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Abstract

Physical products are often complex assemblies combin-
ing a multitude of 3D parts modeled in computer-aided de-
sign (CAD) software. CAD designers build up these assem-
blies by aligning individual parts to one another using con-
straints called joints. In this paper we introduce JoinABLe,
a learning-based method that assembles parts together to
form joints. JoinABLe uses the weak supervision available
in standard parametric CAD files without the help of object
class labels or human guidance. Our results show that by
making network predictions over a graph representation of
solid models we can outperform multiple baseline methods
with an accuracy (79.53%) that approaches human perfor-
mance (80%). Finally, to support future research we release
the Fusion 360 Gallery assembly dataset, containing as-
semblies with rich information on joints, contact surfaces,
holes, and the underlying assembly graph structure.

1. Introduction

The physical products that surround us every day are
often complex assemblies combining a multitude of parts
modeled using computer-aided design (CAD) software.
Well-designed assemblies are critical to ensure that prod-
ucts are cost-efficient, reliable, and easy to physically as-
semble. CAD designers build up assemblies by aligning
pairs of parts together using constraints called joints. These
joints determine the relative pose and allowed degrees of
freedom (DOF) of parts in an assembly [43]. For example,
a bolt can be constrained to a hole, then a nut constrained
to the bolt, and so on until an entire assembly is designed.
Assemblies may contain thousands of parts, represented as
solid models in the boundary representation (B-Rep) for-
mat [33, 61], and are used for everything from furniture, to
vehicles, to electronic devices. Defining individual global
positions for each part without using joints quickly becomes
cumbersome and prone to error. Joints enable designers to
make quick parametric changes to a design while preserving
existing part relationships and maintaining design intent.
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Figure 1. CAD assemblies contain valuable joint information de-
scribing how parts are locally constrained and positioned together.
We use this weak supervision to learn a bottom-up approach to
assembly. JoinABLe combines an encoder and joint axis predic-
tion network together with a neurally guided joint pose search to
assemble pairs of parts without class labels or human guidance.

However, fully defining joints in assemblies is time-
consuming – roughly one third of time in CAD is spent do-
ing assembly work [27]. As a result many assemblies have
missing or partly defined joints. A learning-based approach
capable of predicting joints could ease the burden of joint
definition and enable other applications such as CAD as-
sembly synthesis [56], robotic assembly [34], optimization
of dynamic assemblies [72], part motion prediction [58],
assembly-aware similarity search [5] and many more. Al-
though joints for real world assemblies are configured in
a bottom-up fashion, recent work largely takes a top-down
approach to assembly related tasks [19, 23, 38]. Top-down
approaches learn a global arrangement of parts from set ob-
ject and part classes in carefully annotated data. An open
challenge remains to learn to assemble parts without rely-
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ing on the strong object and part class priors provided in
heavily annotated datasets. In this work we ask the follow-
ing question, illustrated in Figure 1: Given a pair of parts,
can we automatically assemble them without prior knowl-
edge of the global design, class labels, or additional hu-
man input? Solving this problem is a fundamental building
block for leveraging learning-based methods with assem-
blies. Our long-term motivation is to enable the next gener-
ation of assembly aware tools that can increase the reuse of
existing components and streamline robotic assembly and
disassembly – important steps in reducing the negative im-
pact of physical products [8, 29, 35, 41, 45].

To begin to address this challenge we introduce
JoinABLe (Joint Assembly Bottom-up Learning), our
bottom-up approach to assembly that learns how parts con-
nect locally to form parametric CAD joints. JoinABLe uses
the weak supervision available in parametric CAD files,
containing only partial joint labels, to automatically assem-
ble pairs of parts. We make the following contributions:

• We propose a novel learning-based method to automat-
ically assemble pairs of parts using the weak super-
vision available in parametric CAD files. We do this
without the help of object or part class labels, human
annotation, or user guidance for the first time.

• We create and release the Fusion 360 Gallery assem-
bly dataset, containing CAD assemblies with rich in-
formation on joints, contact surfaces, holes, and the
underlying assembly graph structure.

