
Interspace Pruning: Using Adaptive Filter Representations to Improve Training
of Sparse CNNs

Paul Wimmer∗†‡§, Jens Mehnert∗§ and Alexandru Condurache∗†
∗Automated Driving Research, Robert Bosch GmbH, 70469 Stuttgart, Germany
†Institute for Signal Processing, University of Lübeck, 23562 Lübeck, Germany

{paul.wimmer,jensericmarkus.mehnert,alexandrupaul.condurache}@de.bosch.com

Abstract

Unstructured pruning is well suited to reduce the mem-
ory footprint of convolutional neural networks (CNNs), both
at training and inference time. CNNs contain parameters
arranged in K × K filters. Standard unstructured prun-
ing (SP) reduces the memory footprint of CNNs by setting
filter elements to zero, thereby specifying a fixed subspace
that constrains the filter. Especially if pruning is applied
before or during training, this induces a strong bias. To
overcome this, we introduce interspace pruning (IP), a gen-
eral tool to improve existing pruning methods. It uses filters
represented in a dynamic interspace by linear combinations
of an underlying adaptive filter basis (FB). For IP, FB co-
efficients are set to zero while un-pruned coefficients and
FBs are trained jointly. In this work, we provide mathe-
matical evidence for IP’s superior performance and demon-
strate that IP outperforms SP on all tested state-of-the-art
unstructured pruning methods. Especially in challenging
situations, like pruning for ImageNet or pruning to high
sparsity, IP greatly exceeds SP with equal runtime and pa-
rameter costs. Finally, we show that advances of IP are due
to improved trainability and superior generalization ability.

1. Introduction
Deep neural networks (DNNs) have shown state-of-the-

art (SOTA) performance in many artificial intelligence ap-
plications [52, 54, 72, 77, 80]. In order to solve these tasks,
large models with up to billions of parameters are required.
However, training, transferring, storing and evaluating such
large models is costly [61,65]. Pruning [19,20,22,30,34,50]
sets parts of the network’s weights to zero. This reduces the
model’s complexity and memory requirements, speeds up
inference [4] and may lead to an improved generalization
ability [3, 24, 34]. In recent years, training sparse models

‡Corresponding author. §Equal contribution.

became of interest, providing the benefits of reduced mem-
ory requirements and runtime not only for inference but also
for training [13, 14, 35, 47, 49, 55, 66, 71, 75].

In this work, we mainly focus on methods that prune
individual parameters before training, while the number of
zeroed coefficients is kept fixed during training. With this
unstructured pruning, a network’s memory footprint can be
reduced. To lower the runtime in addition, specialized soft-
and hardware is needed [11, 18, 21, 51]. For training sparse
networks, we distinguish between (i) pruning at initializa-
tion (PaI) [9,35,66,71,75] which prunes the network at ini-
tialization and fixes zeroed parameters during training, (ii)
finding the sparse architecture to be finally trained by iter-
ative train-prune-reset cycles, a so called lottery ticket (LT)
[14,15], and (iii) dynamic sparse training (DST) [13,39,49]
which prunes the network at initialization, but allows the
pruning mask to be changed during training.

Convolutional neural networks (CNNs) are composed of
layers, each having a certain number of input- and output
channels. Every combination of input- and output channel
is linked by a filter h ∈ RK×K with kernel size K × K.
A weight of h is a spatial coefficient hi,j for a spatial co-
ordinate (i, j). Filters h can also be modeled in an inter-
space, a linear space {∑K2

n=1 λn · g(n) : λn ∈ R} spanned
by a filter basis (FB) F := {g(1), . . . , g(K2)} ⊂ RK×K

[12, 69]. One possibility for a FB is the standard basis
B := {e(n) : n = 1, . . . ,K2} which yields the spatial rep-
resentations. General interspace representations are more
flexible since bases are not fixed. We represent h in an
interspace in order to learn the FB F spanning this space
along with the FB coefficients λ, and thereby obtain a better
representation for h. Thus, setting coefficients of flexible,
adaptive FBs to zero will improve results compared to prune
spatial coefficients.

For deep networks, where the layers’ purposes are usu-
ally unknown to the experts but learnt during training, we
believe that filters should train their bases along with their
coefficients. A FB F is dynamic, can be shared for any

12527

=

=

Dense
Filter

2·

Spatial Representation

+4·

+3· 3·+

1
4 ·

Interspace Representation

+1·

−1
3 · 2·+

Prune
50 %

Prune
50 %

4·

+3·

1·

+2·

=

=

Pruned
Filter

(a)

Ba
sis

Pr
un

ed
, R

an
do

m
ly

 S
am

pl
ed

 F
ilt

er
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Layer 3 / VGG16 / SP-SNIP / CIFAR-10 / p=0.99

(b)

Ba
sis

Pr
un

ed
, R

an
do

m
ly

 S
am

pl
ed

 F
ilt

er
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Layer 3 / VGG16 / IP-SNIP / CIFAR-10 / p=0.99

(c)

Figure 1. (a) Overview of SP and IP. Contrarily to SP (b), IP (c) produces spatially dense filters after training sparse networks. As for SP,
sparsity in the interspace can be used to reduce memory requirements and, by the linearity of convolutions, also computational costs.

number of K×K filters, and is optimized jointly with its FB
coefficients λ. By fitting an interspace to sparse filters dur-
ing training, we overcome the lack of prior knowledge for a
basis that is well suited to describe filters with few non-zero
coefficients. If a filter is pruned to a single FB coefficient,
h = λn · g(n), it is not restricted since g(n) can change.
Thus, pruning interspace coefficients of dynamic FBs keeps
the CNN flexible and is called interspace pruning (IP). A 1-
sparse filter h = hin,jn ·e(n) directly predefines h to stay on
the fixed subspace span{e(n)}. Pruning spatial coefficients
w.r.t. the standard basis B is called standard pruning (SP).

During training sparse CNNs, the problem of vanishing
gradients due to spatial sparsity often occurs [66, 71, 74].
In contrast, IP pruned networks are able to learn spatially
dense FBs during training, even when using sparse inter-
space coefficients, see Fig. 1. Therefore, IP leads to an im-
proved information flow and better trainable models.

Although IP yields dense spatial representations, the lin-
earity of convolutions can be used to reduce the number of
computations for CNNs with sparse interspace coefficients.
Compared to SP, IP only increases the number of required
computations by a small, constant count. However, as IP
provides superior sparse models, IP generates CNNs with
faster inference speed than SP while matching the dense
performance. Further, the dynamic achieved by interspace
representations is cheap in terms of memory. A FB F has
K4 parameters as it contains K2 filters of size K × K. A
single FB can be shared for all K × K filters in a CNN.
Also, more than one FB can be used with just a small in-
crease in memory requirements. For cost reasons, we do
not use more FBs than the number of layers in a CNN in
our experiments, resulting in all FBs creating an overhead
of at most 0.01% of the dense network’s parameters. De-
spite adding only few additional costs compared to using
spatial weights, interspace representations significantly im-
prove results for sparse and dense training.
Our core contributions are:

• Representing and training convolutional filters in the
interspace, a linear space spanned by a trainable FB.

