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Abstract

Asymmetric image retrieval, which typically uses small
model for query side and large model for database server,
is an effective solution for resource-constrained scenarios.
However, existing approaches either fail to achieve feature
coherence or make strong assumptions, e.g., requiring la-
beled datasets or classifiers from large model, etc., which
limits their practical application. To this end, we propose
a flexible contextual similarity distillation framework to en-
hance the small query model and keep its output feature
compatible with that of the large gallery model, which is
crucial with asymmetric retrieval. In our approach, we
learn the small model with a new contextual similarity con-
sistency constraint without any data label. During the small
model learning, it preserves the contextual similarity among
each training image and its neighbors with the features ex-
tracted by the large model. Note that this simple constraint
is consistent with simultaneous first-order feature vector
preserving and second-order ranking list preserving. Ex-
tensive experiments show that the proposed method outper-
forms the state-of-the-art methods on the Revisited Oxford
and Paris datasets.

1. Introduction
Most existing image retrieval methods [4, 37, 41, 46, 47,

49] use the same model to map both query and gallery
images to feature vectors, which is denoted as symmet-
ric retrieval [6, 12]. To achieve high retrieval accuracy,
they usually simply select a large model for feature extrac-
tion, which suffers inefficiency issue. In some practical
scenarios with limited computing and memory resources,
such as mobile search, it is hardly affordable to use a
large model for feature extraction on the user side, and a
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Figure 1. Illustration of existing methods for asymmetric retrieval
and our contextual similarity distillation framework. fq (orange)
and fg (blue) denote the embedding vectors from the lightweight
query model and the large gallery model, respectively. f+

g : posi-
tive sample; f−

g : negative sample; f i
g: The i-th nearest neighbor

of fg . Previous methods (a) and (b) require the labels of the dataset
for asymmetric distillation, e.g., AML [6] requires triplet labels
and HVS [12] requires semantic category labels and the classifer
from the large model. Our method (c) is free of supervision from
training datasets. During knowledge transfer, it preserves the con-
textual similarity between training samples and their neighbors.

lightweight model is more preferable. A naive solution is to
directly use lightweight models to extract features for both
gallery and queries, which, however, usually degrades the
retrieval accuracy due to inferior representation capability
of lightweight models. In practice, gallery images can be
processed offline with sufficient computing resources while
queries undergo feature extraction on the end-user side with
limited computing power. In such an asymmetric retrieval
setting [6,12], it is feasible to adopt a large model for index-
ing gallery images and a lightweight one for queries, which
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makes a trade-off between retrieval accuracy and efficiency.
Lightweight model adaptation is the core problem in

asymmetric retrieval. Specifically, an optimal lightweight
model is supposed to map queries into the same embed-
ding space as the gallery embeddings extracted by a large
one. The recent advances [6, 12, 28, 40] generally intro-
duce feature compatibility restrictions into the framework
of knowledge distillation and make great progress. In those
approaches, they reuse the classifier in the learned large
model [12, 28, 40] or use large model to extract features of
positive and negative samples for contrastive learning [6],
which are shown in Fig. 1 (a) and (b). However, these
methods assume the existence of datasets with specific la-
bels when adapting lightweight models or the availability of
same training set as the large model, which may be unavail-
able in real retrieval scenarios. Besides, they only consider
the first-order feature preserving restrictions, but ignore the
second-order neighbor relationships between images, which
have been proven effective for feature learning in [29, 44].

To address above issues, we propose a flexible Con-
textual Similarity Distillation (CSD) framework to transfer
knowledge from large gallery models to lightweight query
models while keeping the feature compatibility, as shown
in Fig. 1 (c). In our framework, we adopt a new contex-
tual similarity consistency constraint to guide the learning
of a lightweight model with a large pretrained fixed model.
Specially, for each training image, we first extract its feature
using the large fixed model and retrieve its neighbors as an-
chors in the gallery. The cosine similarities between the
training image and its neighboring anchors are used as the
contextual similarity to describe the neighbor relationship.
Further, we extract the visual feature of the same training
image with the lightweight model and compute its contex-
tual similarity vector over the features of its neighboring
anchor images, which are extracted by the large model. Fi-
nally, we optimize the consistency of the contextual similar-
ity between the large and lightweight models. Remarkably,
the whole framework requires no supervision from training
datasets during knowledge transfer.

Compared with previous approaches, our framework has
two advantages. First, it takes into account contextual
consistency constraint for training the lightweight model,
which simultaneously optimizes the first-order feature pre-
serving and the second-order neighbor relationship preserv-
ing. Second, our framework does not require any super-
vision from training datasets during knowledge transfer.
Therefore, it is possible to train lightweight models using a
large amount of unlabeled data, which facilitates the appli-
cation of our approach in a variety of real-world scenarios.

