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Abstract

We propose an analysis-by-synthesis method for fast
multi-view 3D reconstruction of opaque objects with ar-
bitrary materials and illumination. State-of-the-art meth-
ods use both neural surface representations and neural ren-
dering. While flexible, neural surface representations are
a significant bottleneck in optimization runtime. Instead,
we represent surfaces as triangle meshes and build a dif-
ferentiable rendering pipeline around triangle rasterization
and neural shading. The renderer is used in a gradient de-
scent optimization where both a triangle mesh and a neural
shader are jointly optimized to reproduce the multi-view im-
ages. We evaluate our method on a public 3D reconstruc-
tion dataset and show that it can match the reconstruction
accuracy of traditional baselines and neural approaches
while surpassing them in optimization runtime. Addition-
ally, we investigate the shader and find that it learns an
interpretable representation of appearance, enabling appli-
cations such as 3D material editing.

1. Introduction

The reconstruction of 3D objects based on multiple im-
ages is a long standing problem in computer vision. Tra-
ditionally, it has been approached by matching pixels be-
tween images, often based on photo-consistency constraints
or learned features [16, 25]. More recently, analysis-by-
synthesis, a technique built around the rendering operation,
has re-emerged as a promising direction for reconstructing
scenes with complex illumination, materials and geome-
try [34, 36, 37, 39, 41, 65]. At its core, parameters of a vir-
tual scene are optimized so that its rendered appearance
from the input camera views matches the camera images. If
the reconstruction focuses on solid objects, these parame-
ters usually include a representation of the object surface.

In gradient descent-based optimizations, analysis-by-
synthesis for surfaces is approached differently depending

*Equal contribution

Figure 1. We reconstruct an object from images by simultane-
ously deforming a triangle mesh and optimizing a neural shader,
comparing the renderings to the input images.

on the differentiable rendering operation at hand. Methods
that physically model light transport typically build on prior
information such as light and material models [35, 36]. It is
common to represent object surfaces with triangle meshes
and use differentiable path tracers (e.g., [29, 42, 67]) to
jointly optimize the geometry and parameters like the light
position or material diffuse albedo. Due to the inherent pri-
ors, these methods do not generalize to arbitrary scenes.

Other methods instead model the rendering operation
with neural networks [41,43,64], i.e., the interaction of ma-
terial, geometry and light is partially or fully encoded in the
network weights, without any explicit priors. Surfaces are
often represented with implicit functions or more specifi-
cally implicit neural representations [33, 41, 44] where the
indicator function is modeled by a multi-layer perceptron
(MLP) or any other form of neural network and optimized
with the rendering networks in an end-to-end fashion.

While fully neural approaches are general, both in terms
of geometry and appearance, current methods exhibit ex-
cessive runtime, making them impractical for domains that
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handle a large number of objects or multi-view video (e.g.
of human performances [6, 15, 50, 53, 59]).

We propose Neural Deferred Shading (NDS), a
fast analysis-by-synthesis method that combines triangle
meshes and neural rendering. The rendering pipeline is in-
spired by real-time graphics and implements a technique
called deferred shading [7]: a triangle mesh is first raster-
ized and the pixels are then processed by a neural shader
that models the interaction of geometry, material, and light.
Since the rendering pipeline, including rasterization and
shading, is differentiable, we can optimize the neural shader
and the surface mesh with gradient descent (Figure 1). The
explicit geometry representation enables fast convergence
while the neural shader maintains the generality of the mod-
eled appearance. Since triangle meshes are ubiquitously
supported, our method can also be readily integrated with
existing reconstruction and graphics pipelines. Our techni-
cal contributions include:

• A fast analysis-by-synthesis pipeline based on triangle
meshes and neural shading that handles arbitrary illu-
mination and materials

• A runtime decomposition of our method and a state-
of-the-art neural approach

• An analysis of the neural shader and the influence of
its parameters

2. Related Work
2.1. Multi-View Mesh Reconstruction

There is a vast body of work on image-based 3D recon-
struction for different geometry representations (e.g. voxel
grids, point clouds and triangle meshes). Here, we will only
focus on methods that output meshes and refer to Seitz et
al. [51] for an overview of other approaches.

