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Abstract

This work digs into a root question in human percep-
tion: can face geometry be gleaned from one’s voices? Pre-
vious works that study this question only adopt develop-
ments in image synthesis and convert voices into face im-
ages to show correlations, but working on the image do-
main unavoidably involves predicting attributes that voices
cannot hint, including facial textures, hairstyles, and back-
grounds. We instead investigate the ability to reconstruct
3D faces to concentrate on only geometry, which is much
more physiologically grounded. We propose our analy-
sis framework, Cross-Modal Perceptionist, under both su-
pervised and unsupervised learning. First, we construct a
dataset, Voxceleb-3D, which extends Voxceleb and includes
paired voices and face meshes, making supervised learning
possible. Second, we use a knowledge distillation mecha-
nism to study whether face geometry can still be gleaned
from voices without paired voices and 3D face data under
limited availability of 3D face scans. We break down the
core question into four parts and perform visual and nu-
merical analyses as responses to the core question. Our
findings echo those in physiology and neuroscience about
the correlation between voices and facial structures. The
work provides future human-centric cross-modal learning
with explainable foundations. See our project page.

1. Introduction
This work studies to what extent voice can hint face ge-

ometry motivated by recent studies on voice-face matching
and cross-modal learning [29, 53, 60]. Many physiologi-
cal attributes are embedded in voices. For example, speech
is produced by articulatory structures, such as vocal folds,
facial muscles, and facial skeletons, which are all densely
connected. Such a fact intuitively indicates potential corre-
lations between voices and face shapes [19]. Experiments
in cognitive science point out that audio cues are associated
with visual cues in human perception– especially in recog-
nizing a person’s identity [4]. Recent neuroscience research
further shows that two parallel processing of low-level audi-
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Figure 1. Cross-Modal Perceptionist. We study the correlations
between voices and face geometry under both supervised and un-
supervised learning settings. This work targets at more explainable
human-centric cross-modal learning for biometric applications.

tory and visual cues are integrated in the cortex, where voice
processing affects facial structural analysis for the percep-
tion purpose [58].

Traditional research in the voice domain focuses on uti-
lizing voice inputs for predicting more conspicuous at-
tributes which include speaker identity [6, 28, 42], age
[15, 41, 47], gender [27], and emotion [52, 59]. A novel di-
rection in recent development goes beyond predicting these
attributes and tries to reconstruct 2D face images from voice
[8,35,54]. Their research is built on an observation that one
can approximately envision how an unknown speaker looks
when listening to the speaker’s voice. Attempts towards val-
idating this assumptive observation include the work [35]
for image reconstruction and works [8,54] using generative
adversarial networks (GANs). They aim to output face im-
ages from only a speaker’s voice.

However, face images from voices are inherently ill-
posed: the task involves predicting extraneous attributes
that voices cannot hint, including image backgrounds,
hairstyles, headgears, or beards. These attributes are appar-
ently that one can choose without changing voices. Simi-
lar concerns arise regarding the correlations between voices
and facial textures or ethnicity. [35] demonstrates a t-SNE
plot in which ethnicity is scattered across all samples, in-
dicating its low correlations to voices. As a result, quanti-
fying the differences between an output face image and a
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reference is hard and less grounded.
Instead of producing face images, our analysis moves

to the 3D domain with mesh representations and predicts
one’s face geometry or skull structures from voices,
which is free from the above issues. Working on 3D meshes
is less ambiguous than images because the former includes
less noisy variations unrelated to a speaker’s voice, such as
stylistic variations, hairstyles, background, and facial tex-
tures. Moreover, meshes enable more straightforward quan-
tification of differences between prediction and groundtruth
in the Euclidean space– unlike the case in using face im-
ages, where sources of differences involve backgrounds and
hairstyles.

From the perspective of 3D faces, much research atten-
tion has been paid to 3D reconstruction from monocular
images [16, 46, 56, 62] or video sequences [12, 25] for 3D
face animation or talking face synthesis. In contrast, we
are the first to investigate the correlations between one’s 3D
face geometry and voices, and we focus on the analysis of
the face geometry gleaned from one’s voices. Our goal is
to validate the correlations between voices and face geom-
etry towards more explainable human-centric cross-modal
learning with neuroscience support.