To evaluate our approach, we conduct comprehensive ex-
periments on the Revisited Oxford and Paris datasets, which
are further mixed with one million distractors. Ablation
studies demonstrate the effectiveness and generalizability of

our framework. Our approach surpasses all state-of-the-art
methods by a considerable margin.

2. Related Work
Image Retrieval. Recent years have witnessed a tremen-
dous research progress in content based image retrieval.
Prior to deep learning, local feature-based methods [34,
42, 45, 51] have been widely explored. Generally, local
features [5, 26] in an image are organized with the bag-
of-words model [42] or encoded by aggregation methods,
such as ASMK [45], VLAD [20] and Fisher vectors [33],
for efficient nearest neighbor search. Further extensions,
including spatial verification [34, 51], Hamming embed-
ding [21] and query expansion [9], are also investigated to
greatly improve the retrieval accuracy. Nowadays, the most
promising retrieval methods are based on fine-tuned con-
volutional neural networks (CNNs). Many pooling meth-
ods, e.g., sum-pooling (SPoC) [3], weighted-sum-pooling
(CroW) [24], regional-max-pooling (R-MAC) [47], gener-
alized mean-pooling (GeM) [37] have been explored to ag-
gregate the feature maps of CNNs to form compact global
representations. These methods are fine-tuned on a specific
dataset with different loss functions [11, 38].

Despite the great progress made by the above meth-
ods, the optimal performance usually comes from a large
deep model, which is not applicable in some resource-
constrained scenarios. We focus on asymmetric retrieval,
where usually the query (user) side takes a lightweight
model while the gallery side applies a large model.
Feature Compatible Learning. BCT [40] first formulates
the problem of backward-compatible learning and reuses
the classifier of the large model so that feature compatibil-
ity is achieved. AML [6] introduces an asymmetric metric
learning framework to achieve feature compatibility, which,
however, fails to guarantee that the accuracy of asymmet-
ric retrieval exceeds that of symmetric retrieval when us-
ing lightweight models. HVS [12] further considers both
model weights and model structures to achieve feature com-
patibility. Feature translation [18] studies interoperability
between different retrieval systems. It uses large models for
both side, which is unaffordable in a practical scenario.

Differently, we propose a flexible contextual similarity
distillation framework, which is free of supervision from
training datasets during knowledge transfer. Moreover, op-
timizing the contextual similarity restrictions allows to fo-
cus on both first-order feature compatibility and second-
order ranking list preservation, which is directly relevant
with the retrieval performance in asymmetric retrieval.
Lightweight Network. Large models [14, 25] are supe-
rior in performance but usually consumes more resources
in computing and memory. Typically, model compres-
sion [2,15] reduces model size by trading accuracy for effi-
ciency. Besides, hand-craft efficient mobile-size ConvNets,
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such as SqueezeNets [19], MobileNets [17, 39] and Shuf-
fleNets [27, 50], show great advantages. Recently, neural
architecture search becomes increasingly popular for de-
signing efficient mobile-size ConvNets [43]. They achieve
higher efficiency than hand-craft mobile ConvNets by ex-
tensively tuning the network width, depth convolution ker-
nel type, and size. In this paper, we focus on asymmetric
retrieval in resource-constrained scenarios, which typically
uses lightweight models to extract features for queries. We
adopt the mobile ConvNets mentioned above in this work.
Knowledge Transfer. Knowledge transfer is the technique
of transferring knowledge from a source model to a target
model. A pioneering work by Hinton et al. [16] achieves
this goal by encouraging the target model to mimic the
predicted class logits of the source model. More recently,
knowledge transfer has been introduced to metric learning.
Some works propose to extract and transfer the rank of simi-
larities between samples [8] and probability distributions of
their similarities [1, 13, 32] in the source embedding space.
In [31], geometric relationships between samples, such as
distances and angles, are used as knowledge to consider
the details of the source embedding space. However, none
of these approaches achieve feature compatibility between
source-domain and target-domain. As a result, they cannot
be directly used for asymmetric retrieval.

