIG [32], a
local method which performs test-time optimization, is very
sensitive to the choice of patch size (0.3 left vs 0.1 middle),
and gets stuck in bad local minima (bumpy artefacts).

robust to changes in input point density. Compared with the
baselines, our method achieves a marked improvement re-
construction detail on both in and out-of distribution shapes.
We summarize our contributions as follows:

• We introduce Neural Kernel Fields, a novel represen-
tation of neural fields for 3D reconstruction, which
outputs highly detailed surfaces that respect the input
points.

• Our NKF representation achieves state of the art perfor-
mance on ShapeNet reconstruction (Section 4.1).

• We show state-of-the-art generalization performance
on out-of-distribution shapes (Section 4.3), scenes (Sec-
tion 4.4) and point densities (Section 4.5)

2. Related Work
Figure 3 visualizes existing implicit 3D shape reconstruc-

tion methods along the three axes defined in Section 1. Our
Neural Kernel Field approach lies at the center of the dia-
gram since it (1) uses a simple convex test time optimization,
(2) leverages priors learned from data, and (3) learns lo-
cal features on a spatial grid, but aggregates these globally
during fitting.

We now highlight several works that are particularly rel-
evant to our approach: Learned kernels were investigated
in [64, 31, 44] and used for tasks such as few-shot transfer
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Figure 3: Taxonomy of design choices for methods which
reconstruct implicit shapes from point clouds. The x and
y axes correspond to axes 1 and 3 discussed in Section 1
respectively. Color corresponds to axis 2: blue methods use
learned priors, and orange methods do not.

learning and classification of images. Neural Splines [62]
used a kernel method derived from infinitely wide ReLU
networks to reconstruct 3D surfaces from points. Convolu-
tional Occupancy Networks [46] proposes a convolutional
architecture that maps 3D points to features. We use a simi-
lar feature network for our Neural Kernel Field architecture.
LIG [21] addresses the need for reconstruction methods that
can generalize. MetaSDF [52] meta-learns a network which
can be rapidly trained to predict SDFs. Neural Kernel Fields
can also be viewed as a form of meta-learning since they
predict a kernel machine from data. Shape as Points [45] is
a concurrent work relevant to our method. It solves a linear
system to reconstruct a surface after a learned upsampling
phase. Unlike our method, however, Shape as Points relies
on the inductive bias of Poisson reconstruction to output a
surface rather than learning an inductive bias from data.

Beyond methods based on implicit surfaces, other shape
reconstruction techniques exist which leverage different out-
put representations. These representations include dense
point clouds [49, 38, 71, 47, 48, 70, 54, 67, 68, 17, 34],
polygonal meshes [30, 6, 19, 29, 24, 60, 12, 36, 27, 51],
manifold atlases [61, 15, 26, 18, 3], and voxel grids
[10, 58, 28, 65, 59, 23]. While our method focuses on
shape reconstruction from points, past work has used neural
fields to perform a variety of 3D tasks such as shape com-
pression [55, 62], shape prediction from images [39, 35],
voxel grid upsampling [46, 39], reconstruction from rotated
inputs [14] and articulated poses [13, 69], and video to
3D [66, 37].

3. Method

Our approach predicts an implicit surface from an ori-
ented point cloud using a learned kernel. Neural Splines [62]

also solves a 3D reconstruction problem using a fixed kernel
(not learned from data), and is thus related to our approach.
To introduce the reader to kernel methods for 3D reconstruc-
tion, we begin by giving an overview of Neural Splines. We
then show how these kernel methods can be extended into
Neural Kernel Fields capable of leveraging priors from data.