Photo-Consistency. During the past decades, multi-view
methods have primarily exploited photo-consistency across
images. Most of these approaches traverse different geom-
etry representations like depth maps or point clouds before
extracting (and further refining) a mesh, e.g. [2, 5, 13, 14,
20, 54, 58, 60]. Some methods directly estimate a mesh by
deforming or carving an initial mesh (e.g. the visual hull)
while minimizing an energy based on cross-image agree-
ment [10–12, 21, 68]. Recently, learned image features and
neural shape priors have been used to drive the mesh defor-
mation process [30,62]. Our method is similar to full mesh-
based approaches in the sense that we do not use interme-
diate geometry representations. However, we also do not
impose strict assumptions on object appearance across im-
ages, which enables us to handle non-Lambertian surfaces
and varying light conditions.

Analysis-by-Synthesis. More than 20 years ago, Rock-
wood and Winget [47] proposed to deform a mesh so that
synthesized images match the input images. Their early
analysis-by-synthesis method builds on an objective func-
tion with similar terms as ours (and many modern ap-
proaches): shading, silhouette, and geometry regulariza-
tion. Later works propose similar techniques (e.g. [8, 63,
66]), yet all either assume known material or light parame-
ters or restrict the parameter space with prior information,
e.g. by assuming constant material across surfaces. In con-
trast, we optimize all parameters of the virtual scene and do
not assume specific material or light models.

Optimizing many parameters of a complex scene, includ-
ing geometry, material and light, has only lately become
practical, arguably with the advent of differentiable render-
ing. Differentiable path tracers have been used on top of tri-
angle meshes to recover not only the geometry but also the
(spatially varying) reflectance and light [35, 36], only from
images. Related techniques can reconstruct transparent ob-
jects [37]. Similarly, we perform analysis-by-synthesis by
optimizing a mesh with differentiable rendering. How-
ever, we use rasterization and do not simulate light trans-
port. In our framework, the view-dependent appearance is
learned by a neural shader, which neither depends on mate-
rial or light models nor imposes constraints on the acquisi-
tion setup (e.g. co-located camera and light).

Besides mesh reconstruction from real world images,
analysis-by-synthesis with differentiable rendering has re-
cently been used for image-based geometry processing [32]
and appearance-driven mesh simplification [19]. Similar to
us, these approaches deform a triangle mesh to reproduce
target images, albeit their targets are fully synthetic.

2.2. Neural Rendering and Reconstruction

In this work, we understand neural rendering as train-
ing and using a neural network to synthesize color images
from 2D input (e.g. semantic labels or UV coordinates),
recently named “2D Neural Rendering” [56]. Neural ren-
dering has been used as integral part of 3D reconstruction
methods with neural scene representations.

Introduced by Mildenhall et al. [39], neural radiance
fields are volumetric scene representations used for 3D re-
construction, which are trained to output RGB values and
volume densities at points along rays casted from different
views. This idea has been adapted by a large number of
recent works [9]. Although not strictly based on neural ren-
dering, these methods are related to ours by their analysis-
by-synthesis characteristics. While the volumetric repre-
sentation can handle transparent objects, most methods fo-
cus on view synthesis, so extracted surfaces lack geometric
accuracy. Lassner et al. [27] propose a volumetric represen-
tation based on translucent spheres, which are shaded with
neural rendering. Similar to us, they jointly optimize geom-
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Figure 2. Overview of our optimization procedure. We rasterize the triangle mesh and shade the results with a neural network to synthesize
an image for each input camera view. The shader is updated based on the difference between rendered and input images, whereas the mesh
vertices are also updated based on the silhouette and a geometric regularization term. We optimize using gradient descent.

etry and appearance with a focus on speed, yet most details
in their reconstruction are not present in the geometry but
“hallucinated” by the neural renderer.

Implicit surfaces encoded in neural networks are an-
other popular geometry representation for 3D reconstruc-
tion, most notably occupancy networks [38, 41, 43, 46] and
neural signed distance functions [23, 44, 61, 64]. Here, sur-
faces are implicitly defined by level sets. For 3D recon-
struction, these geometry networks are commonly trained
end-to-end with a neural renderer to synthesize scenes that
reproduce the input images. We also use neural rendering
to model the appearance, but represent geometry explicitly
with triangle meshes, which can be efficiently optimized
and readily integrated into existing graphics workflows.