In contrast, our approach preserves the contextual sim-
ilarity of different samples over their neighboring points,
whose features are extracted by the source domain model.
This allows feature compatibility between different do-
mains while transferring knowledge.
Contextual Similarity. In image retrieval, contextual sim-
ilarity has proved to be more effective in distinguishing se-
mantic relevance between images compared to direct fea-
ture comparison. CDM [23] iteratively regularizes the aver-
age distance of each point to its neighbors to update the sim-
ilarity matrix. In [30], a lightweight CNN network is trained
to explore the contextual information and recalculate the
similarities between images. Differently, our approach uses
the contextual information captured by the large model to
guide the learning of the lightweight model. Notably, the
features of neighboring images are always extracted by the
large model. Such design allows the lightweight model to
consider the second-order contextual information between
images while preserving feature compatibility.

3. Method

3.1. Problem Formulation

Let φ(·) denote a feature extractor, trained on a training
set T . φ(·) is used to map the image x in a gallery G into
an L2-normalized feature vector fg = φ(x) ∈ Rd, and we
denote the model used for gallery indexing as φg(·). During
testing, the query model φq(·) maps an image q ∈ Q into

an L2-normalized feature vector fq = φq(q) ∈ Rd. The
cosine similarity between fg and fq is used to calculate the
similarity between images. The performance of a retrieval
system conditioned on Q and G is measured by some met-
rics, such as mean Average Precision (mAP), which we de-
note as P (φq(·), φg(·)|Q,G). Specifically, it is calculated
by processing query set Q with φq(·) and indexing gallery
G with φg(·). For convenience, we ignore query and gallery
sets and denote it as P (φq(·), φg(·)).

Assume φq(·) and φg(·) are different models and φq(·)
is significantly smaller than φg(·) in parameter scale. Sym-
metric retrieval adopts either φq(·) or φg(·) to process
both query and gallery sets, while asymmetric retrieval
uses φq(·) to embed query images and φg(·) to process
the gallery. A key requirement [12] for asymmetric re-
trieval is that query and gallery models should be compati-
ble, i.e., the feature embedding of query model locates in the
same or very similar manifold space with that of the gallery
model. Generally, it is expected that P (φq(·), φg(·)) >
P (φq(·), φq(·)) and P (φq(·), φg(·)) ≈ P (φg(·), φg(·)),
which allows asymmetric retrieval to strike a balance be-
tween performance and efficiency.

3.2. Contextual Similarity Distillation Framework

In this work, we explore a new contextual similarity con-
straint to learn lightweight query model φq(·) for asymmet-
ric retrieval. During the learning of φq(·), it preserves the
contextual similarity between each training image and its
neighbors with features extracted by gallery model φg(·).
An overview of our framework is shown in Fig. 2.

During the training of the lightweight query model, the
gallery model φg(·) pretrained on the training set Tg is
frozen. With a separate gallery Gt to mine neighbor im-
ages, we first extract the features F =

[
f1
g ,f

2
g , · · · ,fNg

]
∈

Rd×N of images in Gt:

f ig = φg(gi) ∈ Rd, for i = 1, 2, · · · , N, (1)

where gi is the i-th image in the gallery. Then, for each
training sample x ∈ Tq , we embed it with both gallery
model φg(·) and query model φq(·) to get g and q:

g = φg(x) ∈ Rd, q = φq(x) ∈ Rd. (2)

g is treated as a query and we obtain a ranking list of top-K
images R = [r1, r2, · · · , rK ] as anchors from the gallery
by a retrieval algorithm, where ri denotes the ID of the i-th
image. We assume the query image is not contained in the
gallery, and insert it directly to the front of the ranking list.
Thus, the features of the anchor images in the ranking list
are described as FK =

[
g,fr1g , · · · ,frKg

]
∈ Rd×(K+1).

Since the gallery model has been well trained, the re-
trieval results adequately reflect the neighbor structure of x
in the gallery embedding space. We further represent this
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Figure 2. An overview of our framework. Given an image x ∈ Tq , the gallery model and the query model map it into feature vectors g
and q, respectively. Then, g is used to retrieve its top K neighbors in the gallery Gt, which is indexed by φg(·). Further, Cg and Cq are
calculated to measure the contextual similarity between image x and its neighbors. Finally, by constraining the consistency between Cg

and Cq , the query model preserves the contextual similarity between images and their neighbors under the asymmetric retrieval setting.

structure as contextual similarity. Specifically, we compute
the cosine similarity between the query g and features FK
of the ranking list as the contextual similarity. Formally,

Cg =
[
gTg, gTfr1g , · · · , gTfrKg

]
∈ RK+1. (3)

For the feature q extracted by the query model φq(·), we
obtain the corresponding contextual similarity:

Cq =
[
qTg, qTfr1g , · · · , qTfrKg

]
∈ RK+1. (4)