The FB is optimized jointly with the FB coefficients.
• Formulating the concept of pruning for filters with in-

terspace representation as general method to improve
performance of CNNs with sparse coefficients.

• Theoretical proof of IP’s improvements in Thm. 1.
• Experiments showing that IP exceeds SP for equal run-

time and memory costs on SOTA sparse training meth-
ods and pruning methods which are applied during
training or on pre-trained models. We demonstrate that
IP’s superiority is achieved by improved trainability,
and at lower sparsity also due to better generalization.

2. Broader Impact

Pruning can lower costs for training, storing and eval-
uating DNNs. We are not aware of any negative outcome
directly induced by this work. Nevertheless, as tool to im-
prove pruning, and therefore to reduce costs for CNNs, IP
could be used for any CNN based application with negative
ethical or societal impact. As authors, we distance ourselves
from such applications and the use of our method therein.

As we show in the paper, IP improves unstructured prun-
ing in general and is not restricted to a special scenario.
We see IP as a tool which is applied in combination with
SOTA SP techniques to lower costs further. Consequently,
our work is to the advantage of everyone using pruning and,
by the improved generalization ability obtained by training
with interspace representations, deep learning in general.

3. Related work

Related work covers general pruning and pruning before
training and DST. Training a sparse model allows to learn
non-zero FB coefficients and FBs jointly from scratch. Such
methods naturally benefit most from interspace representa-
tions and our experiments thus place a strong focus on them.

General pruning. Pruning is divided in structured and
unstructured pruning. Structured pruning removes coarse
structures of the network, like channels or neurons [2, 27,

12528

38, 67, 73, 79]. This yields lean architectures and thus re-
duces computation time. A more fine-grained approach is
unstructured pruning where single, spatial weights are ze-
roed [14, 17, 20, 31, 34, 35, 49]. Unstructured pruning leads
to better performance than structured pruning [36, 48] but
requires soft- and hardware that supports sparse tensor com-
putations to actually reduce runtime [21, 51]. Also, storing
sparse parameters in formats such as the compressed sparse
row format [68] creates additional overhead. This can lead
to non-linear dependencies between the sparsity and actual
memory/runtime costs, see also Appendix Secs. C and D.4.

Pruning can be applied at any time in training. The his-
torically first approaches [23, 30, 31, 34, 50] use trained net-
works and many prune and fine-tune cycles. Criteria are
often based on expensive computations of the Hessian w.r.t.
the loss function. Likewise, magnitudes of trained coeffi-
cients can be used as iterative pruning criterion [17, 22, 36].
By adding sparsity forcing regularizations to the loss, prun-
ing can be integrated dynamically into training [5, 42, 76].

Closest to our work are pruning coefficients in the fre-
quency [41] and the Winograd domain [40]. Contrarily, we
do not bind representations to a fixed basis but let the net-
work learn its FBs self-reliantly. Moreover, IP is not a prun-
ing method by itself, but is added on top of existing ones to
boost them. Also to mention is [37], a low rank approxi-
mation of CNNs. A dense, pre-trained network is approxi-
mated by learning undercomplete dictionaries for 3D filters.
We, on the contrary, represent 2D filters h ∈ RK×K , prune
the network instead of using low rank approximations and
learn FBs jointly with the coefficients in one training.

Pruning before training and dynamic sparse training.
In [14], an iterative procedure is proposed which consists of
training un-pruned weights to convergence, applying mag-
nitude pruning with a small pruning rate to the trained
weights and resetting the non-zero weights to their initial
value. Finally, this leads to sparse, randomly initialized
networks which are well trainable – so called lottery tick-
ets. For SOTA CNNs, resetting un-pruned weights not to
the initialization but a value from an early iteration im-
proves performance significantly [15, 59]. By applying
other criteria, like information flow in the sparse network
[53,66,71,75] or influence of non-zero weights on changing
the loss [9,35,70,75], pruning can be successfully applied at
initialization without pre-training the network. GraSP [71],
SNIP [35] and SynFlow [66] are SOTA for PaI [16]. Dy-
namic sparse training [10,13,39,49] adjusts pruning masks
during training to ensure sparse networks while adapting
the architecture to different conditions. SET [49] frequently
prunes the network based on magnitudes and activates as
many un-trained parameters randomly. RigL [13] improves
this by recovering those weights with the biggest gradient
magnitude.

4. Filter bases and interspace pruning
Inspired by sparse dictionary learning (SDL) (Sec. 4.1)

we introduce interspace representations of convolutional fil-
ters and propose computations of resulting FB convolutions
in Sec. 4.2. Further, Sec. 4.3 discusses FB sharing and the
initialization of FBs and their coefficients. Finally, inter-
space pruning is formally defined in Sec. 4.4.

4.1. Inspiration from sparse dictionary learning

Sparse dictionary learning [1, 12, 46] optimizes a dictio-
nary F ∈ Rm×m jointly with coefficients R ∈ Rm×n to
approximate a target U ∈ Rm×n by using only s non-zero
coefficients. Setting the pruning mask suppR := {(i, j) :
Ri,j ̸= 0}, this defines a non-convex optimization problem

inf
F,R

∥U − F ·R∥F s.t. ∥R∥0 := # suppR ≤ s . (1)

Usually, SDL allows F ∈ Rm×M with arbitrary M . Since
FBs are bases, we restrict F to be quadratic. In our con-
text, U corresponds to all flattened filters of a convolutional
layer, the dictionary F to the layer’s flattened FB F and R
to the FB coefficients. For a layer h ∈ Rcout×cin×K×K

with an associated FB F = {g(1), . . . , g(K2)} ⊂ RK×K ,
we have m = K2 and n = cout · cin. Standard magnitude
pruning is a special case of SDL where F is fixed to form
the standard basis F = idRm . Accordingly,

min
R̄

∥U − R̄∥F s.t. ∥R̄∥0 ≤ s (2)

is minimized for magnitude pruning. Since we train sparse,
randomly initialized CNNs, our overall goal is not to mimic
a given dense CNN, but to train the sparse network to gen-
eralize well. We consequently use Eqs. (1) and (2) only to
find a decent subset of coefficients to be pruned. In contrast
to SDL, deep learning methods are used to further optimize
the un-pruned coefficients and additionally the FBs in the
case of IP. In our experimental evaluation, we also test other
methods than magnitude pruning, i.e. Eqs. (1) and (2). Still,
Eqs. (1) and (2) measure the ability of a sparse layer to func-
tion as well as a dense layer and thus are good indicators for
the general performance of IP and SP, respectively.