Similar to us, Thies et al. [57] present a deferred mesh
renderer with neural shading. However, their convolutional
neural network-based renderer can “hallunicate” colors at
image regions that are not covered by geometry, as opposed
to our MLP-based shader. Most notably, their method aims
at view synthesis, therefore only the renderer weights are
optimized, while the mesh vertices remain unchanged.

3. Method

Given a set of images I = {I1, · · · , In} from calibrated
cameras and corresponding masks M = {M1, · · · ,Mn},
we want to estimate the 3D surface of an object shown in the
images. To this end, we follow an analysis-by-synthesis ap-
proach: we find a surface that reproduces the images when
rendered from the camera views. In this work, the surface
is represented by a triangle mesh G = (V, E ,F), consisting
of vertex positions V , a set of edges E , and a set of faces F .
We solve the optimization problem using gradient descent
and gradually deform a mesh based on an objective function
that compares renderings of the mesh to the input images.

Faithfully reproducing the images via rendering requires
an estimate of the surface material and illumination if
we simulate light transport, e.g. with a differentiable path
tracer [29, 42]. However, because our focus is mainly on
the geometry, we do not accurately estimate these quanti-
ties and thus also avoid the limitations imposed by material
and light models. Instead, we propose a differentiable mesh
renderer that implements a deferred shading pipeline and
handles arbitrary materials and light settings. At its core, a
differentiable rasterizer produces geometry maps per view,
which are then processed by a learned shader. See Figure 2
for an overview.

3.1. Neural Deferred Shading
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Figure 3. Architecture of the neural shader. The position x is
transformed by a positional encoding (PE) [55] and processed by
3 fully-connected layers. The resulting feature vector is concate-
nated with the surface normal n and the view direction ωo and
processed by the last two layers, yielding a color value. We use
ReLU activations for the hidden layers and a sigmoid activation
for the last layer.

Our differentiable mesh renderer follows the structure of
a deferred shading pipeline from real-time graphics: Given
a camera i, the mesh is rasterized in a first pass, yielding a
triangle index and barycentric coordinates per pixel. This
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information is used to interpolate both vertex positions and
vertex normals, creating a geometry buffer (g-buffer) with
per-pixel positions and normals. In a second pass, the g-
buffer is processed by a learned shader

fθ(x,n,ωo) ∈ [0, 1]3 (1)

with parameters θ. The shader returns an RGB color value
for a given position x ∈ R3, normal n ∈ R3, and view di-
rection ωo = ci−x

∥ci−x∥ , with ci ∈ R3 the center of camera i.
It encapsulates the appearance, i.e., interaction of geome-
try, material and light as well as the camera pixel response,
and is optimized together with the geometry. We represent
the shader as a shallow multi-layer perceptron, with θ as the
parameters of the fully-connected layers (Figure 3). In this
context, it has been shown that providing the normal and
view direction with the position is necessary for disentan-
gling the geometry from the appearance [64].

In addition to a color image, the renderer also produces
a mask that indicates if a pixel is covered by the mesh.

3.2. Objective Function

Finding an estimate of shape and appearance formally
corresponds to solving the following minimization problem
in our framework

argmin
V,θ

Lappearance(G, θ; I,M) + Lgeometry(G), (2)

where Lappearance compares the rendered appearance of the
estimated surface to the camera images and Lgeometry regu-
larizes the mesh to avoid undesired vertex configurations.

3.2.1 Appearance

The appearance objective is composed of two terms

Lappearance = Lshading + Lsilhouette, (3)

where the shading term

Lshading = λshading
1

|I|

|I|∑
i=1

∥Ii − Ĩi∥1 (4)

ensures that the color images produced by the shader Ĩi cor-
respond to the input images and the silhouette term

Lsilhouette = λsilhouette
1

|M|

|M|∑
i=1

∥Mi − M̃i∥1 (5)

ensures that the rendered masks M̃i match the input masks
for all views. Here, ∥·∥1 denotes the mean absolute error of
all pixels in an image. Formally, the masks M̃i are functions
of the geometry G and the parameters of camera i, while the

color images Ĩi are also functions of the neural shader (or
more precisely its parameters θ).