After that, we impose consistency constraints Lc on the
contextual similarities Cg and Cq to optimize the φq(·) so
that embedding q has the same neighboring context as g
with the neighbor images in the embedding space of gallery.
Notably, by computing both contextual similarities of g and
q in gallery embedding space, we transfer the neighbor
structure of the gallery embedding space to the query em-
bedding space and keep them compatible with each other.
Caching the gallery Gt. Since we use a very deep model
(e.g., ResNet101) as gallery model φg(·), it will require very
large computational and storage resources if we use it online
to compute the feature embeddings of gallery images Gt and
training images Tg . Fortunately, our framework does not
need to optimize the gallery model. Hence, we extract the
features of all the images in both gallery and training dataset
before training. During training, the features are cached in
the memory. For each training sample, we find its neighbors
and load the corresponding features.

3.3. Contextual Similarity Consistency Constraints

For asymmetric retrieval, the query model φq(·) requires
the capabilities of feature compatibility and neighbor struc-
ture preserving. To this end, the optimal φ∗q(·) is learned by
minimizing the contextual similarity consistency constraint

over training set Tq . In this work, we consider two types
of consistency loss, i.e., regression loss and KL divergence
loss, which are discussed in the following.
L1 and L2 distances. A naive option is to encourage both
models to have close contextual similarity for the same in-
put example. To measure the closeness between vectors, L1

and L2 distance metrics are two most popular, with which
we define the regress loss as follows,

LD =

(
K+1∑
i=1

∣∣Ci
q −Ci

g

∣∣α) 1
α

, α = 1, 2. (5)

Essentially, Eq. (5) is equivalent to the following equation:

LαD =
∣∣qTg − 1

∣∣α︸ ︷︷ ︸
first-order

+

K∑
i=1

∣∣qTfrig − gTfrig
∣∣α

︸ ︷︷ ︸
second-order

. (6)

Optimizing the above constraint is consistent with optimiz-
ing both the first-order feature compatibility and the second-
order ranking list preserving losses.
KL Divergence. Another alternative loss to optimize the
above contextual similarity consistency is based on KL di-
vergence. To this end, we first convert the contextual sim-
ilarity into the form of probability distribution over neigh-
boring anchors:

pij =
exp

(
Ci
j/τj

)∑K+1
l=1 exp

(
Cl
j/τj

) , for i = 1, 2, · · · ,K + 1, (7)

where τj is the temperature coefficient and j ∈ {q, g}.
Since the ranking list may contain images far away from a
training image in the embedded feature space, temperature
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coefficient τg is set less than 1 to keep φq(·) focus mainly
on the near-neighbor structure of the training images, rather
than on distant points. Then, the consistency constraint can
be defined as the KL divergence between two probabilities
over the same set of neighbors:

LKL = DKL(pg||pq) =
K+1∑
l=1

plg log
plg
plq
. (8)

Similar to Eq. (6), we also split the KL divergence loss
into the first-order and the second-order terms. Let Dq =∑K+1
l=1 exp(Clq/τq) and Eq. (8) is rewritten as:

LKL =

K+1∑
l=1

plg log p
l
g︸ ︷︷ ︸

constant C

−
K+1∑
l=1

plg log p
l
q

= C −
p1g
τq

qTg︸ ︷︷ ︸
first-order

+ p1g logDq −
K+1∑
l=2

plg log p
l
q︸ ︷︷ ︸

second-order

.

(9)

Thus, the effect of optimizing both first-order and second-
order losses is also achieved.

4. Experiments
4.1. Experimental Setup

Training Dataset. (1) SfM120k [37]. It is obtained by 3D
reconstruction of large-scale unlabeled image collections.
We follow the setting of AML [6] to use 551 3D models
for training and the remaining 162 3D models for valida-
tion. (2) GLDv2 [48]. It is first collected by Google for the
landmark retrieval competition, which consists of 1,580,470
images from 81,313 categories. We randomly divide it into
two subsets, i.e., ‘train’ and ‘val’, with 80% and 20% of the
images, respectively. The ‘train’ split is used for learning
while the ‘val’ split is used for validation. We use training
set as gallery Gt in all cases unless otherwise stated.
Networks. R101-DELG [7] and R101-GeM [37] are taken
as gallery models with feature dimensionality d of 2048.
Lightweight networks including ShuffleNets [27, 50], Mo-
bileNets [17,39] and EfficientNets [43] are adopted as query
models. GeM [37] pooling is used for all models. Tab. 1
gives the number of parameters and the computational com-
plexity (in FLOPS) of different networks used in this work.
Both models are adapted to image retrieval by removing
all the fully connected layers. Query models are further
equipped with an additional fully connected layer to match
the output dimensionality of the gallery model.
Evaluation Datasets and Metrics. Revisited versions of
Oxford5k [34] and Paris6k [35] are used for evaluation,
which are denoted as ROxf and RPar [36]. Both datasets
contain 70 queries, with 4,993 and 6,322 gallery images,