3.1. Review of Neural Splines

Given a point setX = {xi ∈ R3}Si=1 with corresponding
normals N = {ni ∈ R3}Si=1, [62] seeks an implicit field
f : R3 → R which represents the underlying surface from
which X and N were sampled. Namely, it should zero out
on the set of input points and its gradient should equal the
normal direction. More formally, the implicit field should
minimize

L(f) =

S∑
i=1

|f(xi)|2 + ‖∇f(xi)− ni‖2 (1)

The gradient part of (1) can be
approximated with a finite difference
method, by augmenting the pointsX
with X+ = {x+

i = xi + εni}Si=1

and X− = {x−i = xi − εni}Si=1

(see inset figure) and minimizing the
simpler loss:

L(f) =

S∑
i=1

|f(xi)|2 + |f(x+
i )− ε|2 + |f(x−i ) + ε|2 (2)

Let X ′ = X ∪ X+ ∪ X− denote the union of the
augmented points. To minimize (2), we represent f as a
weighted sum of kernel basis functions centered at the points
X ′:

f(x) =
∑

x′∈X′

αiKNS(x,x′) (3)

which is linear in the coefficients α =
[
α1 . . . α3S

]T
.

These coefficients can thus be recovered by solving the linear
system

(G+ λI)α = y (4)

whereG ∈ R3S×3S is the augmented Gram matrix over the
points X ′ (i.e. Gij = KNS(x′i,x

′
j) ∀x′i,x′j ∈ X ′), λ > 0 is

an optional regularizer which can be used to filter noise, and
y is a vector such that

yj =


0 if x′j ∈ X
+ε if x′j ∈ X+

−ε if x′j ∈ X−
(5)

The kernel functionKNS is the closed form expression for
an infinitely wide shallow ReLU network. It depends on the
inner product between the inputs expressed in homogeneous
coordinates. i.e. KNS(x, y) = KNS(〈x, y〉 + 1). See the
appendix for the exact equation and more details.
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Figure 4: Our method works in two stages: (1) prediction (Top row) where we predict an implicit function from an input point
cloud, and (2) evaluation (Bottom row) where we evaluate the implicit function. Our predicted implicit consists of a feature
function φ which lifts points in the volume to features in Rd, and a set of coefficients α, which are used to encode the function
as a linear combination of basis functions centered at the input points.

3.2. Inductive Bias of Neural Splines

The kernel formulation in Neural Splines makes explicit
the notion of inductive bias, i.e. the behavior of solutions
away from the input points. To see this, we observe that so-
lutions to the linear system (4) are solutions to the following
constrained optimization problem:

minimize ‖f‖K = αTGα (6)
subject to f(x′j) = yj x′j ∈ X ′ (7)

Here the norm ‖f‖K being minimized defines the inductive
bias of the kernel method, i.e. it governs the behavior of the
function away from the constraints. The constraints f(xj) =
yj guarantee that any solution to the above optimization
problem interpolates the input data up to a bound defined by
the regularizer λ.

For Neural Splines, the kernel norm favors smooth func-
tions: It is proportional to curvature (‖f‖K ≈ ‖f ′′‖) for
1D curves [63] and to the Radon transform of the Laplacian
(‖f‖K ≈ ‖R{∆2f}‖) for 3D implicit surfaces [41, 62].
While an inductive bias favoring smoothness is good for re-
constructing shapes with dense samples, it is too weak a prior
in more challenging cases such as when the input points are
very sparse or only cover part of a shape. For example, Fig. 2
(top) shows that Neural Splines is incapable of completing a
partial point cloud of a truck. To this end, NKFs use a data
dependent kernel, which learns an appropriate inductive bias
conditioned on the input. By solving a linear system such as
(4) using this kernel, we guarantee that output shapes respect
their input points. We now describe NKFs in detail.

3.3. Neural Kernel Fields
Our model accepts the same inputs as Neural Splines

described above in Section 3.1: i.e. We are given a set
of points X and normals N sampled from the surface of
an unknown shape, which we subsequently expand into an
augmented point cloudX ′ with 2S points and corresponding
labels y ∈ R2S . We remark that our method only uses the
inside and outside augmented points, i.e. X ′ = X+ ∪X−.
For brevity, we denote the inputs to our model as X =
(X ′,y). We now describe our architecture in four steps: (1)
how to define our data dependent kernel, (2) how to use that
kernel to predict an implicit function, (3) how to train our
model, and (4) how to add filtering for noisy inputs. Figure 4
shows our NKF architecture pictorially.