Separating the shading from the silhouette objective
mainly has performance reasons: For a camera view i,
the rasterization considers all pixels in the image, there-
fore computing the mask M̃i is cheap. However, shading
is more involved and requires invoking the neural shader
for all pixels after rasterization, which is an expensive op-
eration. In practice, we only shade a subset of pixels inside
the intersection of input and rendered masks while compar-
ing the silhouette for all pixels. Additionally, we also limit
the number of camera views considered in each gradient de-
scent iteration.

3.2.2 Geometry Regularization

Naively moving the vertices unconstrained in each iteration
quickly leads to undesirable meshes with degenerate trian-
gles and self-intersections. We use a geometry regulariza-
tion term that favors smooth solutions and is inspired by
Luan et al. [36]:

Lgeometry = Llaplacian + Lnormal. (6)

Let V ∈ Rn×3 be a matrix with vertex positions as rows,
the Laplacian term is defined as

Llaplacian = λlaplacian
1

n

n∑
i=1

∥δi∥22, (7)

where
δi = (LV )i ∈ R3 (8)

are the differential coordinates [1] of vertex i, L ∈ Rn×n is
the graph Laplacian of the mesh G and ∥·∥2 is the Euclidean
norm. Intuitively, by minimizing the magnitude of the dif-
ferential coordinates of a vertex, we minimize its distance
to the average position of its neighbors.

The normal consistency term is defined as

Lnormal = λnormal
1

|F̄ |
∑

(i,j)∈F̄

(1− ni · nj)
2, (9)

where F̄ is the set of triangle pairs that share an edge and
ni ∈ R3 is the normal of triangle i (under an arbitrary or-
dering of the triangles). It computes the cosine similarity
between neighboring face normals and enforces additional
smoothness.

While some prior work (e.g., [32, 36]) uses El Topo [4]
for robust mesh evolution, we found that our geometric reg-
ularization sufficiently avoids degenerate vertex configura-
tions. Without El Topo, we are unable to handle topology
changes but avoid its impact on runtime performance.
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Figure 4. Qualitative comparison on the DTU dataset. Left: Reference geometry and reconstruction results. Right: Point-to-mesh distance
between the reference scan and the reconstructed mesh.

3.3. Optimization

Our optimization starts from an initial mesh that is com-
puted from the masks and resembles a visual hull [28]. Al-
ternatively, it can start from a custom mesh.

Similar to prior work, we use a coarse-to-fine scheme for
the geometry: Starting from a coarsely triangulated mesh,
we progressively increase its resolution during optimiza-
tion. Inspired by Nicolet et al. [40] we remesh the sur-
face with the method of Botsch and Kobbelt [3], halving
the average edge length multiple times at fixed iterations.
After mesh upsampling, we also increase the weights of the
regularization terms by 4 and decrease the gradient descent
step size for the vertices by 25 %, which we empirically
found helps to improve the smoothness for highly tesselated
meshes.

Since some quantities in geometry regularization (e.g.
graph Laplacian) only depend on the connectivity of the
mesh, we save time by precomputing them once after up-
sampling and reusing them in the iterations after.

4. Experimental Results

We implemented our method on top of the auto-
matic differentiation framework PyTorch [45] and use the
ADAM [24] optimizer for momentum-based gradient de-
scent. Our differentiable rendering pipeline uses the high-
performance primitives by Laine et al. [26]. In our experi-
ments, we run 2000 gradient descent iterations and remesh
after 500, 1000, and 1500 iterations. We randomly se-
lect one view per iteration to compute the appearance term
and shade 75 % of mask pixels. The individual objec-
tive terms are weighted with λshading = 1, λsilhouette = 2,
λlaplacian = 40, and λnormal = 0.1. All time measurements
were taken on a Windows workstation with an Intel Xeon
32×2.1 GHz CPU, 128 GB of RAM, and an NVIDIA Titan
RTX GPU with 24 GB of VRAM.

Table 1. Quantitative results for multi-view reconstruction of ob-
jects from the DTU dataset. Chamfer scores are in millimeters and
the COLMAP runtime is for the trim7 configuration.