QUERY

MODEL

GALLERY

MODEL

GFLOPS PARAM(M)

ABS % ABS %

ResNet101 ResNet101 42.85 100.0 42.50 100.0

MobileNetV2
ResNet101

2.50 5.83 4.85 11.4
EfficientNetB3 6.26 14.61 13.84 32.56

Table 1. FLOPS and parameters for models used in this work, ab-
solute (ABS) and relative (%) to gallery model. All the models are
adapted for image retrieval with fully connected layers removed.
Please refer to supplementary materials for more results.

respectively. We report Mean Average Precision (mAP) on
the Medium and Hard setups. Large-scale results are further
reported with theR1M [36] distractor images.
Implementation Details. When using SfM120k for train-
ing, we follow the setting of AML [6] for fair comparison.
We train query model for 10 epochs on one NVIDIA RTX
3090 GPU with a batch size of 64. When using GLDv2, we
extract a 512 × 512-pixel crop from the randomly resized
image and perform random color jittering. Batch size is set
as 256 and we train our model on 4 NVIDIA RTX 3090
GPUs for 5 epochs. all models are optimized using Adam
with an initial learning rate of 10−3 and a weight decay of
10−6. A linearly decaying scheduler is adopted to gradu-
ally decay the learning rate to 0 when the desired number
of steps is reached. Length K of ranking list is set to 4096.
τg and τq are set to 0.01 and 1.0. For GeM [37] pooling, we
fix parameter p as 3.0. We train each model five times and
report the mean and standard deviation.

During testing, images are resized with the larger dimen-
sion equal to 1024 pixels, preserving the aspect ratio. We
extract image features at three scales, i.e., {1/

√
2, 1,
√
2},

and perform L2 normalization for each scale independently.
Then, the features are averaged across different scales, fol-
lowed by another L2 normalization. Under the asymmetric
retrieval setting, we extract the features of queries using a
lightweight query model φq(·), and those of the gallery im-
ages with a large model φg(·).

4.2. Ablation Study

Length of Ranking List. Fig. 3 shows the mAP of our
method with different lengths of ranking list R. As the
length increases, the performance increases under all set-
tings but saturates when the list lengthK ≥ 1024. WhenK
is small, these images are not enough to cover the neighbors
of queries. On the contrary, when K is large, it contains a
large number of samples far from queries. These images do
not provide useful information for describing the neighbor
structure of queries, and thus the performance saturates.
Anchor Image Selection. Our approach uses a gallery
model to mine the neighbors of each training image, which
are further utilized as anchor images for computing the con-
textual similarity. In this experiment, we test two other vari-
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Figure 3. mAP (asymmetric retrieval) comparison of different K.
The gallery model R101-GeM [37] is used to index the database.
Queries are processed by the gallery model or query model Mo-
bileNetV2 [39], respectively.

ants to choose those anchor images. (1) Random: For each
training image, a certain number of images are randomly
selected from gallery as anchor images. (2) Fixed: Gallery
images are clustered into several clusters and centroid vec-
tors are used as anchor features for each training image.

As shown in Fig. 4, both Random and Fixed variants
cause severe performance degradation, which indicates that
preserving contextual similarity on near neighbors is bene-
ficial for asymmetric retrieval. Randomly selected images
may contain many samples far away from a specific training
sample, which makes contextual similarity uninformative.
Similarly, with a small number of clusters, the granularity
for space partitioning is too coarse to capture the neighbor
structure of any training sample. The performance of both
variants gradually increases as the number of anchor im-
ages increases. Thus, a large number of samples are needed
to cover the neighbors of any training image.
Impact of Loss Type. As shown in Tab. 2, L2 loss and
LKL loss both lead to good performance, while the L1 loss
performs the worst. This is due to the fact that the L1 loss
uses absolute values as distances, which leads to difficulty
in optimization. We take KL divergence as our default con-
sistency constraint. In Tab. 3, we further verify that optimiz-
ing our contextual similarity consistency constraint is con-
sistent with optimizing both first-order feature preserving
and second-order ranking list preserving losses. L−c denotes
that we omit the first-order term in Eq. (9) when calculat-
ing the consistency constraint. The worst result is achieved
using only the first-order feature regression loss Lr. Better
performance is achieved whenL−c is used, which shows that
second-order ranking list preserving is more important for
asymmetry retrieval relative to feature regression. From the
2nd and 3rd row, the performance is further enhanced when
we adopt both Lr and L−c . Directly using Lc achieves the
best performance, which demonstrates that our contextual
similarity consistency includes both first-order feature pre-