Data Dependent Kernel To learn a kernel from data,
we first augment input points x′i ∈ X ′ with a feature
φ(x′i|X , θ) ∈ Rd where φ is a neural network with param-
eters θ conditioned on the inputs X . Using these learned
per-point features, we the define data-dependent kernel as:

K(X ,θ)(x, z) = KNS([x : φ(x|X , θ)], [z : φ(z|X , θ)])
(8)

where [a : b] is the concatenation of the vectors a and b, and
KNS is the Neural Spline kernel function. The architecture
of the network φ follows an approach similar to Convolu-
tional Occupancy Networks [46]: We discretize the volume
around the input point cloud into a M ×M ×M grid, and
use a PointNet within each grid cell containing input points
to extract a feature in that cell (empty cells have a zero fea-
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ture). We then feed these features into a fully convolutional
3D U-Net, which produces an M ×M ×M × d grid of
output features. To extract features per point, we trilinearly
interpolate the output grid using the sampled points.

Predicting an Implicit Function To predict an implicit
function, we find coefficients αj for each input point x′j ∈
X ′ by solving the 2S × 2S positive definite linear system

α = [αj ]
2S
j=1 = (G(X , θ) + λI)−1y (9)

where G(X , θ) is the gram matrix G(X , θ)ij =
K(X ,θ)(xi,xj), and λ is a user supplied regularization pa-
rameter. To evaluate the predicted function at a new point x,
we compute the following equation using the coefficients α:

f(x) =
∑

x′
j∈X′

αjK(X ,θ)(x,x
′
j). (10)

Training the Model To supervise our model during train-
ing, we use a dataset of shapes. Each shape consists of the
augmented input points and labels X = (X ′,y), a dense set
of points and occupancy labels (Xvol = {xvol

i ∈ R3}, Yvol =
{yvol
i ∈ R}) in the volume surrounding the shape, and a

dense set of points Xsurf = {xsurf
i ∈ R3} on the surface of

the shape. We remark that the dense points on the surface and
in the volume are only needed as supervision during training.
The occupancy labels Yvol denote whether a volume point
lies inside or outside a shape and are defined as:

yvol
i =

{
1 if xvol

i is inside the shape
0 otherwise

(11)

We then train the network φ used to define the kernel (8) by
first predicting an implicit function using the inputs X and
then evaluating it at the dense volume Xvol and surface Xsurf
points to compute the loss:

L(f) =

|Xvol|∑
i=1

BCE(f(xvol
i ), yvol

i ) + λL1

|Xsurf|∑
i=1

|f(xsurf
i )|

(12)
The first term in (12) encourages the predicted function
to have the correct occupancy, while the second term en-
courages the surface to agree with the ground truth shape.
We backpropagate gradients through this loss to update the
weights of the network φ, and thus learn the data dependent
kernel.

Learning to Denoise We can optionally predict per-input
point weights to make our solutions more robust to noise.
We predict these via a fully connected network wj =
ρ(φ(xj ;X , θ); θw) ∈ R mapping per-point input features
to weights. Instead of Eq. 9, we then solve the weighted
ridge regression problem:

α = (WGW + λI)−1Wy (13)

Figure 5: Unweighted (left) versus weighted (right) kernel
ridge regression. Both reconstructions use the same noisy
input points and regularization value. The right reconstruc-
tion, which uses per-point weights (visualized as the size of
the points) can filter out the contribution of noisy points and
produce a more accurate reconstruction.

where W = diag(w1, . . . ws) is a diagonal matrix of per-
input-point weights. Figure 5 shows the effect of weighted
versus unweighted ridge regression in the presence of noise
on a toy example.