Most SDL algorithms [1, 12, 46] optimize F and R al-
ternatingly. Whereas, SP-PaI fixes the basis as idRm and
the pruning mask supp R̄ too. This simplifies the task, but
reduces the solution space. IP overcomes the small, fixed
solution space by adapting the basis during training. For
IP-PaI, the pruning mask suppR is determined heuristically
and also fixed which still leads to sub-optimal architectures.
As shown in this work, using expensive pre-training to find
a better pruning mask via LTs or adapting suppR during
training via DST further improves IP’s performance.

Theorem 1 shows that a dynamic F leads to better ap-
proximations than using the standard basis. Consequently,

12529

0.85 0.9 0.95 0.99
Pruning rate

82

84

86

88

90

92

94

To
p-

1
Te

st
 A

cc
ur

ac
y

Random PaI / VGG16 / CIFAR-10

SP-Random-PaI
IP-Random-PaI
Dense Baseline

(a)

0.85 0.9 0.95
Pruning rate

93.0
93.1
93.2
93.3
93.4
93.5
93.6
93.7
93.8
93.9

IP-SET / FB Sharing / VGG16 / CIFAR-10

IP-SET coarse
IP-SET medium
IP-SET fine

(b)

Figure 2. VGG16 on CIFAR-10: (a) Random SP-PaI and random
IP-PaI. (b) Coarse, medium and fine FB sharing for IP-SET.

the FBs’ adaptivity improves performance after pruning and
Thm. 1 is a theoretical motivation for IP.

Assume a convolutional layer with cout output and cin
input channels, kernel size K ×K and s = (1− p) · cout ·
cin ·K2 un-pruned coefficients. For m = K2 ≥ 9, the δ in
Eq. (3) is numerically equal to zero if n = cout · cin ≥ 100
and 0 < s < cout · cin ·K2. Thus, for each non-trivial spar-
sity, the adaptivity of the FB improves results. This even
holds if the pruning mask for Eq. (1) is fixed to be the one
of the minimizer of Eq. (2), i.e. starting with an arbitrary
pruned network and adding an adaptive FB always improves
results. The proof of Thm. 1 is shown in Appendix Sec. J.
It uses the fact that Eq. (1) is smaller or equal to Eq. (2).
Equality is only possible if Eq. (2) has a solution such that
each K × K filter is either fully pruned or dense. This is
almost impossible for big layers and a non trivial sparsity. If
suppR is further not fixed for Eq. (1), (F, R) can be chosen
such that Eq. (1) is always strictly smaller than Eq. (2).

Theorem 1. Let 0 < s < m ·n, m > 1 and Ui,j ∼ N (0, 1)
i.i.d. Let ε(1) be the infimum of Eq. (1), and ε(2) the mini-
mum of Eq. (2) solved by R̄∗. Then, ε(1) < ε(2) with P = 1.
If suppR is fixed for Eq. (1) to be supp R̄∗, ε(1) ≤ ε(2) is
true and strict inequality holds with P ≥ 1− δ, where

δ =

{
(n

s
m
)/(m·n

s) if s ≡ 0(modm)

0 else
. (3)

Figure 2(a) compares SP and IP for random PaI for a
VGG16 [63] trained on CIFAR-10 [32]. IP improves results
tremendously compared to SP. This experimentally shows
that sparse training performs better when coefficients of
adaptive FBs are pruned than if spatial weights are pruned.
This holds even though fixed pruning masks are used.

4.2. Interspace representation and convolutions

For a convolutional layer, let cout denote its number
of output channels, cin its number of input channels and
K × K its kernel size. To simplify formulas, we restrict
the formulation to 2D convolutions with quadratic kernel,
no padding, 1 × 1 stride and dilation. Generalizing the FB
formulations to arbitrary convolutions is straightforward. A

2D convolution h describing this layer consists of cout · cin
K × K filters h(α,β) ∈ RK×K , i.e. h = (h(α,β))α,β ∈
Rcout×cin×K×K . Inspired by the discussion in Sec. 4.1, we
now represent all h(α,β) in the interspace spanned by the
layer’s FB F = {g(1), . . . , g(K2)} ⊂ RK×K . The FB co-
efficients λ = (λ

(α,β)
n)α,β,n ∈ Rcout×cin×K2

define the
interspace representation of h(α,β), given by

h(α,β) =

K2∑
n=1

λ(α,β)
n · g(n) . (4)

This is a basis transformation of the spatial representation

h(α,β) =

K2∑
n=1

h
(α,β)
in,jn

· e(n) , e(n)i,j = δi,in · δj,jn . (5)

Normally, h(α,β) is defined in spatial representation. Thus,
spatial coefficients are stored in h(α,β) ∈ RK×K . Whereas,
FB coefficients are specified by vectors λ(α,β) ∈ RK2

. By
linearity, a 2D FB convolution (Y (α))α = Y = h ⋆ X
with input feature map X = (X(β))β ∈ Rcin×h×w can be
computed for each output channel α ∈ {1, . . . , cout} as

Y (α) =

cin∑
β=1

h(α,β) ⋆ X(β) (4)
=

cin∑
β=1

K2∑
n=1

λ(α,β)
n (g(n) ⋆ X(β)) .

(6)
Gradients of the loss L are needed to train the FB coeffi-
cients λ and the FB F . Backpropagation formulas for them
are derived in Appendix Sec. D.2. It holds for all n, α, β

∂L
∂λ

(α,β)
n

=

〈
g(n),

∂L
∂h(α,β)

〉
,

∂L
∂g(n)

=
∑
α,β

λ(α,β)
n

∂L
h(α,β)

.

(7)

4.3. Filter basis sharing and initialization

For kernel size 1 × 1, the FB formulation is, up to a
rescaling, equivalent to the spatial representation. Thus, we
assume a CNN with Lc convolutional layers with K > 1
to be given and do not apply the FB formulation to 1 × 1
convolutions. In this work, we test three versions of FB
sharing. Our FB sharing schemes differ in their granular-
ity. The coarse scheme shares one global FB F for all
layers l = 1, . . . , Lc. Whereas, the fine scheme shares a
FB F (l) for each layer l, thus it uses Lc FBs. In between lies
the medium scheme with 5 FBs in total. For ResNets [26],
one FB is shared for each of the 5 convolutional blocks. For
VGG16 [63], convolutional layers {1, 2}, {3, 4}, {5, 6, 7},
{8, 9, 10} and {11, 12, 13} share one FB each. The number
of FBs increases from fine to coarse. The total num-
ber of FBs in the network, J , satisfies J ≤ Lc. Conse-
quently, the number of parameters in all FBs in the network
is bounded from above by Lc ·K4. Note for the CNNs used

12530

in this work, Lc ·K4 is at most 0.01% of all parameters in
the model. Thus, the additional parameter costs for IP with
our proposed sharing schemes are neglectable.