64 128 256 512
1024

2048
4096

8192
56.0
58.0
60.0
62.0
64.0
66.0
68.0
70.0
72.0

m
A

P(
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)

mAP of gallery model (71.1)

Oxford (M) and Paris (M)

Top K
Fixed
Random

64 128 256 512
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4096
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40.0
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50.0

m
A

P(
%

)

mAP of gallery model (47.7)

Oxford (H) and Paris (H)

Top K
Fixed
Random

Figure 4. mAP (asymmetric retrieval) comparison of different
methods to select anchor images with different K. mAP are av-
erage over two difficulty setups, Medium (left) and Hard (right).
R101-GeM [37] and MobileNetV2 [39] are used as gallery and
query model, respectively.

LOSS TYPE
MEDIUM HARD

ROxf RPar ROxf RPar

L1 60.7 70.8 35.6 49.2
L2 64.0 75.7 38.6 53.6
LKL 64.1 76.1 37.5 54.2

Table 2. mAP (asymmetric retrieval) comparison of loss type, with
τq = 1.0 and τg = 0.01. R101-GeM [37] and MobileNetV2 [39]
are used as gallery and query model, respectively.

Lr L−
KL LKL

MEDIUM HARD

ROxf RPar ROxf RPar

X 50.3 63.7 28.9 39.8
X 60.4 73.7 35.2 50.8

X X 62.5 75.1 37.6 52.1
X 64.1 76.1 37.5 54.2

Table 3. Ablation experiments about the first-order and second-
order terms in our consistency loss. Lr: L2 distance between
visual features output by the gallery and query models, which is
found best by AML [6] for the asymmetric setting; LKL: default
constraint Eq. (8); L−

KL: First-order term in Eq. (9) is ignored
when calculating LKL. R101-GeM [37] and MobileNetV2 [39]
are used as gallery and query model, respectively.

serving and second-order ranking list preserving losses.
Flexibility and Scalability. In Tab. 4, we further show the
scalability of our framework. We first take SfM120k as the
training set and randomly sample 10% data from GLDv2
dataset to join it. This brings us 0.4%, 2.1% mAP boosts on
ROxf and 0.1%, 0.3% boosts onRPar datasets, when using
R101-GeM as the gallery model. For R101-DELG as the
gallery model, the performance improvement is even more
remarkable. Next, we use R101-DELG as the gallery model
and sample different numbers of images from GLDv2 for
training. The performance gradually increases as the num-
ber of training data increases. Without labels, our frame-
work improves the performance of the query model with
the large amount of data present, which shows its flexibility
and scalability.
Sensitivity to Gallery Gt. During training, we take training
images as queries and retrieve their neighbors in the gallery
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GALLERY

NET φg(·)
TRAINING

SET Tq
IMAGE

NUMBERS

MEDIUM HARD

ROxfRParROxfRPar

R101-GeM SfM120k 91,642 64.1 76.1 37.5 54.2

R101-GeM
SfM120k +

GLDv2 (×0.1)
219,720 64.5 76.2 39.6 54.5

R101-DELG SfM120k 91,642 72.7 83.2 53.8 67.9

R101-DELG
SfM120k +

GLDv2 (×0.1)
219,720 73.6 83.4 55.9 70.8

R101-DELG GLDv2 (×0.1) 128,078 70.6 81.6 52.4 64.5
R101-DELG GLDv2 (×0.2) 256,156 73.2 83.7 54.6 70.3
R101-DELG GLDv2 (×0.3) 384,234 74.4 84.9 56.5 71.6
R101-DELG GLDv2 (×0.4) 512,312 75.2 86.6 57.5 72.5

Table 4. mAP (asymmetric retrieval) comparison of different
dataset size. (×x) denotes the small dataset formed by randomly
selecting x proportion of images from the full GLDv2 dataset.
MobileNetV2 [39] is used as query model.

ImageNet

SfM120k

ImageNet →     ImageNet

SfM120k    →      SfM120k

(a) Sample images from different datasets (b) Search results on different galleries

Figure 5. Example images and retrieval results for different
datasets. (a) The data distributions of ImageNet and SfM120k
are dramatically different. (b) Using training set as gallery, R101-
GeM [37] achieves promising retrieval results. Query images are
on the left(red outline).