The analysis inevitably involves acquiring large-scale
3D face scans with paired voices, which is expensive and
subject to privacy. To deal with this issue, we propose a
novel Voxceleb-3D dataset that includes paired voices and
3D face models. Voxceleb-3D is inherited from two widely
used datasets: Voxceleb [30]) and VGGFace [37], which in-
clude voice and face images of celebrities, respectively. The
approach [63] we adopt to create Voxceleb-3D is inspired
by 300W-LP-3D [62], the most-used 3D face dataset, and
we will describe details in Sec.3.2.

Our analysis framework Cross-Modal Perceptionist
(CMP), investigates the feasibility to predict face meshes
using 3D Morphable Models (3DMM, Sec.3.1) from voices
on the following two scenarios (Fig. 1). We first train neural
networks directly from Voxceleb-3D in a supervised learn-
ing manner using the paired voices and 3DMM parameters
(Sec.3.2). We further investigate an unsupervised learning
setting to inspect whether face geometry can still be gleaned
without paired voices and 3D faces, which is a more re-
alistic scenario. In this case, we use knowledge distilla-
tion (KD) [20] to transfer knacks from the state-of-the-art
method for 3D faces from images, SynergyNet [56], into
our student network and jointly train speech-to-image and
image-to-3D blocks (Sec.3.3).

We design a set of metrics to measure the geometric fit-
ness based on points, lines, and regions for both the super-
vised and the unsupervised scenarios. The evaluation at-
tempts to show correlations between 3D faces and voices
with straightforward neural network-based approaches. The
analysis with CMP enables us to comprehend the corre-

lations between face geometry and voices. Our research
lays explainable foundations for human-centric cross-modal
learning and biometric applications using voice-face corre-
lations, such as security and surveillance when only voice
is given.

Our goal is not to recover high-quality 3D face meshes
from voices comparable to synthesis from visual modalities
such as image or video inputs, but we try to answer the core
question under our CMP framework: can face geometry be
gleaned from voice? We break down the question into four
parts and will answer them through experiments.

Q1. Is it feasible to predict visually reasonable face
meshes from voice?

Q2. How stable is the mesh prediction from different
utterances of the same person?

Q3. Compared with face meshes produced by cascad-
ing separately trained speech-to-image and image-to-3D-
face methods, can the performance of a joint training flow,
where mesh prediction is trained with voice information,
improve? How much?

Q4. What is the major improvement that voice informa-
tion can bring in the joint training flow?

Our contributions are summarized.

1. Towards explainable human-centric cross-modal
learning, we are the first to study the correlations
between face geometry and voices.

2. We devise an analysis framework, Cross-Modal Per-
ceptionist, which studies both supervised and unsuper-
vised approaches to learn face meshes from voices.

3. We show extensive analysis and discussion and answer
to four breakdown questions to validate the correla-
tions between voices and face shapes

2. Related Work
2.1. Audio: Learning Personal Traits from Voice

The human voice is embedded with a wide range of per-
sonal information and has long been exploited for recog-
nizing personal traits, such as speaker identity [6, 28, 42],
age [15, 41, 47], gender [27], and emotion status [52, 59].
Voices can also be used to monitor health conditions [3] or
applied to other medical applications [18]. Most existing
works focus on predicting personal traits that are more in-
tuitively related to voice. Our work can be seen as a much
more challenging task for learning implicit personal faces
or skull structures from voices.

2.2. Visual: 2D/3D Face Synthesis

Face-related synthesis has been under much research in
the past years. Generating 2D face images using GANs
[1, 13, 22, 23, 32, 43] has been a prevalent task, and re-
cent progress includes more realistic synthesis with diverse
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styles. The task of face reenactment [11, 34, 50] focuses on
transferring facial features from a source to a target. Some
works focus on the 3D domain: synthesizing 3D face mod-
els from monocular images [16,51,56,62], synthesizing 3D
face motion from videos [12, 25] using 3DMM [10, 49], or
implicit fields [57].