• We provide experimental results on both joint axis and
joint pose prediction tasks, a human baseline study,
and comparisons with multiple other methods.

Our results show that by making network predictions
over a graph representation of solid models, we can out-
perform multiple baseline methods while using fewer net-
work parameters. We demonstrate that our approach per-
forms well with difficult cases where heuristic algorithms
can struggle and achieves an accuracy (79.53%) that ap-
proaches human performance (80%) on the joint axis pre-
diction task.

2. Related Work

Assemblies have been a critical part of design and engi-
neering for centuries. Since the digitization of CAD in the
1980s, a number of research areas have been explored.

Shape Combination As early as 2004 the power of de-
signing assemblies by combining and reusing existing parts
was demonstrated in Modeling by Example [13]. Since then
a body of work has focused on finding compatible parts to
combine together into assemblies [9, 22, 24, 66, 73]. The
ability to parametrically assemble parts into novel designs
has numerous applications in the media and entertainment

industry, where digital worlds can be populated with novel
content. Other lines of work have focused on assemblies
that can be physically fabricated [12,32,40,51,52,55,59,60]
or conversion to/from assembly instructions [1, 52]. Our
work differs in that we automate the pair-wise assembly of
real-world CAD parts using a learning based method with-
out class labels or human guidance.

Structure Aware Deep Generative Models 3D shape
synthesis has rapidly advanced with the use of structure
aware deep generative models [10, 14, 15, 28, 36, 46, 50, 64,
69] that incorporate some notion of assembly structure to
describe how the parts of a shape form a whole. Rather than
synthesize the parts themselves, we focus instead on assem-
bling existing parts in the industry-standard B-Rep format.

CAD Informed Robotic Assembly Prior knowledge of
CAD assemblies has been leveraged for robotic assembly
planning [16, 17] and sequencing [11, 26] to constrain the
search process and validate assembly sequences. Although
not addressed in this work, we envision our approach can
aid in improving the sampling efficiency of reinforcement
learning based robotic assembly [57] by inferring joint in-
formation when it is absent or not fully specified.

Learning to Assemble Learning-based assembly meth-
ods from the literature largely follow a top-down approach
that predicts the absolute pose of a set of parts to form
an assembly [23, 38, 56, 70]. Predicting the absolute pose,
however, can lead to noisy results where parts fail to com-
pletely align. To deal with this issue several recent works
have leveraged supervision from local contact points be-
tween parts [18, 19]. We believe a bottom-up approach is
a critical part of solving the assembly problem. Rather than
rely on contact points, our work uses the joint information
found in parametric CAD files as weak supervision. This
allows the output of our method to be reconstructed as fully
editable parametric CAD files.

Critical to prior work is training on synthetic assem-
blies [47, 65] that belong to set object classes, e.g. chairs,
drawers, etc., and are manually segmented, annotated with
part class labels, and oriented in a consistent manner. How-
ever, semantic segmentation is often incompatible with real-
world CAD assemblies that segment parts by manufacturing
process [43]. Moreover, while training on set object classes
greatly improves within-class performance, generalization
to unseen categories is an ongoing area of research [18].
Rather than rely on heavily annotated datasets with strong
class priors, our work leverages the weak supervision read-
ily available in standard parametric CAD files, and is trained
without object classes.

Concurrent to our work, AutoMate [27] leverages similar
joint information for use with a learning based recommen-
dation system. Here the user selects an area on each part
as guidance, and using those selections, AutoMate recom-
mends to the user multiple joint solutions confined to the
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Figure 2. JoinABLe is used to assemble a pair of parts in the B-Rep format (a). We use supervision from parametric CAD files containing
user selected B-Rep faces and edges that define joints (cyan). We also identify ‘equivalent’ faces and edges (pink) sharing the same joint
axis for use during evaluation. Graphs for each part G1, G2 are constructed from adjacent B-Rep faces and edges (b), then joint connectivity
predictions are made over a graph Gj containing dense connections between all graph vertices. Gj is shown as an n × m matrix (c) to
visualize the prediction space. Finally, the parts are aligned along the predicted joint axes (d), ready for a subsequent search stage.

user-selected input area. Similar to AutoMate, our method
enables editable joints to be created in CAD, but we do so
in an automated way that does not require user guidance
and is not limited to a predefined area. We believe provid-
ing an automated solution is critical to enabling advanced
assembly applications for CAD and robotics.