The dimension of the space spanned by each layer does
not change for different FB sharing schemes and is equal
to using spatial representations. However, coarse shar-
ing correlates all layers in the network by using and updat-
ing the same interspace. For fine sharing, each layer has
its own interspace which is adapted more fine-grained. For
spatial representations, the basis B is fixed, not updated and
does not induce correlations between weights. We found
different sharing schemes to work best for varying train-
ing/model/dataset combinations. Figure 2(b) shows our FB
sharing schemes for different pruning rates. Coarse shar-
ing works best for higher numbers of trained parameters.
By correlating all layers through a global FB, we assume it
to have a regularizing effect on training, see also Sec. 5.4.
Fine sharing makes the network more flexible. Thus, re-
sults are the best ones for high pruning rates where the net-
work is not able to overfit on the training data anymore. In
between, medium sharing reaches the best results by com-
bining the best of both worlds.

In this work, we use a simple initialization for FBs and
FB coefficients. We initialize each FB as B and the FB coef-
ficients with a kaiming normal initialization [25]. This
scheme is equivalent to the kaiming normal initializa-
tion for standard CNNs – which is also used for dense base-
lines and SP experiments. In Appendix Sec. G, we propose
further initialization schemes for the interspace.

4.4. Interspace pruning and cost comparison

SP is modeled by superimposing pruning masks
µ̄(α,β) ∈ {0, 1}K×K over filters h(α,β) ∈ RK×K . This
results in sparse filters h(α,β) ⊙ µ̄(α,β), with the Hadamard
product ⊙. Filters represented in the interspace have co-
efficients λ(α,β) ∈ RK2

w.r.t. a FB F . Thus, interspace
pruning is defined by masking FB coefficients with pruning
masks µ(α,β) ∈ {0, 1}K2

via λ(α,β) ⊙ µ(α,β). Combined
with Eq. (6), IP yields sparse computations of convolutions:

Y (α) =

cin∑
β=1

∑
n∈suppµ(α,β)

λ(α,β)
n ·

(
g(n) ⋆ X(β)

)
. (8)

The pruning rate p for SP (pSP) and IP (pIP) is defined as

pSP = 1− ∥Λ∥0
D

, pIP = 1−
∥Λ∥0 +

∑J
j=1 ∥F (j)∥0
D

.

(9)
For SP, Λ ∈ RD denotes the network’s parameters, whereas
Λ ∈ RD contains all parameters except the FBs themselves
in the IP setting. Thus, Λ has exactly the same number of
elements for IP and SP. The pruning rates Eq. (9) are the

Algorithm 1 FB 2D Convolution with IP
1: instance variables ◃ of IP FB 2DConv
2: filter basis: {g(1), . . . , g(K

2)} ⊂ RK×K

3: fb coefficients: (λ(α,β)
n)α,β,n ∈ Rcout×cin×K2

4: pruning mask: (µ(α,β)
n)α,β,n ∈ {0, 1}cout×cin×K2

5: conv args ◃ e.g. stride, padding, groups, . . .
6: def FORWARD PASS(X) ◃ input X ∈ Rcin×h×w

7: for all β ∈ {1, . . . , cin}, n ∈ {1, . . . ,K2} do
8: Z

(β)
n = Conv2D(g(n), X(β),conv args)

9: for all α ∈ {1, . . . , cout} do
10: Y (α) =

∑
{(β,n):µ

(α,β)
n =1} λ

(α,β)
n · Z(β)

n

11: return Y = (Y (α))cout
α=1

fractions of parameters being equal to zero. To have a fair
comparison between IP and SP, we normalize the number of
non-zero parameters with the total count of coefficients in
the standard dense network, i.e. the dense network without
FBs. The number of bias and batch normalization parame-
ters is tiny compared to convolutional and fully connected
layers. Also, all parameters of FBs together are at most
0.01% of D in our experiments. Consequently, we only
prune weights of fully connected layers as well as spatial-
and FB coefficients of convolutional layers. FBs, bias and
batch normalization parameters are all trained.

Computational cost comparison. As discussed, param-
eter costs for IP with our FB sharing schemes are only neg-
ligibly bigger than for SP. By the linearity of convolutions,
the sparsity of filters in the interspace can be used to reduce
computational costs, see Eq. (8). In Appendix Sec. D, com-
putational costs are calculated and compared for IP and SP.
Costs are measured by the number of theoretically required
floating point operations (FLOPs) for a convolutional layer
and are independent of the used FB sharing scheme. IP’s
overhead is composed of additional costs in the forward and
backward pass. For inference, only the additional cost of the
forward pass counts. Both, SP and IP, need specialized soft-
and hardware that supports sparse computations to actually
reduce runtime.

Assume a layer with kernel size K × K, cin input and
cout output channels. In the forward pass, SP has 1 − p
times the FLOPs cost of the dense layer. Due to l. 7-8 in
Alg. 1, IP has a constant overhead K2

/cout. In total, IP has
1− p+ K2

/cout times the FLOPs cost of the dense layer.
In the backward pass, the number of FLOPs for IP is in

O
(
cost

(
∂L
∂h

))
, i.e. comparable to the cost of computing the

dense gradient of layer h in spatial representation.
As discussed, IP needs more computations for inference

than SP for equal sparsity. However, since IP finds superior
sparse models, IP actually achieves a higher speed up in
real time measurements than SP while reaching similar or
even better performance, as will be shown Fig. 5(a).

12531

Pruning methods. Algorithm 1 describes sparse FB 2D
convolutions with IP in pseudo code. Since automatic dif-
ferentiation is standard in modern deep learning frame-
works, backpropagation formulas for FB convolutions are
computed automatically and are not included in Alg. 1.
The FB in Alg. 1 might be shared over several layers, see
Sec. 4.3. Our experiments in Sec. 5 compare SP and IP on
various sparse training and other pruning methods, namely:

DST randomly prunes the model at initialization. During
training, unimportant coefficients are pruned based on their
magnitude. In each layer, the same number of parameters is
regrown by activating their gradients. SET regrows coeffi-
cients randomly whereas RigL regrows those with high gra-
dient magnitude. The pruning mask is updated each 1, 500
iterations for SET and 4, 000 for RigL. A cosine schedule is
used to reduce the number of pruned/regrown coefficients.