2.3. Audio-Visual Learning

Cross-Modal Face Matching [24, 29, 33, 53, 60] covers
tasks where voices are used as queries to retrieve faces or
vice versa. These tasks are inherently selection problems
in which the best fit of a voice-face pair from the dataset
is desired. Another similar task is cross-modal verification
[31, 44, 48] that tells whether input faces and voices belong
to the same person, which is a simply classification problem
for paired inputs. Our work solves its root question and
explains the success in voice-face matching or verification
by verifying correlations between voices and face geometry.

Talking face synthesis targets at generating coherent
and natural lip movements. Some works drive template
images [17, 21, 61] or template face meshes [9] to talk by
speech inputs. Some replace lip movements in a video with
movements inferred from another video or speech [7, 55].
Their focuses are coherent lip movements and thus are dif-
ferent from our target at studying holistic facial structures.

Voice to Face is the closest task to our work. This task
is introduced recently to synthesize face images from only
voice inputs. [54] and [8] adopt GANs to generate face im-
ages from audio clips. [35] uses an encoder-decoder struc-
ture to reconstruct face images. However, the disadvantages
are that 2D representations contain many variations, such as
hairstyles, beards, backgrounds, and facial textures irrele-
vant to facial geometry, or the correlations lack physiologi-
cal support. Besides, face reconstruction errors can be am-
biguous because two images of the same person can contain
different hairstyles and backgrounds.

Our analysis framework circumvents the issues raised by
2D face representations. 3D face models do not contain
hairstyles, backgrounds, or texture variations. Geometric
representation of meshes enables us to analyze the corre-
lations between voices and 3D shapes and further directly
measure gains and errors in the Euclidean space. In this
way, we can focus on face geometry gleaned from voices.

3. Method

Our goal is to analyze how a person’s voice relates to
one’s face geometry in the 3D space. Thus, we learn 3D
face meshes using 3D Morphable Models (3DMM) from
input speech and analyze the correlations under supervised
and unsupervised learning settings. The supervised set-
ting learns the correlation from a paired voice and 3D face
dataset. The unsupervised learning studies a realistic case

Voice 
Encoder 
𝜙!

3DMM 
Regressor
𝜙"#$Voice 

Embedding 𝛼

𝛼∗ Supervised Loss

Speech Input

Figure 2. Supervised learning framework. Given a speech input,
voice embedding is extracted by φv . φdec then estimates 3DMM
parameters α for 3D face modeling. The supervision is computed
with groundtruth α∗.

when such paired dataset is not available, is it still possible
to predict face geometry from voice?

3.1. 3D Morphable Models (3DMM)

3DMM [10] is a popular method for 3D face modeling
using principal component analysis (PCA). By estimating
the weights of basis matrices, a 3D face can be constructed.
We can decompose a face into two components: the average
face and face shape variation. That is, for a face A,

A = Ā+ V α, (1)
where Ā ∈ R3N is the average face with N three-
dimensional vertices, V ∈ R3N×P is a basis matrix for the
face shape variation, α ∈ RP is the coefficients. Note that
we can reshape A into Ar ∈ R3×N , a matrix representation
suitable for 3D rotation and translation.

We set N = 53490 vertices following BFM [40], a par-
ticular form of 3DMM. Per the dimensionality of shape
variation basis, we choose P = 50 following Synergy-
Net [56], the state-of-the-art 3D face reconstruction meth-
ods from images using BFM. There are 12 additional pose
parameters in SynergyNet used to align reconstructed 3D
faces to its 2D image inputs: a rotation matrix R ∈ R3×3

and a translation vector t ∈ R3, i.e., Ap = RAr + t. In our
analysis, we only use these pose parameters for visualizing
how well a predicted face mesh fits a 2D shape outline.