Part Mobility Understanding how assembled parts
might move, i.e. part mobility, is an important problem
in both CAD and robotics where the goal is to articulate
a given part, such as a hinged door, without knowing the
part mobility in advance. Most relevant to our work are
systems that automatically predict the relative joint config-
urations between pairs of parts [37, 58, 68]. Here the input
is a point cloud and the output joint axis parameters that de-
fine how the parts move in relation to one another. Again,
these works rely on strong class priors and heavily anno-
tated synthetic assembly data. We compare our method with
adaptions of several part mobility baselines in Section 5.

3. Method
We now present our method, JoinABLe, for automati-

cally assembling pairs of parts with joints.

3.1. CAD Joints

Assembly parts are typically represented in the B-Rep
format, containing a watertight collection of trimmed para-
metric surfaces connected together by a well-structured
graph [61]. Each face contains a parametric surface, and
is bounded by edges that define the trimmed extent of the
surface using parametric curves such as lines, arcs, and cir-

cles. The B-Rep format is used in all mechanical CAD tools
and the selection of B-Rep entities, i.e. faces and edges, is a
critical but time-consuming manual task required to set up
joints. Our method proposes to learn from these user selec-
tions to automate the process of joint creation.

The best practice for CAD assembly is to define rela-
tive relationships between pairs of parts, to form joints, also
known as mates. Joints define the degrees of freedom be-
tween the two parts, the parameters for a rest state pose, and
the overall motion limits. CAD users select B-Rep entities
on each part (highlighted in cyan in Figure 2a) to define a
per-part joint axis consisting of an origin point and a direc-
tion vector. The joint axes are determined by the type of
geometry selection, for a circle the center point becomes
the origin point and the normal becomes the direction vec-
tor. These two parts can then be aligned along their axes
into an assembled state (Figure 2d).

3.2. Joint Prediction Problem Statement

Given a pair of parts (Figure 2a), we aim to create a
parametric joint between them, such that the two parts are
constrained relative to one another with the same joint axis
and pose as defined by the ground truth (Figure 2d). Here
the joint axis is defined by two joint origin points and joint
direction vectors relative to each part, and the pose is de-
fined by a single rigid transformation in absolute coordi-
nates. We refer to the tasks of predicting these values as
joint axis prediction and joint pose prediction, respectively.
We consider only pairs of parts that form rigid joints, and
leave full multi-part assembly and non-rigid joints to future
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work. We assume that object or part class labels and any
form of human guidance are unavailable. We train only us-
ing the weak supervision provided by standard parametric
CAD files without any manual human annotation such as
canonical alignment.

3.3. Input Representation

Our method takes a pair of parts in the B-Rep format
(Figure 2a), building upon a line of recent work [25, 31, 62,
67] that utilizes the topology and geometry available within
B-Rep CAD data. This approach enables us to make pre-
dictions over the exact entities used to define joints, rather
than an intermediate representation such as a mesh or point
cloud. Importantly, it allows us to frame the problem as
a categorical one, by making predictions over the discrete
set of B-Rep entities that contain ground truth information
about the joint axis. Joints are commonly defined between
both B-Rep face and edge entities, e.g. a cylinder (face) can
be constrained to another cylinder (face) or a circle (edge).
To accommodate this, for each part we build a graph repre-
sentation, G(V,E), from the B-Rep topology where graph
vertices V are either B-Rep faces or edges, and graph edges
E are defined by adjacency (Figure 2b).