4. Experiments
We first evaluate the effectiveness of Neural Kernel

Fields on the tasks of single object reconstruction (Sec-
tion 4.1) and partial object completion (Section 4.2) using
the ShapeNet [5] dataset. Next, we highlight NKF’s ability
to generalize by evaluating the tasks of out-of-category shape
generlization (Section 4.3), generlization to full scenes (Sec-
tion 4.4), and generlization to different sampling densities
(Section 4.5). Finally, in Section 4.6, we ablate the design
choices for our backbone architecture.
Baselines: For ShapeNet reconstruction, we compare our
method to OccNet [39], Conv-OccNet [46], SPSR [33],
and Neural Splines [62]. On the task of completion, we
compare against Conv-OccNet [46]. For out-of-distribution
shape reconstruction, we compare with OccNet [39], Conv-
OccNet [46], LIG [32], and Neural Splines [62], while on the
task of full scene reconstruction we use Conv-OccNet [46],
SPSR [33], and NS [62] as baselines. Combined, these
methods cover a broad spectrum of 3D shape reconstruction
approaches and represent SoTA in their respective categories
depicted in Fig. 3.
Metrics: We use 3 metrics for quantitative evaluation: In-
tersection over Union (IoU) is computed by sampling a set
of 100k points in the volume around a watertight shape and
computing the IoU of the set of inside points for the pre-
dicted and ground truth shapes. IoU indicates how well the
predicted shape agrees with the ground truth both near and
away from the surface. L2 Chamfer Distance is evaluated
by sampling 100k points on the predicted and ground truth
surfaces (extracted as meshes using marching cubes), then
computing the average shortest distance between all pairs
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SPSR [33] NS [62] OccNet [39] C-OccNet [46] Ours Ground truth

Figure 6: Single object reconstruction on ShapeNet [5]. NKF recovers fine details like the lamp’s cord and car’s side mirror.

Noise free Noise std. = 0.0025 Noise std. = 0.005
IoU ↑ Chamfer ↓ Normal C. ↑ IoU ↑ Chamfer ↓ Normal C. ↑ IoU ↑ Chamfer ↓ Normal C. ↑

mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std. mean std.
SPSR [33] 0.772 0.162 0.122 0.069 0.847 0.061 0.759 0.163 0.125 0.066 0.847 0.060 0.735 0.169 0.067 0.067 0.843 0.060
OccNet [39] 0.773 0.162 0.068 0.048 0.902 0.073 0.771 0.164 0.069 0.051 0.903 0.072 0.699 0.172 0.096 0.137 0.888 0.074
C-OccNet [46] 0.810 0.116 0.051 0.018 0.922 0.052 0.820 0.112 0.049 0.019 0.924 0.051 0.866 0.089 0.040 0.040 0.937 0.044
C-OccNet* [46] 0.823 0.105 0.048 0.016 0.928 0.048 0.847 0.094 0.043 0.015 0.932 0.046 0.863 0.088 0.039 0.031 0.937 0.045
NS [62] 0.864 0.151 0.051 0.071 0.926 0.059 0.831 0.147 0.054 0.064 0.919 0.057 0.791 0.155 0.121 0.167 0.900 0.055
SAP [45] 0.867 0.082 0.031 0.015 0.945 0.042 0.864 0.084 0.031 0.014 0.944 0.042 0.862 0.087 0.033 0.015 0.942 0.043
Ours 0.949 0.053 0.024 0.010 0.954 0.042 0.914 0.061 0.028 0.010 0.947 0.043 0.883 0.074 0.033 0.018 0.939 0.041

Table 1: Single object reconstruction on ShapeNet [5]. NKF consistently outperforms strong baselines on standard metrics:
IoU, Chamfer distance, and Normal Consistency, across all 13 categories.

of points. Chamfer distance measures how accurately each
method reconstructs the surface of the input shape. Normal
Correlation is computed as the average dot product between
the normals at pairs of nearest points on the ground truth and
predicted shapes and evaluates how well each method does
at preserving the surface direction. We use the same 100k
samples as for Chamfer distance to compute this metric.