Scan
COLMAP [48, 49] IDR [64] NDS (Ours)

trim7 (trim0)

↓ Chamfer-L1 ↓ time [min] ↓ Chamfer-L1 ↓ time [min] ↓ Chamfer-L1 ↓ time [min]

24 0.45 (0.81) 66.81 1.58 551.83 4.24 12.24
37 0.90 (2.03) 81.19 2.06 566.13 5.25 7.56
40 0.36 (0.75) 65.47 0.75 550.19 1.30 10.69
55 0.36 (1.20) 64.71 0.43 565.27 0.53 7.54
63 0.90 (1.75) 75.62 1.06 553.07 2.47 6.18
65 0.94 (1.55) 62.62 0.79 568.41 1.22 9.95
69 0.53 (1.02) 86.77 0.68 557.58 1.35 9.64
83 1.16 (3.03) 77.96 1.38 745.18 1.59 4.76
97 1.08 (1.42) 50.89 1.17 743.11 2.77 7.32
105 0.63 (1.96) 51.59 0.88 742.31 1.15 7.00
106 0.48 (0.99) 108.01 0.63 735.23 1.02 7.41
110 0.58 (1.33) 85.87 0.99 752.94 3.18 6.68
114 0.31 (0.50) 88.39 0.37 730.50 0.62 7.99
118 0.44 (0.78) 105.75 0.50 748.60 1.65 6.77
122 0.43 (1.17) 80.80 0.52 747.90 0.91 5.76

mean 0.64 (1.35) 76.83 0.92 657.22 1.95 7.83

4.1. 3D Reconstruction

We demonstrate that our method can be used for multi-
view 3D reconstruction. Starting from a coarse visual hull-
like mesh, it quickly converges to a reasonable estimate of
the object surface. We test our method on the DTU multi-
view dataset [22] with the object selection and masks from
previous work [41, 64]. We compare our results to two
methods: (1) COLMAP [48, 49], a traditional SfM pipeline
that serves as a baseline, and (2) IDR [64], a state-of-the-art
analysis-by-synthesis method that uses neural signed dis-
tance functions as geometry representation. By default, our
COLMAP results include trimming (trim7) and we indicate
untrimmed results explicitly (trim0).

Figure 4 shows qualitative results for two objects from
the DTU dataset and Table 1 contains quantitative results
for all objects. We used the official DTU evaluation script to
generate the Chamfer-L1 scores and benchmarked all work-
flows for the time measurements (including data loading
times). For IDR and our method we disabled any inter-
mediate visualizations.
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In absolute terms (millimeters), the reconstruction accu-
racy of our method is close to both the traditional base-
line and the state-of-the-art neural method. Although
COLMAP reconstructs many surfaces accurately, only IDR
and our method properly handle regions dominated by
view-dependent effects (e.g. non-Lambertian materials) and
produce watertight surfaces that can remain untrimmed.
When COLMAP is used without trimming, the reconstruc-
tion becomes more complete but it is less accurate than ours
for some objects. Our method is limited by the topology and
genus of the initial mesh and therefore cannot capture some
geometric details that can be recovered with more flexible
surface representations. We also observe that our surfaces
are often not as smooth as IDR’s and concave regions are
not as prominent. The latter is potentially related to the
mesh stiffness induced by our geometry regularization.

On the other hand, our method is significantly faster:
roughly 10 times faster than COLMAP and 80 times faster
than IDR in the default configuration. Since the number of
iterations is a hyper parameter for IDR and our method (and
also has different semantics), we show equal time results for
a fair comparison of both (Figure 5). Our method quickly
converges to a detailed estimate, while IDR only recovers a
rough shape in the same time. Even after 50 minutes, IDR
still lacks details present in our result.

ID
R

O
ur

s

1 min 10 min 50 min

Figure 5. Equal time reconstruction. We consider our result con-
verged after 10 minutes. Even after 50 minutes, IDR lacks details
that are present in our reconstruction (e.g., feathers and eyes).

Since IDR and our method have similar architectures,
i.e., both perform analysis-by-synthesis and use gradient
descent to jointly optimize shape and appearance, we can
meaningfully compare the runtime in more detail. Table 2
shows the runtime of one gradient descent iteration (see the
supplementary material for a full decomposition of our run-
time).

An iteration in IDR takes roughly twice the time as in
our method, with the majority of time spent for ray march-
ing the implicit function. In contrast, the time taken for ras-
terizing the triangle mesh is negligible in our method. Most
of the ray marching time in IDR can be attributed to evalu-

Table 2. Average runtime of one gradient descent iteration of IDR
and our method, decomposed hierarchically. Geometry rendering
time excludes shading and corresponds to ray marching 2048 pix-
els for IDR and rasterizing to 1.9 million pixels in our case.