LT pre-trains the network for t0 = 500 steps. Then, the
network is trained to convergence. Now, 20% of the non-
zero coefficients are pruned based on their magnitude. The
un-pruned part of the CNN is reset to its value at t0. The
whole procedure is applied k times in total until the desired
pruning rate p = 1 − 0.8k is reached. Ultimately, the final
sparse network is trained, starting at t0.

PaI prunes the model at initialization without pre-
training or changing the pruning mask during training. Ran-
dom PaI prunes weights i.i.d. with probability p. SNIP
trains coefficients which have high influence on changing
the loss L when training starts. GraSP finds coefficients
which improve the gradient flow at the beginning of train-
ing most. SynFlow keeps coefficients with high information
throughput which is measured by their influence on the total
path norm of the sparse network.

Gradual Magnitude Pruning (GMP) [17] starts train-
ing with dense coefficients. During training, the CNN is
gradually sparsified based on the coefficients’ magnitudes.
Pruned parameters are fixed at zero, thus never regrow.

Fine-Tuning (FT) [59] uses a pre-trained network. The
p ·D coefficients with smallest magnitude are pruned. The
pre-trained coefficients of the sparse CNN are fine-tuned
with the learning rate schedule of the dense training.

All these methods were developed for SP. Yet, in our ex-
periments they are applied unchanged to the interspace set-
ting. For more details see Appendix Secs. F and G.

5. Experiments and discussion
Section 5.1 covers the experimental setup. Next, Sec. 5.2

compares the three SOTA PaI methods [35, 66, 71] for IP
and SP. In Sec. 5.3, we discuss IP and SP for more sophis-
ticated sparse training methods, namely LTs [15] and the
DST methods SET [49] and RigL [13]. Furthermore, we
show that IP also improves SP on classical pruning methods
applied during training, GMP [17], and on pre-trained mod-
els, FT [59]. Improved trainability and generalization abil-

VGG16 on CIFAR-10

0.85 0.9 0.95 0.99
Pruning rate

87

88

89

90

91

92

93

94

To
p-

1
Te

st
 A

cc
ur

ac
y

(a) SNIP

ResNet18 on ImageNet

0.6 0.75 0.85
Pruning rate

60

62

64

66

68

(b) SNIP

0.85 0.9 0.95 0.99
Pruning rate

87

88

89

90

91

92

93

94

To
p-

1
Te

st
 A

cc
ur

ac
y

(c) GraSP

0.6 0.75 0.85
Pruning rate

60

62

64

66

68

(d) GraSP

0.85 0.9 0.95 0.99
Pruning rate

87

88

89

90

91

92

93

94

To
p-

1
Te

st
 A

cc
ur

ac
y

(e) SynFlow

0.6 0.75 0.85
Pruning rate

60

62

64

66

68

(f) SynFlow

SP-PaI IP-PaI SP-Random-PaI IP-Random-PaI Dense Baseline

Figure 3. Comparing SP and IP for PaI methods, SNIP, GraSP and
SynFlow together with random PaI for CIFAR-10 and ImageNet.

ity of IP compared to SP is shown and discussed in Sec. 5.4.

5.1. Experimental setup

We compare IP and SP for a VGG16 [63] on CIFAR-
10 [32] and ResNets 18 and 50 [26] on ImageNet
ILSVRC2012 [60]. Models are trained with cross entropy
loss. We report mean and std of five runs for CIFAR-10
and three for ImageNet. Weight decay is applied on coeffi-
cients but not on FBs. Coefficients of 3× 3 filters and their
FBs are trained jointly, whereas fixed FBs F = B are used
for 1 × 1 filters. For ResNet18 we fix the FB F = B for
the 7 × 7 convolution whereas the 7 × 7 FB is trained for
ResNet50. We use medium FB sharing for CIFAR-10 ex-
periments, fine for ResNet50 and coarse sharing for all
3 × 3 convolutions for the ResNet18 on ImageNet. For SP
and dense baselines, standard CNNs are used. As common
in the literature, we report ImageNet results on the valida-
tion set. Note, we use training schedules intended for the
corresponding SP method for both, SP and IP. In particular,
FBs are trained without optimized hyperparameters. Thus,
they use the same learning rate as all parameters. More de-
tails on hyperparameters, evaluation and used CNN archi-

12532

0.85 0.9 0.95 0.99
Pruning rate

90

91

92

93

94

To
p-

1
Te

st
 A

cc
ur

ac
y

SP-SET
IP-SET
Dense Baseline

(a) SET for VGG16 on CIFAR-10

0.832 0.914 0.956 0.972 0.977 0.982 0.986 0.988
Pruning rate

93.0

93.2

93.4

93.6

93.8

94.0

SP-LT
IP-LT
Dense Baseline

(b) LT for VGG16 on CIFAR-10

Figure 4. Comparison between SP and IP for (a) the DST method
SET and (b) LT on a VGG16 trained on CIFAR-10.

tectures are given in Secs. H and I in the Appendix.

5.2. Pruning at initialization methods

Figure 3 compares SP and IP for PaI methods SNIP [35],
GraSP [71] and SynFlow [66] together with random PaI for
a VGG16 on CIFAR-10 and a ResNet18 on ImageNet.

The experiments show that pruning FB coefficients in-
stead of spatial parameters leads to significant improve-
ments in top-1 test accuracy while having the same memory
costs. This holds true for all PaI methods, pruning rates and
for high p in particular. In comparison to CIFAR-10, IP im-
proves results on ImageNet even more. However, the three
methods SNIP, GraSP and SynFlow are all outperformed
by random PaI for ResNet18 on ImageNet. This demon-
strates that these methods perform well for smaller datasets
but show inferior results for small networks on big scale
datasets like ImageNet. Still, as discussed earlier, the use
of IP significantly improves all PaI methods, including ran-
dom PaI. Section 5.3 shows that IP benefits from a stronger
underlying pruning method to improve results further.

Despite optimizing FBs in addition to FB coefficients,
IP does not induce instability compared to SP, see Fig. 5(b)
and standard deviations in Fig. 3. In Appendix Sec. D.3, we
show that the upper bounds for the gradient norms of FBs
∂L
∂F and FB coefficients ∂L

∂λ are both determined by ∥∂L
∂h ∥.

This boundedness of the gradients leads to stable conver-
gence for both, F and λ, while the convergence behavior of
λ and the standard coefficients h is similar, see Fig. 5(b).

5.3. DST, LTs and classical pruning methods

For SP, more expensive or sophisticated methods like LT
and DST improve sparse training results compared to PaI.
We want to analyze whether this also applies to the IP set-
ting. Furthermore, we want to check if IP boosts the SOTA
methods LT and RigL as well. Finally, we benchmark IP
and SP on various SOTA unstructured pruning methods for
a ResNet50 on ImageNet.
DST and LT on CIFAR-10. IP improves DST and LTs
significantly, see Figs. 4(a) and (b). For all p, IP-LT sur-
passes SP-LT. IP needs to train 3.7 times less parameters
(p = 0.977) than SP to reach SP’s best result for p = 0.914.