For graph vertex features we use information about indi-
vidual B-Rep faces and edges readily available in the B-Rep
data structure. For B-Rep faces, we use a one-hot vector for
the surface type (plane, cylinder, etc.) and a flag indicating
if the surface is reversed with respect to the face. For B-
Rep edges, we use a one-hot vector for the curve type (line,
circle, etc.), the length of the edge, and a Boolean flag indi-
cating if the curve is reversed with respect to the edge. We
evaluate the performance of these input features and others
in Section A.2 of the supplementary material.

Finally, given the two graphs G1, G2 that we wish to as-
semble, with n and m vertices respectively, we form a third
‘joint connectivity graph’ Gj that densely connects the ver-
tices between G1 and G2. Gj has n ×m edges and allows
us to formulate a link prediction problem [39], by identify-
ing the connections between G1 and G2 that form a joint.
Gj can be easily visualized as an n×m matrix (Figure 2c).

3.4. Weak Supervision from CAD Joints

A pair of parts in the B-Rep format have a finite num-
ber of faces and edges that can be paired to form a joint,
specifically the n×m edges in Gj . Each ground truth joint
results in a single positive label in the n × m prediction
space and all remaining combinations are negative labels.
For complex parts, such as mechanical gears that may con-
tain thousands of discrete B-Rep entities, this results in an
extreme imbalance between positive and negative labels.

The problem is further compounded by having only
weak supervision available in standard parametric CAD
files. This is due to several reasons: firstly, specifying joints

between parts is time consuming and is often skipped by
CAD designers; secondly, each CAD assembly is designed
for a specific purpose, rather than to create an exhaustive set
of assembly configurations. This weak supervision results
in a positive and unlabeled (PU) learning problem [4] where
the joints are known positive labels, but the remaining neg-
ative labels could be positive (i.e. an unseen but plausible
joint) or negative (i.e. an implausible joint). To address the
data imbalance and PU learning problem, we organize and
augment our data using the following three techniques.

Joint Consolidation To increase the number of pos-
itive labels, we consolidate joints between identical pairs
of parts into joint sets. Figure 4, right shows an example
joint set where the same two parts are connected in multi-
ple different ways. This approach allows us to present the
network with a single data sample, i.e. a joint set, that con-
tains all known joints between a pair of parts. Importantly,
joint consolidation avoids presenting the network with mul-
tiple contradictory data samples, where a negative label in
one sample may be a positive label in another sample. We
provide additional implementation details about joint con-
solidation in Section A.1 of the supplementary material.

Joint Equivalents To further counter the extreme data
imbalance, we identify and label ‘equivalent’ entities that
share the same joint axis as the ground truth. For example,
if a circle is the labeled entity (highlighted in cyan in Fig-
ure 2a), its neighbouring faces, such as the cylinder high-
lighted in pink, will be labeled as equivalent. These entities
represent the same user-selected joint axis and only differ
by the origin point that locates the joint axis in 3D space.
As we consider a predicted joint axis to be correct if it is co-
linear with the ground truth joint axis, we include equivalent
labels during evaluation. We perform an ablation study in
Section A.2 of the supplementary material to evaluate the
contribution of equivalent labels.

Unambiguous Evaluation Sets A challenge with PU
Learning is establishing a ‘clean’ test set to accurately mea-
sure network performance. Parts that have multiple plau-
sible joints, such as a plate with multiple holes for fasten-
ers, are problematic if only partial joint labels exist, leading
to ambiguity at test time. We make a best effort to avoid
positive unlabelled samples in the test and validation set by
excluding geometrically similar, but unlabeled, ‘sibling’ en-
tities, e.g. the faces and edges of an unlabeled hole with the
same size as a labelled hole. We identify sibling entities by
matching the entity type, area or length, and number of con-
nected graph edges to the labeled entities. In Section A.2 of
the supplementary material we study the effect of evaluat-
ing with sibling entities on a withheld test set that matches
the original data distribution.