TRAINING

SET Tq
GALLERY

SET Gt
MEDIUM HARD

ROxf RPar ROxf RPar

ImageNet (×0.1) SfM120k 52.4 58.9 27.8 34.7
SfM120k ImageNet (×0.1) 57.3 69.8 31.3 46.7

ImageNet (×0.1) ImageNet (×0.1) 61.3 75.2 35.9 51.7
SfM120k SfM120k 64.1 76.1 37.5 54.2

Table 5. mAP (asymmetric retrieval) comparison of different
training datasets and galleries during training. R101-GeM [37]
and MobileNetV2 [39] are used as gallery and query model.

Gt. Intuitively, if the distribution of training images and
gallery are disparately different, the anchors in the rank-
ing list may not reflect the neighbors of training images,
which will degrade the learning of query model. We use
SfM120k and 10% random samples from ImageNet [10] to
verify our intuition. Fig. 5 (a) shows some examples from
these datasets. Tab. 5 shows that the performance declines
when the distributions of training data and gallery vary dra-
matically. Interestingly, it still works well when ImageNet
is adopted as both training set and gallery. As shown in
Fig. 5 (b), when the training set and the gallery share the

(a)ROxf (b)RPar

Figure 6. T-SNE embeddings of ROxf and RPar datasets. Dif-
ferent colors represent different buildings with gray representing
distractors. We randomly select 10 for each building category and
100 samples from all distractors. Gallery model: circles; Query
model: ×. A line connects two representations of each example.

same data distribution, the gallery model return true neigh-
bors of training images, which allows query model to focus
on the near-neighbor structure of each training image.
Qualitative Results. Fig. 6 shows the embeddings of some
ROxf and RPar images, each processed by a gallery and a
query model. For asymmetric retrieval, it is critical to keep
feature compatibility. During training, the query model is
constrained to preserve the contextual similarity between
each training image and its neighbors in the embedding
space of the gallery model. This keeps the output space
of the query and gallery models compatible.

4.3. Comparison with State-of-the-art Methods

mAP Comparison. We conduct extensive comparisons of
our method with state-of-the-art methods on the full bench-
mark. As shown in Tab. 6, our framework achieves the
best performance under the asymmetric setting. When us-
ing R101-DELG as gallery model and GLDv2 as training
set, the EfficientNetB3 trained with our framework outper-
forms best previous method in mAP by 1.03%, 2.84% on
ROxf and 0.87%, 1.15% on RPar datasets with Medium
and Hard protocols, respectively. ForR1M, we also achieve
the best performance, outperforming HVS [12] in mAP by
0.49% onROxf-Medium, 1.83% onRPar-Medium, 1.34%
on ROxf-Hard and 1.00% on RPar-Hard. These results
well demonstrate the superiority of our framework.
Training Efficiency Comparison. Since our framework
requires retrieval during training, it may affect the train-
ing storage overhead and time efficiency when the size of
training gallery Gt is large. In our implementation, the fea-
ture dimension is 2048. We compress the memory require-
ments with PQ [22]. Specifically, we divide the features
into 256 segments and quantize each segment into 8 bits.
For GLDv2, it takes 0.3 GB space to store the gallery index
in the memory and the online retrieval latency is 0.105 s,
which is negligible compared to the network training time.
As for Contr∗ [6], it performs hard sample mining before
each epoch, which requires a complex and time-consuming
re-extraction of image features. It takes Contr∗ [6] about 7
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METHOD
QUERY

NET φq(·)
GALLERY

NET φg(·)
MEDIUM HARD

ROxf ROxf+R1M RPar RPar+R1M ROxf ROxf+R1M RPar RPar+R1M

(A) Training without gallery model
GeM† [37] (SfM120k) MobileNetV2 MobileNetV2 58.81 40.02 67.87 42.25 33.41 17.71 40.97 16.59
GeM† [37] (SfM120k) EfficientNetB3 EfficientNetB3 54.22 37.10 71.21 44.67 27.53 17.49 48.00 18.45
GeM† [37] (SfM120k) R101 R101 65.43 45.23 76.75 52.34 40.13 19.92 55.24 24.77

DELG† [7] (GLDv2) MobileNetV2 MobileNetV2 62.42 42.21 77.91 55.09 36.56 18.64 57.96 28.81
DELG† [7] (GLDv2) EfficientNetB3 EfficientNetB3 66.64 49.67 81.78 61.10 43.82 24.89 63.90 32.34
DELG† [7] (GLDv2) R101 R101 78.55 66.02 88.58 73.65 60.89 41.75 76.05 51.46