IDR NDS (Ours)

time [s] share time [s] share

Gradient descent iteration 0.3577 100 % 0.1561 100 %↰

Geometry rendering 0.2099

↰

58.7 % 0.0034

↰

2.2 %↰

SDF evaluation 0.1472

↰

70.1 % –

ating the network, thus switching to a more shallow neural
representation could be a way to reduce the runtime. The re-
maining time is spent on operations like root finding, which
could be accelerated by a more optimized implementation.

However, the runtime difference in gradient descent it-
erations cannot be the sole reason for our fast convergence.
Even though iterations in IDR require twice the time, it re-
quires more than twice the total time to show the same level
of detail as our method (see Figure 5).

In our method, we noticed that after mesh upsampling
finer details quickly appear in the geometry. Thus, our fast
convergence time might partially be related to the fact that
we can locally increase the geometric freedom with a finer
tessellation, while IDR and similar methods have no ex-
plicit control over geometric resolution.

4.2. Mesh Refinement

Images Initial Refined

Figure 6. Refining meshes from an established multi-view recon-
struction pipeline. Four of the 32 images are shown.

Many reconstruction workflows based on photo-
consistency are very mature, established and deliver high-
quality results. Yet, they can fail for challenging mate-
rials or different light conditions across images, produc-
ing smoothed outputs as a compromise to errors in photo-
consistent matching.
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Since our method can start from arbitrary triangle
meshes, we propose the refinement of outputs from tradi-
tional pipelines as one possible application. Our method
then acts as a post-processing step, improving the given ge-
ometry or parts of it with global multi-view constraints. We
demonstrate this application on a human body dataset that
contains 360° images of human subjects captured by 32
cameras and meshes from a traditional 3D reconstruction
pipeline [50].

Figure 6 shows refinement results for the heads of two
persons. We use 1000 iterations and upsample the mesh
once. Since the initial mesh is already a good estimate of the
true surface but the neural shader is randomly initialized, we
rebalance the gradient descent step sizes so that the shader
progresses faster than the geometry. We are able to recover
details that are lost in the initial reconstruction. Very fine
details like the facial hair are still challenging and lead to
slight noise in our refined meshes.

4.3. Analysis of the Neural Shader

Original Rendered Rendered Rendered
(fixed mesh) (new view)

Figure 7. View synthesis for an input view and a new view. By
fixing the mesh after reconstruction and continuing shader opti-
mization, we can further improve the view synthesis results.

Although recovering geometry is the main focus of our
work, investigating the neural shader after optimization can
potentially give insights into the reconstruction procedure
and the information that is encoded in the network.

Figure 7 shows that rendering with a trained shader can
be used for basic view synthesis, producing reasonable re-
sults for input and novel views. Thus, the shader seems to
learn a meaningful representation of appearance, disentan-
gled from the geometry. If desired, the view synthesis qual-
ity can be further improved by continuing the optimization
of the shader while keeping the mesh fixed.

The neural shader is a composite of two functions (Fig-
ure 3)

fθ(x,n,ωo) = c
(
h(x),n,ωo

)
, (10)

where h : R3 → R256 transforms points in 3D space to
positional features and c : (R256 × R3 × R3) → [0, 1]3

then extracts view-dependent colors. Both functions are de-
pendent on parameters θh and θc, respectively. To further
decompose the behavior of the shader, we perform a princi-
ple component analysis of the positional features from h

Image Feature Projection Material Edit

Figure 8. A principle component analysis of the shader’s posi-
tional features reveals a connection to materials. We show the pro-
jection to the two largest principle components. Replacing features
in the positional latent space before computing the view-dependent
color enables simple material editing. The feature vector at the yel-
low square (pants material) determines regions that are replaced
with the feature vector at the green square (beard material).

and project them to the two dominant components (Fig-
ure 8). The shader naturally learns similar positional fea-
tures for regions with similar material, despite their distance
in space. Variations in illumination also seem to be encoded
in the positional features because shadowed regions have
slightly different features than exposed regions of the same
material.

We investigate the behavior of the view-dependent part
by replacing feature vectors in the positional latent space
and then extracting colors with the function c. More specif-
ically, we replace all features representing one material by
a feature representing another material (Figure 8). The re-
sults suggest that the function c reasonably generalizes to
view and normal directions not encountered in combination
with the replacement feature, which in this example leads to
geometric features of the mesh being still perceivable and
thus allows simple material editing.