15852



MLP
EdgeConv

B-Rep Edge

B-Rep Face

Joint
Axis

MPN

1

1

2

1
2

MLP
1
2

2

Part

Part

+

+

JO
IN

T 
AX

IS
 

PR
ED

IC
TI

O
N

JO
IN

T 
PO

SE
 S

EA
RC

H

EN
CO

DE
R

Assembled
Output

B-Rep Input

n

m
x1

h1

h2

huv

x2

1+2

Rotation

Offset

Flip

Figure 3. JoinABLe architecture. Given two B-Rep parts in our graph representation, the vertex features from B-Rep faces (green) and
edges (orange) pass through separate multi-layer perceptrons (MLP) before being concatenated together and passed through a message
passing network (MPN). This yields local vertex embeddings representing each B-Rep entity in the two parts. Our joint axis prediction
branch then performs edge convolution between the two graphs to estimate the presence of joints over all possible pairs of connections.
Finally, the joint parameters are discovered via search, with respect to the predicted joint axis, to complete the assembly.

3.5. JoinABLe Architecture

Our overall architecture is shown in Figure 3 and consists
of an encoder module that outputs per-vertex embeddings
for each B-Rep face and edge in our graph representation of
the input parts. Using these embeddings we can predict a
joint axis and then search for joint pose parameters.

3.5.1 Encoder

Our encoder neural network fenc is a Siamese-style network
with shared weights for the two parts. It firstly creates graph
vertex embeddings by passing the vertex features x1 and x2

from the two graphs, through two separate multi-layer per-
ceptrons (MLP). One MLP is used for vertices represent-
ing B-Rep faces and another for those representing B-Rep
edges; the resulting vertex embeddings are then concate-
nated together. We next perform message passing within
each part’s graph using a two-layer Graph Attention Net-
work v2 (GATv2) [6] to obtain the per-vertex embeddings
h1 and h2 for both the graphs.

h1 = fenc(x1, G1), h2 = fenc(x2, G2). (1)

The idea here is to extract local features within each part
that consider each B-Rep entity and its neighborhood.

3.5.2 Joint Axis Prediction

When creating a joint, a key piece of design intent is the def-
inition of a joint axis by which two parts can be aligned and
constrained to one another. The joint axis forms the basis
for the degrees of freedom to be defined and enables down-
stream tasks such as assembly, part mobility, and animation.
We formulate joint axis prediction as a link prediction prob-
lem, where the goal is to correctly identify a connection be-
tween G1 and G2 that aligns the two parts along a ground
truth joint axis. This is done by aggregating information

between parts using an edge convolution along the edges of
Gj . The node features x1 and x2 from graphs G1 and G2,
are passed through our shared encoder network fenc to get
384-dimensional embeddings h1 and h2 (Eq. 1). Then for
each edge (u, v) in the graph Gj which densely connects
G1 and G2, we predict a logit indicating the presence of a
joint:

huv = ϕ(hu ⊕ hv), (2)

where ϕ : R768 7→ R is a 3-layer MLP, ⊕ is the concatena-
tion operator and hu and hv are gathered from h1 and h2

based on the source and target vertices for each edge in Gj .
We train the network with a loss function that has two

terms. The first term LCE is the cross-entropy between the
edge predictions huv and the ground truth edge labels juv ∈
{0, 1} normalized into a probability distribution ĵuv .

ĥuv = softmaxall(huv),

LCE = CE
(̂
juv, ĥuv

)
.

(3)

Here the subscript in the softmax operation indicates that
it is applied over all edges in Gj , and CE(p,q) =
−
∑

i pi logqi. This loss encourages true joints to have
higher values while simultaneously suppressing non-joints.
We observe this is sub-optimal due to the sparsity of pos-
itive labels, where LCE is summed over a large number of
terms. To better focus the loss term so that the joints are
better contrasted against more likely non-joints, we use a
symmetric cross entropy loss LSym as the second term in
the loss function.