3.2. Supervised Learning with Voice/Mesh Pairs

We first describe the supervised learning setting, illus-
trated in Fig. 2. Given a paired speech sequence and 3DMM
parameters for an identity, we build an encoder-decoder
structure first to extract voice embedding v ∈ R64 from
a mel-spectrogram [14], which is a commonly used time-
frequency representation for speech, of the input speech.
Following [54], the voice encoder φv is pretrained on the
large-scale speaker recognition task. Then, we train a de-
coder φdec to estimate 3DMM parameters, α. We use
groundtruth 3DMM parameters to supervise the training
with L2 loss.

Lreg = ‖α− α∗‖2 (2)

where α∗ is groundtruth 3DMM parameters.
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In addition, we adopt the triplet loss on the estimated
3DMM parameters α. The triplet loss minimizes the dif-
ference of pairwise relations between (anchor, positive) and
(anchor, negative) pairs with a soft margin.

Ltri = max{‖α− αp‖2 − ‖α− αn‖2 + 1, 0}, (3)
where α plays as an anchor, αp is a positive sample for the
anchor, representing the same identity but regressed from
different images, and αn, coming from a different identity,
is a negative sample for the anchor. The triplet loss aims
at coherent 3DMM parameters for the anchor and positive
samples due to the same identities and simultaneously con-
trasting to the negative sample due to a different identity.
The overall loss function is Lsup = Lreg + Ltri.

The challenge of this supervised learning problem is how
to obtain α∗. Most large voice datasets, such as Voxceleb
[30], only contain speech for celebrities, and most large face
datasets, such as VGGFace [37], only consist of publicly
scraped face images. We first follow [54] to fetch the in-
tersection of voice and image data from Voxceleb and VG-
GFace. Then, we propose to fit 3D faces from 2D to create
a novel dataset, Voxceleb-3D, using an optimization-based
approach adopted by 300W-LP-3D [62], the most-used 3D
face dataset. In detail, we use an off-the-shelf 3D landmark
detector [5] to extract facial landmarks from collected face
images and then optimize 3DMM parameters to fit in the ex-
tracted landmarks. Our Voxceleb-3D contains paired voice
and 3D face data to fulfill our supervised learning.

3.3. Unsupervised Learning with KD

Obtaining real 3D face scans is very expensive and lim-
ited by privacy, and the workaround of optimization-based
3DMM fitting with facial landmarks is time-consuming. An
unsupervised framework may serve real-world scenarios.
As a result, we propose an unsupervised framework with
knowledge distillation. By leveraging a well-pretrained ex-
pert, it helps to validate whether face geometry can still
be gleaned with neither real 3D face scans nor optimized
3DMM parameters.

Our unsupervised framework, illustrated in Fig. 3, has
two stages: (1) synthesizing 2D face images from voices
with GAN and (2) 3D face modeling from synthesized face
images. The motivation is that we first use the GAN to
generate 2D faces from voices to obtain the speaker’s ap-
pearance. However, 2D images contain variations of back-
grounds, textures, hairstyles that are irrelevant to voice.
Thus, the second-stage image-to-3D-face module disentan-
gles geometry from other variations.

Synthesizing face images from voices with GANs.
Previous research develops a GAN-based speech-to-image
framework [54]. A voice encoder φv extracts voice embed-
dings from input speech. Then a generator φg synthesizes
face images from the voice embeddings, and a discrimina-
tor φdis decides whether the synthesis is indistinguishable

Speech-to-Image 
Module:
𝜙!, 𝜙" Image-to-3D 

Module:
𝜙#, 𝜙$%&

Image-to-3D 
Module:
𝜙#', 𝜙$%&'

Discriminator
𝜙$()

Classifier
𝜙&

Speaker ID

Genuine/Fake

Pseudo-Groundtruth

Knowledge Distillation

𝛼

𝛼#

Figure 3. Unsupervised learning with KD. The unsupervised
framework contains a GAN for face image synthesis with voice
encoder φv , generator φg , discriminator φdis, and classifier φc.
Then, knowledge distillation is used to achieve unsupervised
learning, where information of image-to-3D-face mapping dis-
tilled from the expert network (yellow block) is exploited to train
the student network (blue block). 2D face is a latent representa-
tion in this fashion. Beside using pseudo-groundtruth αE to train
the student, we also distill knowledge at intermediate layers using
conditional probability distributions.

from a real face image. Last, a face classifier φc learns to
predict the identity of an incoming face, ensuring that the
generator produces face images that are truly close to the
identity in interest. Here we overload notations of φv and
other components introduced later for 3D face modeling in
both Sec.3.2 and 3.3 due to the same functionalities.