1x 2x 3x 4x 5x 6x 7x
Actual Sparse Speed Up [CPU]

93.4

93.6

93.8

94.0

To
p-

1
Te

st
 A

cc
ur

ac
y

LT / VGG16 / CIFAR-10

SP-LT IP-LT Dense

(a)

0 50 100 150 200 250
Training Iteration

0.00

0.01

0.02

0.03

0.04

0.05

LR
 ×

 G
ra

di
en

t N
or

m

SNIP / VGG16 / CIFAR-10
FB F with fine sharing
IP-SNIP Coefficients
SP-SNIP Coefficients h

(b)

Figure 5. VGG16 on CIFAR-10: (a) Top-1 test accuracy over
real time acceleration for IP- and SP-LT. (b) Gradient L2 norm ×
learning rate (LR) for SP- and IP-SNIP for layer 1 and p = 0.85.

Top-1 Accuracy for ResNet50 on ImageNet
Method p = 0.0 p = 0.8 p = 0.9

SP-FT 77.15± 0.04 77.02± 0.03 75.67± 0.09
IP-FT 77.30± 0.04 77.18± 0.01 75.89± 0.09

SP-GMP 76.64± 0.06 75.37± 0.01 73.57± 0.06
IP-GMP 77.16± 0.04 75.71± 0.05 74.20± 0.07

SP-RigL 77.15± 0.04 75.75± 0.10 73.88± 0.06
IP-RigL 77.30± 0.04 76.03± 0.08 74.32± 0.11

Table 1. ResNet50 trained on ImageNet for 100 epochs.

IP-LT matches the dense baseline while training only 1.4%
of its parameters and outperforms it for all p ≤ 0.98. Com-
parable results hold for SET. IP-SET improves the dense
baseline for p ≤ 0.9, whereas SP-SET only matches it.
Similar to PaI, IP-SET greatly exceeds SP-SET for high p.
Comparing Figs. 3 and 4 shows that spending more effort
in finding the sparse architecture (LT) or adapting it during
training (SET) improves performance compared to PaI for
both, SP and IP.

ResNet50 on ImageNet. Table 1 compares IP and SP
on the SOTA pruning methods RigL [13], GMP [17] and
FT [59]. As shown, IP outperforms all underlying SP meth-
ods for a ResNet50 on ImageNet. Results are significantly
improved with interspace representations even though more
than 50% of the coefficients of a ResNet50 are 1 × 1 con-
volutions which are equivalent for IP and SP. For example,
IP-FT has similar performance as a standard dense model
while training only 20% of its parameters. Note, using FBs
does not only boost training sparse CNNs but dense training
too, which will be discussed in more detail in Sec. 5.4.

Computational costs. Up to now, IP and SP were com-
pared for equal memory costs. As analyzed in Sec. 4.4,
IP has a small computational overhead compared to SP for
equal sparsity. In applications, the actual runtime is more
important than the theoretically required FLOPs. Thus, we
compare the performance of IP and SP w.r.t. the actual ac-
celeration on a CPU achieved by using sparse representa-
tions. Details on the implementation are provided in the Ap-

12533

VGG16 on CIFAR-10
p = 0.85 p = 0.99

Method Train Test Train Test

SP-SET 99.85 93.45 94.20 89.36
IP-SET 99.89 93.63 96.89 90.92

SP-SNIP 99.94 93.18 93.96 87.75
IP-SNIP 99.96 93.34 98.38 90.79

ResNet50 on ImageNet
p = 0.8 p = 0.9

SP-RigL 74.64 75.75 71.30 73.88
IP-RigL 75.39 76.03 72.08 74.32

Table 2. Generalization gaps for various pruning methods.

pendix Sec. D.4. IP indeed has a longer runtime for equal
sparsity due to the mentioned extra computations. However,
by boosting performance of sparse models, IP reaches sim-
ilar results than dense training with 5.2 times speed up and
better results than SP for equal runtime, see Fig. 5(a).

5.4. Generalization and trainability

We consider generalization as the ability to correctly
classify unseen data [44]. In this context a major aspect is
the relationship between performance on the train and test
set. Ideally, the performance on the train set should be op-
timal and a strong indicator for the performance on the test
set. The generalization gap is the difference between train
and test accuracy. Generalization can be improved by regu-
larizations [6, 28, 33, 64, 78], enabling the model to use ge-
ometrical prior knowledge about the scene [7, 8, 29, 56, 57],
shifting the model back to an area where it generalizes well
[43, 45, 58, 62] but also by pruning the network [3, 24, 34].

Table 2 shows training and test accuracy for the IP- and
SP versions of SET and SNIP for a VGG16 on CIFAR-10 as
well as RigL for a ResNet50 on ImageNet. IP pruned net-
works train better than SP pruned ones for all p. Note, the
used ImageNet training is highly regularized. Thus, the test
accuracy is higher than the train accuracy. For ImageNet
and p = 0.99 on CIFAR-10, IP has a bigger generalization
gap than SP. This is due to a much better training accuracy
for IP, which in the end leads to an improved test accuracy.
However, IP has a smaller generalization gap than SP for
p = 0.85 on CIFAR-10 where the model overfits.

Table 3 further shows that IP can generally improve re-
sults for pruning rates where training overfits. Note, p = 0
is dense training and SP for p = 0 is standard dense train-
ing. Improved performance in the dense setting can not be
explained by IP’s superior expressiveness (Thm. 1) since
IP and SP can represent the same if all parameters are un-
pruned. We hypothesize that correlating filters in a CNN
via FB sharing regularizes training, thereby improving gen-
eralization. One indicator of this is the fact that correlat-

Pruning rate p
Method 0.0 0.35 0.6 0.85

SNIP
SP 93.4± 0.1 93.4± 0.1 93.3± 0.2 93.2± 0.2
IP-coarse 93.9± 0.2 93.7± 0.2 93.8± 0.1 93.5± 0.0
IP-medium 93.9± 0.2 93.6± 0.2 93.7± 0.2 93.3± 0.2
IP-fine 93.7± 0.1 93.3± 0.2 93.3± 0.2 93.2± 0.1

SET
SP 93.4± 0.1 93.5± 0.2 93.3± 0.2 93.5± 0.2
IP-coarse 93.9± 0.1 93.9± 0.2 93.8± 0.1 93.7± 0.2
IP-medium 93.9± 0.1 93.7± 0.2 93.8± 0.1 93.6± 0.2
IP-fine 93.7± 0.1 93.6± 0.2 93.6± 0.2 93.6± 0.2

Table 3. Varying FB sharing schemes for lower pruning rates p.

ing all filters via coarse sharing shows the best results
while fine sharing has comparable results to SP. Conse-
quently, interspace representations can also be used to reg-
ularize dense training even for ResNet50 on ImageNet, see
Tab. 1. After training, dense interspace representations can
be converted to standard ones to reduce computational costs
for inference. By optimizing weight decay and initialization
schemes, IP’s performance can be increased even further, as
shown in Appendix Sec. B.