ĥrow = softmaxrow(h2D), ĥcol = softmaxcol(h2D),

LSym = CE(̂j2D, ĥrow) + CE(̂j2D, ĥcol).
(4)

Here the subscript of the softmax indicates that it is taken
over a single axis, and the 2D subscript instead of uv in-
dicates that the predictions and ground truth labels on the
edges of Gj are reshaped into n×m matrices.
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3.5.3 Joint Pose Search

The B-Rep entities predicted by our network allow us to
query the ground truth B-Rep data to obtain a joint axis
prediction for each part. Once these axes are aligned to-
gether, three secondary parameters define a rigid joint and
can be used for joint pose prediction. An offset distance
along the joint axis, rotation about the joint axis, and a flip
parameter to reverse the joint axis direction. We find these
parameters using a neurally guided search that allows us
to enumerate over the top-k joint axis predictions and di-
rectly consider interaction between both parts. To evaluate
a candidate joint configuration, we propose a cost function
Cjoint = Coverlap + λCcontact that considers two general crite-
ria for well defined joints: overlap volume and contact area
between parts, formulated as:

Coverlap =
V– 1∩2

min (V– 1, V– 2)
, Ccontact =

A1∩2

min (A1, A2)
. (5)

Here, V– 1 and V– 2 are the volume of the two parts, and
V– 1∩2 represents their overlap volume. Similarly, A1 and
A2 are the surface area of the two parts, and their contact
area is A1∩2. Intuitively, for the two parts to align closely
to each other, minimizing the cost function should encour-
age a larger contact area while penalizing the overlap vol-
ume to prevent penetration. Therefore, we let λ = −10
if Coverlap < 0.1. Otherwise, we set λ = 0 to increase the
overlap penalty. Given this cost function, we search for the
optimal joint pose using the Nelder-Mead algorithm [48] as
a standard derivative-free optimization.

4. Dataset
To evaluate the performance of our method we create the

Fusion 360 Gallery assembly dataset, derived from designs
created in Autodesk Fusion 360 and submitted to the pub-
licly available Autodesk Online Gallery [3]. The dataset
consists of two inter-related sets of data, Assembly Data,
containing 8,251 assemblies with 154,468 separate parts,
and Joint Data containing 32,148 joints defined between
23,029 different parts. The data and supporting code are
publicly available on GitHub1 with a license allowing non-
commercial research. We now describe the joint data used
in our experiments and provide information on the overall
dataset in Section A.1 of the supplementary material.

Figure 4, left shows an overview of the joint data in our
dataset. We consider a data sample to be a joint set, such as
shown in Figure 4, right, containing a pair of parts with one
or more joints defined between them. The user-selected B-
Rep faces and edges form the ground truth labels together
with the joint axis and pose information of each joint. We
provide an approximate 70/10/10/10% data split, for the

1https://github.com/AutodeskAILab/Fusion360GalleryDataset

Figure 4. An overview of joint data from the Fusion 360 Gallery
assembly dataset (left). Each sample consists of a unique pair of
parts with one or more joints defining how they are locally con-
strained and positioned together (right).

training, validation, test, and original distribution test sets
respectively. The validation and test sets do not include
samples with potentially ambiguous sibling entities, while
the original distribution test set does.

5. Experiments
In this section we perform experiments to qualitatively

and quantitatively evaluate our method on two tasks: joint
axis prediction and joint pose prediction. We examine how
our method compares with a human CAD expert and other
methods from the literature. A key criteria for evaluat-
ing performance is to gauge how the network performs in
scenarios that traditional algorithms find challenging. One
such scenario involves designs that do not contain connec-
tions between cylindrical shafts and holes, such as a bolt
and a hole similar to Figure 2a. Commercial products ex-
ist which infer joints of this type by searching for fasteners
and holes with similar radii [54]. In our dataset we see that
82% of data samples contain holes and 47.5% of joints con-
strain circular or cylindrical entities on one part to a hole on
the opposing part. In our experiments we report results that
gauge the ability of our approach to correctly infer joints,
both in the simple Hole case and the more complex No Hole
case. Details of experiment procedures are provided in Sec-
tion A.2 of the supplementary material.