4.1. Single Object Reconstruction on ShapeNet

We evaluate NKF’s performance against strong baselines
in reconstructing objects from 13 categories of the ShapeNet
dataset. As input to all methods we use 1000 randomly sam-
pled surface points to which we add Gaussian noise of differ-
ent magnitudes. For learning based methods (Conv-Occnet,
OccNet, Ours), we train a single model across all 13 cate-
gories per noise level. Since both NKF and Neural Splines
utilize pairs of points spread along the normals, we train
a version of Conv-OccNet with (C-OccNet*) and without
(C-OccNet) these points. Table 1 shows that NKF achieves
large improvements across all metrics, reaching near 95%
IoU on noise-free reconstruction. Figure 6, which shows re-

constructions at the middle noise level, clearly demonstrates
how NKF recovers fine details like the cars’ side-view mirror,
the cord on the lamp, and the bulges on the chair legs. In the
supplemental, we provide per-category results, additional
figures, and ablations on different numbers of input points.

4.2. Shape Completion on ShapeNet

Albeit using input points as anchors, thanks to the global
support of the kernel, NKF can learn to recover an entire
shape from partial input. To demonstrate that, we sample a
point cloud from up to 50 % of a shape surface along one
of the principal axes, and supervise NKF to predict the full
shape. We train a separate model per shape category for each
of 13 ShapeNet categories. Table 2 presents quantitative re-
sults across all categories for this task. NKF achieves on-par
Chamfer and Normal correlation as C-OccNet with substan-
tially better IoU. The top row of Fig. 2 shows an example
of completing a truck shape from very partial input. Note
how NKF learned to leverage shape symmetry to faithfully
recover unobserved regions like the wheels. The appendix
shows per-category quantitative and qualitative results.
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IoU ↑ Chamfer ↓ Normal C. ↑
mean std. mean std. mean std.

C-OccNet [46] 0.770 0.152 0.075 0.068 0.909 0.059
Ours 0.819 0.171 0.077 0.091 0.907 0.067

Table 2: Object completion from partial point clouds.

OccNet [39] C-OccNet [46] Ours Ground truth

Figure 7: Out-of-category generalization. Reconstructed
object from categories unseen during training.

4.3. Out of Category Generalization

Generalization to categories beyond the train set is key
to making learnable methods useful in the wild. To evaluate
NKF on this task we train all methods on 6 of the ShapeNet
categories (airplane, lamp, display, rifle, chair, cabinet) and
evaluate on the other 7 (bench, car, loudspeaker, sofa, table,
telephone, watercraft). Table 3 presents quantitative statis-
tics for this task using the standard metrics. NKF greatly
outperforms both learned and non-learned baselines. Fur-
thermore, we note in brackets the decrease in performance
compared to the model trained on all categories. NKF, with
a minimal 1.1% drop in IoU, aligns with data-free methods
thanks to its test-time adaptation ability. We point out that
LIG only provides models pretrained on all categories, which
sets an upper bound on its generalization performance. The
distinct differences between NKF and baselines are readily
apparent in Figure 7.

4.4. Scene Reconstruction on ScanNet

Next, we extend beyond single objects and evaluate NKFs
on ScanNet scenes. For this experiment, we followed the
setup in [46] and trained our model on synthetic scenes con-
sisting of random ShapeNet object placements. We found the
synthetic floors and walls, added by [46] to the training set,
harmed performance and, hence, trained our method with-
out them. We report C-OccNet’s results with and without
walls for completeness. According to Table 4, for 10K input

IoU ↑ Chamfer ↓ Normal C. ↑

OccNet [39] 0.603 (-20.4%) 0.134 (0.070) 0.829 (-8.3%)
C-OccNet [46] 0.734 (-9.5%) 0.074 (0.023) 0.895 (-2.9%)
C-OccNet* [46] 0.785 (-4.9%) 0.064 (0.013) 0.911 (-1.7%)
LIG [32] 0.518 (N.A.) 0.112 (N.A.) 0.536 (N.A.)
NS [62] 0.869 (0.0%) 0.049 (0.000) 0.924 (0.0%)
SAP [45] 0.850 (-2.1%) 0.036 (0.004) 0.930 (-1.3%)
Ours 0.938 (-1.1%) 0.028 (0.003) 0.939 (-1.0%)

Table 3: Generalization capacity of object-level 3D recon-
struction from sparse points clouds. We train all models
using 6 ShapeNet categories (airplane, lamp, display, rifle,
chair, cabinet) and evaluate them on the remaining 7 (bench,
car, loudspeaker, sofa, table, telephone, watercraft). The
numbers in the brackets denote the difference in performance
with the model trained on all categories.