6. Conclusions and directions for future work

IP significantly improves results compared to pruning
spatial coefficients. We demonstrate this by achieving
SOTA results with the application of IP to SOTA standard
PaI, LT, DST as well as classical pruning methods.

Theorem 1 proofs that IP leads to better sparse approx-
imations than SP. Especially, IP generates models with
higher sparsity and equal performance than SP. Also, FB
representations combined with FB sharing improve gener-
alization of overfitting CNNs, even for dense training. This
comes with the prize of a small computational overhead
for inference and additional gradient computations during
training. Nevertheless, we show that sparse interspace rep-
resentations accelerate dense baselines more than SP while
keeping or even improving the baseline’s performance.

We believe that IP can be enhanced by adapting more
advanced strategies of SDL to the joint training of F and λ.
Adapting IP to structured pruning is an option to maintain
the network’s accuracy while reducing inference time for
arbitrary soft- and hardware. Combining IP with low rank
tensor approximations lowers computational costs as well
and is discussed in Appendix Secs. B and D. The interspace
representation is an adaptive basis transformation of a finite
dimensional vector space. Therefore, FBs F are not lim-
ited to represent convolutional filters but can express arbi-
trary vectors, like columns or small blocks of a matrix. This
makes the concept of IP available for MLPs or self-attention
modules.

12534

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An al-

gorithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, 2006. 3

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Struc-
tured pruning of deep convolutional neural networks. ACM
Journal on Emerging Technologies in Computing Systems,
13(3):1–18, 2017. 2

[3] Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon
Erlebacher. The generalization-stability tradeoff in neural
network pruning. In Advances in Neural Information Pro-
cessing Systems 33, 2020. 1, 8

[4] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John V. Guttag. What is the state of neural
network pruning? In Proceedings of Machine Learning and
Systems 2, 2020. 1

[5] Miguel A. Carreira-Perpinan and Yerlan Idelbayev.
”Learning-compression” algorithms for neural net pruning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018. 3

[6] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in
neural nets: Backpropagation, conjugate gradient, and early
stopping. In Advances in Neural Information Processing Sys-
tems 13, 2000. 8

[7] Taco S. Cohen and Max Welling. Group equivariant convo-
lutional networks. In Proceedings of the 33rd International
Conference on Machine Learning, 2016. 8

[8] Benjamin Coors, Alexandru Paul Condurache, and Andreas
Geiger. Spherenet: Learning spherical representations for
detection and classification in omnidirectional images. In
Proceedings of the European Conference on Computer Vi-
sion, 2018. 8

[9] Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr,
Grégory Rogez, and Puneet K. Dokania. Progressive skele-
tonization: Trimming more fat from a network at initializa-
tion. In International Conference on Learning Representa-
tions, 2021. 1, 3

[10] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. CoRR,
abs/1907.04840, 2019. 3

[11] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Si-
monyan. Fast sparse convnets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020. 1

[12] K. Engan, S. O. Aase, and J. H. Husøy. Method of opti-
mal directions for frame design. Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing 5, 1999. 1, 3

[13] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In Proceedings of the 37th International Confer-
ence on Machine Learning, 2020. 1, 3, 6, 7

[14] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In Inter-
national Conference on Learning Representations, 2018. 1,
3

[15] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy,
and Michael Carbin. Linear mode connectivity and the lot-
tery ticket hypothesis. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2020. 1, 3, 6

[16] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy,
and Michael Carbin. Pruning neural networks at initializa-
tion: Why are we missing the mark? In International Con-
ference on Learning Representations, 2021. 3

[17] Trevor Gale, Erich Elsen, and Sara Hooker. The state of
sparsity in deep neural networks. CoRR, abs/1902.09574,
2019. 3, 6, 7

[18] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen.
Sparse gpu kernels for deep learning. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020. 1

[19] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng
Huang. Network pruning via performance maximization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2021. 1

[20] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Advances in Neural In-
formation Processing Systems 29. 2016. 1, 3

[21] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A. Horowitz, and William J. Dally. Eie: Effi-
cient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–
254, 2016. 1, 3

[22] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems 28.
2015. 1, 3

[23] Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases
for minimal network construction with back-propagation. In
Advances in Neural Information Processing Systems 1. 1989.
3

[24] Babak Hassibi and David Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems, 1992. 1, 8

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In IEEE International
Conference on Computer Vision, 2015. 5

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016. 4,
6

[27] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. Proceedings of the
European conference on computer vision, 2018. 2

[28] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proceedings of the 32nd International Con-
ference on Machine Learning, 2015. 8

[29] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems, 2015. 8

[30] Steven A. Janowsky. Pruning versus clipping in neural net-
works. Physical Review A, 39:6600–6603, 1989. 1, 3

12535

[31] Ehud D. Karnin. A simple procedure for pruning back-
propagation trained neural networks. IEEE Transactions on
Neural Networks, 1(2):239–242, 1990. 3

[32] Alex Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2012. http://www.
cs.toronto.edu/˜kriz/cifar.html. 4, 6

[33] Anders Krogh and John A. Hertz. A simple weight decay can
improve generalization. In Advances in Neural Information
Processing Systems 4. 1992. 8

[34] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal
brain damage. In Advances in Neural Information Process-
ing Systems 2. 1990. 1, 3, 8

[35] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H.S.
Torr. SNIP: Single-shot network pruning based on connec-
tion sensitivity. In International Conference on Learning
Representations, 2019. 1, 3, 6, 7

[36] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In In-
ternational Conference on Learning Representations, 2017.
3

[37] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.
Learning filter basis for convolutional neural network com-
pression. In IEEE International Conference on Computer
Vision, 2019. 3

[38] Zhengang Li, Geng Yuan, Wei Niu, Pu Zhao, Yanyu Li,
Yuxuan Cai, Xuan Shen, Zheng Zhan, Zhenglun Kong,
Qing Jin, Zhiyu Chen, Sijia Liu, Kaiyuan Yang, Bin Ren,
Yanzhi Wang, and Xue Lin. Npas: A compiler-aware frame-
work of unified network pruning and architecture search for
beyond real-time mobile acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 2

[39] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and
Mykola Pechenizkiy. Do we actually need dense over-
parameterization? In-time over-parameterization in sparse
training. In Proceedings of the 38th International Confer-
ence on Machine Learning, 2021. 1, 3