In detail, given a speech input S, its corresponding
speaker ID id, and real face images Ir for the speaker, the
image synthesized from the generator is If = φg(φv(S)).
The loss formulation is divided into two parts: real and
fake images. For real images, the discriminator learns
to assign them to ”real” (r) and the classifier learns to
assign them to id. The loss for real images is Lr =
Ld(φdis(Ir), r) + Lc(φc(Ir), id) showing the discrimina-
tor and classifier losses respectively. For fake images, af-
ter producing If from φg , the discriminator learns to as-
sign them to ”fake” (r̄) and the classifier also learns to as-
sign them to id. The loss counterpart for fake images is
Lf = Ld(φdis(If ), r̄) + Lc(φc(If ), id).

3D face modeling from synthesized images. After
image synthesis by GAN, we build a network to estimate
3DMM parameters from fake images. The parameter esti-
mation consists of an encoder φI and an decoder φdec to ob-
tain 3DMM parameters α = φdec(φI(If )). 3D face meshes
are then reconstructed by Eq. 1.

Knowledge distillation for unsupervised learning
To fulfill the unsupervised training, we distill the knowl-

edge of image-to-3D-face reconstruction from a pretrained
expert network. The expert, consisting of encoder φEI
and decoder φEdec, reconstructs 3D face models from syn-
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Figure 4. Samples of face meshes in Voxceleb-3D. We overlay
the 3D faces with associated images to show how well 3D meshes
fit in 2D face outlines.

thesized face images and produces pseudo-groundtruth of
3DMM parameters αE . αE is used to train the student net-
work by L2 loss:

Lp−gt = ‖αE − α‖2. (4)

This KD strategy circumvents the needs of paired voice and
3D face data and helps us achieve unsupervised learning.

In addition to pseudo-groundtruth, we also distill knowl-
edge at intermediate layers and minimize their distribution
divergence between the expert and the student. We measure
the distributions in the feature spaces by the extracted image
embedding zE ∈ RB×ν and z ∈ RB×ν of the expert and
the student network. We maintain the batch dimension B
and collapse the rest to ν. Then as in [38], we calculate the
conditional probability z between feature points as follows.

zi|j =
K(zi, zj)∑

k,k 6=j K(zk, zj)
, zEi|j =

K(zEi , zEj )∑
k,k 6=j K(zEk , zEj )

, (5)

where K(·, ·) is scaled and shifted cosine similarity whose
outputs lie in [0,1]. Kullback-Leibler (KL) divergence is
then used to minimize the two conditional distributions.

Ldiv =
∑
i

∑
j 6=i

zEj|ilog

(
zE
j|i

zj|i

)
. (6)

The KD loss is LKD = Lp−gt + Ldiv . The overall unsu-
pervised learning loss is combined with GAN loss and also
triplet loss in Eq.3.

Lunsuper = Lf + Lr + LKD + Ltri. (7)

4. Experiments and Results
Datasets. We use our created Voxceleb-3D dataset de-

scribed in Sec. 3.2. There are about 150K utterances and
140K frontal face images from 1225 subjects. The train/test
split for Voxceleb-3D is the same as [54]: Names starting
with A-E are used for testing, and the others are for train-
ing. We manually pick the best-fit 3D face models for each
identity as reference models for evaluations. We display
samples of face meshes in Fig. 4.

Figure 5. Distance illustration for our ARE metric. AB: ear-
to-ear distance. CD: forehead width. EF : outer-interocular dis-
tance. GH: midline distance. IJ : cheek-to-cheek distance.