Chamfer ↓ Normal C. ↑

C-OccNet (w. walls) [46] 0.133 0.779
C-OccNet (w.o. walls) [46] 0.074 0.843
SPSR [33] 0.060 0.871
NS [62] 0.060 0.876
Ours 0.032 0.873

Table 4: Scene-level 3D reconstruction from sparse point
clouds on ScanNet [11]. All methods use 10 000 input
points for each scene.

points, NKF achieves an average Chamfer distance of about
half of the next best method. Figure 8 shows a comparison
to baselines on 2 reconstructed rooms. Now how our method
better captures small details such as the stepladder and shelf.

4.5. Point Density Generalization

In real-world applications, point density may differ be-
tween train and test times. A good data-driven prior should
compensate for lack of data (i.e. sparse inputs) without hin-
dering data-rich settings (i.e. dense inputs). Therefore, we
evaluate the response of NKF and various baseline meth-
ods to changes in input sampling density. We trained each
method on 1000 input points and evaluated it on varying
numbers of input samples (between 250 and 3000). To re-
port the upper-bound performance of each method, we train
additional models on each density value. Figure 9 shows the
mean IoU of each method versus the number of input points.
Curves with labels ending in ”-1k” were trained on 1000
points, and otherwise, were trained and tested on the same
number of points. OccNet shows no response to increased
sampling density (even at train time). Although C-OccNet
marginally improves when trained on denser data, it does
not improve when evaluated with more points than it was
trained on. The performance of Neural Splines improves for
denser inputs, but is poor on sparse inputs as expected from
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Figure 8: ScanNet reconstruction. Trained on ShapeNet objects, NKF gracefully scales to real world scanned scenes.

Figure 9: ShapeNet IoU vs. number of input points.
Curves ending in ”-1k” correspond to methods trained on
1000 points, and other methods were trained and evaluated
on the same number of points. Our method performs well
in the sparse and dense regimes and does not decay when
trained and tested on different point densities.

data-free methods. Finally, our method works well in sparse
settings and improves with increasing density. Moreover, it
does not degrade if trained and tested on different sampling
densities (the gray and green curves are nearly identical).

4.6. Ablations

We conduct an ablation study of our design choices on
the task of shape reconstruction on ShapeNet. We experi-
ment with using different per-point feature dimensions and
whether to include the surface L1 loss, L(f)L1. Table 5
summarizes the results.

feature dimension
8 16 32 64

without L(f)L1 0.939 0.941 0.942 0.942
with L(f)L1 0.945 0.947 0.949 0.949

Table 5: Ablation study (Section 4.1). NKFs benefits from
the L1 surface loss and work well even with small feature
dimensions. Values in the table are mean IoU on the test set.

5. Conclusion and Limitations
We presented a novel method for reconstructing and com-

pleting 3D shapes from sparse point clouds. Our method
outperforms the state-of-the-art on object reconstruction and
completion as well as scene reconstruction, while demon-
strating strong generalization capability (both with respect
to shape categories and input sampling density). While our
method pushes the boundary on many fronts, it still has sev-
eral limitations which we plan to address in future work:
First, our current kernel implementation requires a dense
linear solve, which limits the number of evaluation points to
around 12k on a V100 GPU. State-of-the-art Kernel solvers
in the literature (e.g. [50]) have scaled up to millions of
points by leveraging techniques such as Nyström sampling.
We plan to investigate how to leverage these approaches to
handle larger inputs. Furthermore, we would like to investi-
gate kernels with spatial decay to sparsify our linear system
and scale our method to very large inputs. A second limita-
tion is the requirement of oriented points. While these are
usually available from sensors, they can be noisy. Thus, in
the future we would like to incorporate normal prediction
into our method so it can operate on unoriented point clouds.
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learning 3d surface generation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
216–224, 2018.

[27] Oshri Halimi, Ido Imanuel, Or Litany, Giovanni Trappolini,
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