(B) Training with R101-GeM as gallery model and SfM120k as training dataset
RKD† [31]

MobileNetV2 R101

1.36 0.01 4.06 0.03 0.70 0.01 2.51 0.01
DR† [8] 1.64 0.01 3.89 0.02 0.83 0.01 2.45 0.01
Contr∗† [6] 48.73 24.89 61.13 33.01 26.02 8.67 38.22 12.32
Contr∗ [6] 47.10 18.00 61.50 28.80 21.80 6.30 37.70 8.80
Reg† [6] 50.27 30.40 63.66 34.01 28.85 11.22 39.77 12.33
Reg [6] 49.20 26.50 65.00 34.60 23.30 7.80 40.70 12.70
Ours 64.12 39.38 76.16 44.40 37.53 17.73 54.29 18.08

RKD† [31]

EfficientNetB3 R101

1.71 0.01 4.33 0.04 0.72 0.01 2.59 0.01
DR† [8] 1.85 0.01 4.01 0.03 0.67 0.01 2.36 0.01
Contr∗† [6] 47.70 26.25 62.57 32.96 22.18 4.18 39.37 13.01
Contr∗ [6] 45.20 24.70 63.70 32.80 19.60 12.20 40.90 12.50
Reg† [6] 56.25 36.45 66.20 39.90 34.78 15.63 42.85 16.67
Reg [6] 52.90 29.70 65.20 39.00 27.80 10.40 42.40 16.00
Ours 65.16 43.05 75.94 46.76 38.62 18.81 53.05 19.43

(C) Training with R101-DELG as gallery model and GLDv2 as training dataset
RKD† [31]

MobileNetV2 R101

1.64 0.01 4.10 0.02 0.83 0.01 2.57 0.01
DR† [8] 1.52 0.01 3.76 0.01 0.81 0.01 2.32 0.01
Contr∗† [6] 66.42 45.76 83.13 53.10 45.99 23.34 66.79 30.24
Reg† [6] 72.75 56.03 85.81 65.23 53.07 32.21 69.96 39.29
HVS† [12] 74.39 58.24 86.86 67.44 54.68 34.77 72.42 43.39
LCE† [28] 75.45 58.03 87.24 67.30 54.95 33.88 73.03 43.01
Ours 76.01 58.42 87.55 69.24 57.61 36.58 74.82 45.67

RKD† [31]

EfficientNetB3 R101

1.60 0.01 3.83 0.03 0.73 0.01 2.41 0.01
DR† [8] 2.09 0.01 3.59 0.02 0.78 0.01 2.26 0.01
Contr∗† [6] 69.45 49.70 83.81 59.36 46.19 26.49 68.15 35.24
Reg† [6] 74.60 59.88 86.09 67.69 53.41 33.31 72.21 42.63
HVS† [12] 76.41 62.72 87.07 71.54 56.13 36.86 74.53 49.09
LCE† [28] 75.89 61.90 86.63 70.98 55.21 36.53 73.62 48.94
Ours 77.44 63.21 87.94 73.37 58.97 38.20 75.68 50.09

Table 6. mAP (asymmetric retrieval) comparison against existing methods on the full benchmark. Black bold: best results. †: our
re-implementation; R101: ResNet101 [14]. Training datasets for gallery models are shown in brackets.

hours to train a model, while the training of our model only
needs 2 hours. Compared with HVS [12] and LCE [28],
our method converges much faster. We only need 5 epochs
(1 day) of training on GLDv2 to reach the optimal perfor-
mance, while they require 20 epochs (about 3 days).

5. Conclusion
In this paper, we propose a flexible contextual similar-

ity distillation framework for asymmetric retrieval. Dur-
ing the query model training, a new contextual similarity
consistency constraint is adopted to preserve the contextual
similarity between each training sample and its neighboring
anchors. Optimizing this constraint is consistent with opti-
mizing both first-order feature preserving and second-order
ranking list preserving losses. The proposed framework can
be trained using unlabeled datasets even from a different

domain, which shows the generalizability of our approach.
Extensive experiments demonstrate superior performance
of our approach over existing state-of-the-art methods un-
der the asymmetric retrieval setting.
Limitation. In our framework, the gallery model is kept
frozen without being optimized simultaneously when adapt-
ing the lightweight model. As a result, the performance of
the lightweight model is heavily dependent on that of the
gallery model. In the future, we will explore how to op-
timize both gallery and query models to achieve better re-
trieval performance and efficiency.
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