Data Processing and Training. We follow [54] and
extract 64-dimensional log mel-spectrograms with a win-
dow size of 25 ms, and perform normalization by mean and
variance of each frequency bin for each utterance. In the
unsupervised setting, we adopt SynergyNet [56] as the ex-
pert. Face images from the generator are 64×64, and we
bilinearly upsample them to 120 ×120 to fit the input size
of the expert for 3D face reconstruction from images. Our
framework is implemented in PyTorch [39]. We use Adam
optimizer [26] and set the learning rate to 2×10−4, batch
size to 64, and a total number of training steps to 50,000,
which consumes about 16 hours to train on a machine with
a GeForce RTX 2080 GPU.

To train with triplet loss, for each sample in a batch, we
further uniformly sample one utterance of the same person
as the positive sample and sample the other one of the differ-
ent person as the negative sample. We illustrate the network
architectures in the supplementary

Metrics. We design several metrics to evaluate 3D face
deformation based on α. Here we introduce a line-based
metric, ARE, and present point-based and region-based
metrics using iterative closet point registration and facial
landmarks in the supplementary.

Absolute Ratio Error (ARE, line-based): Distances be-
tween facial points are commonly used as measures related
to aesthetics or surgical purposes [2, 36, 45]. We pick point
pairs (shown in Fig. 5) that are most representative for eval-
uation and calculate the distance ratios to outer-interocular
distance (OICD). For example, ear ratio (ER) is AB/EF ,
and the same for forehead ratio (FR), midline ratio (MR),
and cheek ratio (CR). We evaluate our models by the ab-
solute ratio error (ARE) between the predicted and the ref-
erence face meshes because these ratios can capture face
deformation. As an example, ARE of ER is |ER − ER∗|,
where ∗ denotes the ratios of reference models.

Baseline. We build a straightforward baseline by directly
cascading two separately pretrained methods without joint
training: the GAN-based speech-to-image block [54] and
SynergyNet [56] for image-to-3D-face block (illustrated in
Fig. 6) to produce 3D meshes from voices as the baseline
framework. In addition, 3DDFA-V2 [16] is another method
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𝛼
Figure 6. Baseline framework. The baseline is a direct cascade
of two pre-trained state-of-the-art modules: speech-to-image [54]
and image-to-3D-face modeling [16, 56].

Geometry

Real Faces 

(shape reference)

Intermediate
Faces

Figure 7. Evidence for positive response to Q1. Our unsuper-
vised framework predicts intermediate 2D images and 3D meshes.
This answers to Q1 that 3D face models exhibiting similar face
shapes to the references can be predicted from only voice inputs.

for 3D face modeling from monocular images using BFM
and holds a close performance to SynergyNet. Thus, we
experiment with combinations of speech-to-image block +
3DDFA-V2 (Base-1) and speech-to-image block + Synerg-
yNet (Base-2). Aside from network-based approaches, we
also devise simple oracles that use mean shapes of labels,
such as male/female, as predictions, and provide the results
as references in the supplementary.

4.1. Analysis

We attempt to answer Q1-Q4 raised in Sec.1 in this sec-
tion and respond to each respective question in A1-A4. In
A1-A3, we show predictions using our unsupervised learn-
ing setting since the by-product intermediate images help
explain 3D mesh prediction for better comprehension of the
mechanism. We show visuals from the supervised version
in the supplementary.

A1: Meshes and intermediate images. In Fig. 7, we
display intermediate 2D images, 3D meshes, and real faces.
Note that the real faces should only be treated for identifica-
tion purposes in terms of face shapes because those images
include backgrounds or hairstyle variations that differ from
references. Our end targets are the 3D face meshes that
are free from these factors. Prediction from our framework
generates wider meshes in Column 2 and thinner meshes in
Column 3 and 4, which reflect the real face wideness. All
the generated 3D meshes fit in 2D facial outlines well.