4.4. Ablation Studies

We experiment with different encodings and network
sizes for the position dependent part of the neural shader. In
Figure 9, we show the different results using positional en-
coding (PE) [55], Gaussian Fourier features (GFF) [55], si-
nusoidal activations (SIREN) [52] and a standard MLP with
ReLU activations.

While some of these methods can generate acceptable
renderings, they do not necessarily guarantee a sharper ge-
ometry. In particular, we observe that although the image
rendered with SIREN or GFF has sharp features, the ge-
ometric detail of the mesh is less adequate. A possible
explanation is that the network might quickly overfit and
compensate for geometrical inaccuracies only in the appear-
ance. Conversely, finding the correct direction along which
to move the mesh vertices might be more difficult without
positional encoding. In our experiments, we have obtained
accurate reconstructions using positional encoding with 4
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PE4 (Ours) PE10 GFF ReLU SIREN

Figure 9. Ablation of different encodings for the positional features and activation functions. Note that the ears of the owl are only present
in few views and not part of the reference geometry, thus are not considered in the comparison. For ReLU and SIREN we use no encoding.

octaves, as opposed to the recommended 10 [39].
We also examined the effect of different network sizes on

the geometry and appearance (see supplementary). While
there are no dramatic differences between the results, we
observe that configurations with less than 2 layers or with
more than 512 units per layer result in fewer geometric de-
tails. Additional ablation studies for the initial geometry
and the objective function can also be found in the supple-
mentary.

5. Concluding Remarks

We have presented a fast analysis-by-synthesis pipeline
for 3D surface reconstruction from multiple images. Our
method jointly optimizes a triangle mesh and a neural
shader as representations of geometry and appearance to
reproduce the input images, thereby combining the speed
of triangle mesh optimization with the generality of neural
rendering.

Our approach can match state-of-the-art methods in re-
construction accuracy, yet is significantly faster with aver-
age runtimes below 10 minutes.

Using triangle meshes as geometry representation makes
our method fully compatible with many traditional recon-
struction workflows. Thus, instead of replacing the com-
plete reconstruction architecture, our method can be inte-
grated as a part, e.g., a refinement step.

Finally, a preliminary analysis of the neural shader sug-
gests that it decomposes appearance in a natural way, which
could help our understanding of neural rendering and en-
able simple ways for altering the scene appearance (e.g. for
material editing).

Limitations and Future Work. While triangle meshes
are a simple and fast representation, using them robustly
in 3D reconstruction with differentiable rendering is still
challenging. We currently avoid undesired mesh configura-
tions (e.g. self-intersections) with carefully weighted geom-
etry regularizers that steer the optimization towards smooth

solutions. Finding an appropriate balance between smooth-
ness and rendering terms is not always straightforward and
can require fine-tuning for custom data. In this regard,
we are excited about integrating very recent work that pro-
poses gradient preconditioning instead of geometry regular-
ization [40].

Topology changes are a challenge for most mesh-based
methods, including ours, and computationally expensive
to handle (e.g. with El Topo [4]). Likewise, adap-
tive reconstruction-aware subdivision would be preferable
over standard remeshing, potentially including learned pri-
ors [31]. Instead of moving vertices directly, a (par-
tially pretrained) neural network could drive the deforma-
tion [17,18], making it more efficient, detail-aware, and less
dependent on geometric regularization.

While neural shading is a powerful component of our
system, allowing us to handle non-Lambertian surfaces and
complex illumination, it is also a major obstruction for in-
terpretability. The effect of changes to the network archi-
tecture can only be evaluated with careful experiments and
often the black box shader behaves in non-intuitive ways.
We experimentally provided preliminary insights but also
think that a more thorough analysis is needed. Alterna-
tively, physical light transport models could be combined
with more specialized neural components (e.g. irradiance
or material) to isolate their effects. In this context, pre-
training components to include learned priors also seems
like a promising direction.

Although the shader can handle arbitrary material and
light in theory, this claim needs more investigation. A pos-
sible path is exhaustive experiments with artificial scenes,
starting with the simplest cases (how well does it handle a
perfectly Lambertian surface?).
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