[40] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Effi-
cient sparse-winograd convolutional neural networks. In In-
ternational Conference on Learning Representations, 2018.
3

[41] Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong.
Frequency-domain dynamic pruning for convolutional neu-
ral networks. In Advances in Neural Information Processing
Systems 31, 2018. 3

[42] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l0 regularization.
In International Conference on Learning Representations,
2018. 3

[43] Julia Lust and Alexandru Paul Condurache. Gran: An effi-
cient gradient-norm based detector for adversarial and mis-
classified examples. In 28th European Symposium on Arti-
ficial Neural Networks, Computational Intelligence and Ma-
chine Learning, 2020. 8

[44] Julia Lust and Alexandru Paul Condurache. A survey on
assessing the generalization envelope of deep neural net-
works at inference time for image classification. CoRR,
abs/2008.09381, 2020. 8

[45] Julia Lust and Alexandru Paul Condurache. Efficient detec-
tion of adversarial, out-of-distribution and other misclassi-
fied samples. Neurocomputing, 470:335–343, 2022. 8

[46] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro. Online learning for matrix factorization and sparse
coding. Journal of Machine Learning Research, 11:19–60,
2010. 3

[47] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and
Ohad Shamir. Proving the lottery ticket hypothesis: Prun-
ing is all you need. In Proceedings of the 37th International
Conference on Machine Learning, 2020. 1

[48] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,
Yu Wang, and William J. Dally. Exploring the granularity
of sparsity in convolutional neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2017. 3

[49] Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable
training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature Commu-
nications, 9, 2018. 1, 3, 6

[50] Michael C. Mozer and Paul Smolensky. Skeletonization: A
technique for trimming the fat from a network via relevance
assessment. In Advances in Neural Information Processing
Systems 1. 1989. 1, 3

[51] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, An-
tonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, Stephen W. Keckler, and William J. Dally. Scnn.
Proceedings of the 44th Annual International Symposium on
Computer Architecture, 2017. 1, 3

[52] Daniel S. Park, Yu Zhang, Chung-Cheng Chiu, Youzheng
Chen, Bo Li, William Chan, Quoc V. Le, and Yonghui Wu.
Specaugment on large scale datasets. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
2020. 1

[53] Shreyas Malakarjun Patil and Constantine Dovrolis. PHEW:
Constructing sparse networks that learn fast and generalize
well without training data. In Proceedings of the 38th Inter-
national Conference on Machine Learning, 2021. 3

[54] Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and
Quoc V. Le. Meta pseudo labels. In IEEE Conference on
Computer Vision and Pattern Recognition, 2021. 1

[55] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kemb-
havi, Ali Farhadi, and Mohammad Rastegari. What’s hidden
in a randomly weighted neural network? In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020.
1

[56] Matthias Rath and Alexandru Paul Condurache. Invariant
integration in deep convolutional feature space. In 28th Eu-
ropean Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning, 2020. 8

[57] Matthias Rath and Alexandru Paul Condurache. Improving
the sample-complexity of deep classification networks with
invariant integration. In Proceedings of the 17th Interna-
tional Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, 2022. 8

12536

[58] Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan
Poplin, Mark Depristo, Joshua Dillon, and Balaji Lakshmi-
narayanan. Likelihood ratios for out-of-distribution detec-
tion. In Advances in Neural Information Processing Systems,
2019. 8

[59] Alex Renda, Jonathan Frankle, and Michael Carbin. Com-
paring rewinding and fine-tuning in neural network pruning.
In International Conference on Learning Representations,
2020. 3, 6, 7

[60] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, 2015. 6

[61] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Et-
zioni. Green AI. Communications of the ACM, 63(12):54–
63, 2020. 1

[62] Joan Serrà, David lvarez, Vicen Gmez, Olga Slizovskaia,
Jos F. Nez, and Jordi Luque. Input complexity and out-of-
distribution detection with likelihood-based generative mod-
els. In International Conference on Learning Representa-
tions, 2020. 8

[63] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Inter-
national Conference on Learning Representations, 2015. 4,
6

[64] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. 8

[65] Emma Strubell, Ananya Ganesh, and Andrew McCallum.
Energy and policy considerations for modern deep learning
research. Proceedings of the AAAI Conference on Artificial
Intelligence, 2020. 1

[66] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by it-
eratively conserving synaptic flow. In Advances in Neural
Information Processing Systems 33, 2020. 1, 2, 3, 6, 7

[67] Yehui Tang, Yunhe Wang, Yixing Xu, Yiping Deng, Chao
Xu, Dacheng Tao, and Chang Xu. Manifold regularized dy-
namic network pruning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2021. 2

[68] W.F. Tinney and J.W. Walker. Direct solutions of sparse net-
work equations by optimally ordered triangular factorization.
Proceedings of the IEEE, 55(11):1801–1809, 1967. 3

[69] Karen Ullrich, Edward Meeds, and Max Welling. Soft
weight-sharing for neural network compression. In Inter-
national Conference on Learning Representations, 2017. 1

[70] Stijn Verdenius, Maarten Stol, and Patrick Forré. Prun-
ing via iterative ranking of sensitivity statistics. CoRR,
abs/2006.00896, 2020. 3

[71] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Pick-
ing winning tickets before training by preserving gradient
flow. In International Conference on Learning Representa-
tions, 2020. 1, 2, 3, 6, 7

[72] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-yolov4: Scaling cross stage partial
network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021. 1

[73] Zi Wang, Chengcheng Li, and Xiangyang Wang. Convo-
lutional neural network pruning with structural redundancy
reduction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021. 2

[74] Paul Wimmer, Jens Mehnert, and Alexandru Condurache.
FreezeNet: Full performance by reduced storage costs. In
Proceedings of the Asian Conference on Computer Vision,
2020. 2

[75] Paul Wimmer, Jens Mehnert, and Alexandru Condurache.
COPS: Controlled pruning before training starts. In Inter-
national Joint Conference on Neural Networks, 2021. 1, 3

[76] Huanrui Yang, Wei Wen, and Hai Li. DeepHoyer: Learn-
ing sparser neural network with differentiable scale-invariant
sparsity measures. In International Conference on Learning
Representations, 2020. 3

[77] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
Proceedings of the European conference on computer vision,
2020. 1

[78] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. In 5th International Con-
ference on Learning Representations, 2017. 8

[79] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng,
Kai Shuang, and Xiang Li. Neuron-level structured pruning
using polarization regularizer. In Advances in Neural Infor-
mation Processing Systems 33, 2020. 2

[80] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanx-
iao Liu, Ekin Dogus Cubuk, and Quoc Le. Rethinking pre-
training and self-training. In Advances in Neural Information
Processing Systems 33, 2020. 1

12537