5.1. Human CAD Expert Baseline

Understanding how a human CAD expert performs in a
similar setting is important to gauge the efficacy of each
method. We conduct a study to establish a human base-
line by recruiting a CAD expert, who works on commercial
CAD design, and ask them to assemble pairs of parts from

15854



All Hole No Hole Param.
Acc.% ↑ Acc.% ↑ Acc.% ↑ # ↓

Ours 79.53 80.15 76.59 1.3M
B-Dense 10.59 10.36 10.59 3.2M
B-Discrete 4.28 4.18 4.79 4.0M
B-Grid 65.21 65.09 65.81 3.1M
B-Heuristic 71.39 72.74 64.97 -
B-Random 21.55 21.92 23.29 -

Human 80.00 - - -

Table 1. Joint axis prediction accuracy results are shown for all
data samples in the test set (All), the subset of data samples with
holes (Hole) and without holes (No Hole). The number of network
parameters is also shown (Param.). Finally, results from a human
CAD expert on 100 test samples are shown.

our dataset with a known ground truth joint. We use 100
data samples picked randomly from a distribution exclud-
ing the potentially ambiguous sibling entities. We randomly
rotate and translate each part and conduct the study using
Fusion 360. We compare the joint axis created by the CAD
expert with the ground truth. We find that the CAD expert
results match the ground truth 80% of the time. This shows
that determining how two isolated parts should be assem-
bled is challenging for CAD experts without the valuable
context provided by the object assembly. We provide addi-
tional details in Section A.2 of the supplementary material.

5.2. Joint Axis Prediction

Although there are no previous works that address the
exact same setting as ours, we adapt several related methods
to compare with our approach.

Point Cloud Baselines We adapt two point cloud based
methods designed to predict a joint axis for part mobility.
For each baseline we use a common architecture, based on
a PointNet++ [49] encoder, and adapt the decoder strategy
and loss functions from related work. B-Dense follows Li
et al. [37] to densely regress a joint origin projection vec-
tor, projection distance, and joint direction for each point
in the point cloud. B-Discrete follows Shape2Motion [58]
and uses a hybrid of discrete classification and regression to
predict the joint origin point and direction vector.

B-Rep Baselines We compare our method against sev-
eral baseline methods that take B-Rep graphs as input. B-
Grid follows UV-Net [25] and uses grid features (points,
normals, trimming mask, and tangents) sampled on B-Rep
faces and edges together with a CNN encoder. We use the
same graph topology, prediction head, and loss as our net-
work. B-Heuristic uses a rule-based approach that oper-
ates on B-Rep graphs and assigns a score to each B-Rep
entity. Higher scores are assigned to entities that are simi-
lar, based on the entity type, area, and length information,
and that match the training data distribution of entity type

All Hole No Hole Param.
CD ↓ CD ↓ CD↓ # ↓

Ours + Search 0.0580 0.0570 0.0628 1.3M
Ours 0.0627 0.0624 0.0657 1.3M
B-Pose 0.0700 0.0693 0.0730 2.3M

Table 2. Joint pose prediction results using average chamfer dis-
tance (CD) where lower is better. We show results for all sam-
ples in the test set (All), and the subset of data samples with holes
(Hole) and without holes (No Hole). The number of network pa-
rameters is also shown (Param.)

pairings. For cylinders and circles, the radius of the entity is
also employed. A higher score is given to entity pairs where
the radii match to within 5%. B-Random makes random
predictions over all B-Rep entities and represents the lower
bound for B-Rep performance.

Table 1 shows results for the joint axis prediction task on
the test set. We report the accuracy of regression based ap-
proaches by considering a joint axis prediction to be a ‘hit’
if it is collinear within a distance and angular threshold of
5%. For classification based approaches we report the top-
1 accuracy. We also report accuracy for the subset of data
samples that have holes (Hole) and those that do not (No
Hole). Recall that traditional algorithms are good at work-
ing with the special case of matching fasteners to holes. We
observe that the performance gap between our approach and
the next highest performing B-Heuristic approach is 8.14%,
however this widens to 11.62% for the important No Hole
subset where traditional algorithms are known to struggle.
We find that the B-Rep based approaches outperform those
based on point clouds while also using fewer parameters.
Although point cloud approaches perform well with axis
aligned parts from the same object class [58], our results
show that real world data is significantly more challenging.
Finally we note that our approach is within 0.5% of the per-
formance of a human CAD expert. We provide additional
details in Section A.2 of the supplementary material.

5.3. Joint Pose Prediction

For the joint pose prediction task we again adapt a base-
line method from the literature to our setting. B-Pose fol-
lows Huang et al. [23] to regress a translation point and ro-
tation quaternion using a combination of L2 and chamfer
distance (CD) loss terms. Although a parametric joint is not
created, B-Pose represents a common approach used with
top-down assembly. We evaluate the performance of our
method in two different configurations. Ours uses the joint
axes derived from network predictions to align the two parts
together without an offset, rotation, or flip. Ours + Search
additionally performs joint pose search over the top 50 pre-
dictions to find suitable offset, rotation, and flip parameters.

Table 2 shows results for the joint pose prediction task.
We record the minimum CD calculated between the ≥ 1
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Figure 5. Qualitative comparison of joint pose prediction results comparing our method, with and without search, with the B-Pose baseline.

ground truth joints from the joint set and the predicted as-
sembly. We then report the average CD across all samples
in the test set. We find that using our network predictions
alone (Ours) can better match the ground truth when com-
pared with the B-Pose baseline. Introducing search (Ours +
Search) can help resolve areas of overlap (Figure 5e) and in
some cases resolve incorrect axis predictions (Figure 5b,g).
It is important to note that the ground truth data only con-
tains a finite set of discrete states (e.g. door open, door
closed) rather than continuous states (e.g. door opening)
that may also be valid. For example, our predictions for the
belt buckle in Figure 5d do not match the ground truth state
but appear plausible. As such, CD should be considered an
approximate metric for comparing the relative performance
of each method. We provide further qualitative results in
Section A.2 of the supplementary material.

6. Discussion

Future Applications Our joint axis prediction net-
work and search approach can serve as fundamental build-
ing blocks for a number of applications. One such applica-
tion is the automated assembly of multiple parts in a design.
As a preliminary demonstration we assemble a multi-part

Step 1 Step 2 Step 3 Step 4 Final Assembly

Figure 6. Multi-part assembly demonstration. Parts are aligned
sequentially from a given assembly sequence using our joint axis
prediction network and pose search.

design given only the individual parts and the sequence of
part pairs derived from our assembly dataset. We amend
our search strategy to minimize the overlap volume between
the new part and the partially assembled design at each as-
sembly step and maximize the contact area between them
using a similar cost function. Figure 6 shows an example
sequence of parts that are assembled correctly in a bottom-
up fashion. We provide further details in Section A.3 of the
supplementary material.

Limitations A bottom-up approach to assembly may
be limited when scaling to large assemblies where global
composition is important. Reliance on B-Rep CAD data is
another limitation of the current work. Although data avail-
ability is improving [27, 30, 63], our method has not been
tested beyond mechanical CAD data. Finally, our network
does not leverage geometric loss terms that may help with
avoiding undesirable overlap between parts and generalize
to predicting other joint parameters.

7. Conclusion
Our long-term motivation is to enable assembly-aware

design tools, capable of suggesting and automatically plac-
ing parts. Such a system could enable greater reuse of ex-
isting physical components in new designs and potentially
reduce the cost and environmental impact associated with
manufacturing and associated supply chains [29]. Under-
standing how parts are assembled is also critical for robotic
assembly and disassembly. CAD-informed robotic disas-
sembly systems may enhance our ability to reuse and recy-
cle components [8, 35, 41, 45]. In this work we have begun
the first steps to address these challenges by learning the
bottom-up assembly of parametric CAD joints. Our results
show the promise of learning-based methods to approach
the performance of human CAD experts, and with the publi-
cation of our dataset we hope to further aid future research.
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