These results exemplify the ability to convert voices into
plausible 3D face meshes. Although meshes are rough com-
pared with 3D synthesis from images or videos modali-

ties, the results conform to our intuitions that when an un-
heard speech comes, one can roughly envision whether the
speaker’s face is overall wider or thinner. However, we
cannot picture subtle details, such as bumps or wrinkles on
faces. The same trends can be observed in a vast result col-
lection in Fig. 8. The results are not cherry-picked.

A2: Prediction coherence of the same speaker. To
address Q2, we showcase in Fig. 9 and 10 for the coher-
ence of the predicted face shapes from different utterances
of the same speakers. The 2D predictions exhibit face shape
and outline consistency, though they are still plagued by
stylistic variations that are geometrically unrelated to our
task. This not only confirms the ability to produce coherent
face meshes but also underlines why predicting face meshes
from voices is regarded as less noisy than face image syn-
thesis.

A3: Gain from cross-modal joint training. For Q3, we
compare results from our unsupervised framework against
those from the baseline in Fig. 11. Joint training for
the speech-to-image and image-to-3D sub-networks attain
higher and more stable image synthesis quality, which bene-
fits 3D mesh prediction. In contrast, those from the baseline
(Base-2) include more artifacts. This justifies our CMP’s
cross-modal joint training strategy, which lets networks
learn to predict 3D faces with voice input at the training,
improves over the baseline that is separately trained.

To this end, we understand that voices can help 3D face
prediction and produce visually reasonable meshes that are
close to real face shapes.

A3-Quantification+A4. We numerically compare su-
pervised and unsupervised settings of our analysis frame-
work, CMP, against the baseline (Fig. 6) using the ARE pro-
posed in Sec.4. Both supervised and unsupervised settings
improve the line-based ARE over the baseline around 20%,
as exhibited in Table 1. The results show that cross-modal
joint training achieves better results than the direct cascade
of pretrained blocks. These improvements reveal underly-
ing correlations between voices and face shapes such that
training face mesh prediction with joined voice information
is helpful. Among all metrics, ear ratio (ER) has the most
prominent improvements, indicating that the best indicative
attribute voice can hint is the head width, and thus it answers
Q4. This analysis aligns with the findings in Sec.4.1 that
voice can indicate wider/thinner faces, which corresponds
to our intuition that we can roughly envision a speaker’s
face width from voices. Through this study, we quantify the
improvements of cross-modal learning from voice inputs,
and the findings echo human perception intuitively.

4.2. Subjective Evaluations

We further conduct subjective preference tests over the
outputs to quantify the difference of preference. The test
was divided into three sections, considering images, 3D
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Figure 8. A collection of results supports our positive response to Q1. This figure extends Fig.7. Top to down for two row chunks:
predicted intermediate face images, predicted 3D models, real faces for references.

t0

consistent 2D shapes 

3D

t1 t2
t0 t1 t2

Wider jawbone & thicker shapes Narrower jawbone & thinner shapes

Figure 9. Illustration for our positive response to Q2. Consis-
tent intermediate images and 3D faces can be predicted from the
same speaker with different time-step utterances.

Center +1 frame +2 frame +3 frame-1 frame-2 frame-3 frame

(Unit in 
pixels)

Mean 0.345 0.350 0.347 0.0 0.412 0.415 0.316

Std 0.077 0.069 0.067 0.0 0.090 0.118 0.786

2D

3D

Figure 10. Shape variation statistics in response to Q2. Mean
and std of per-vertex variation w.r.t. the center frame are shown,
calculated in frontal pose. 3D shapes recovered from different ut-
terances are consistent with only sub-pixel differences.

models, and joint materials. Though we favor face meshes
over images because the former are free from irrelevant
textures or backgrounds, we included intermediate images
from our unsupervised setting in the test and asked subjects
to focus on face shapes since better-outlined shapes on im-
ages lead to better-shaped meshes, as indicated in Fig. 11.

Evaluation design. Thirty questions were included in

Real Faces 
(shape reference) 

Base-2

Our CMP

(a) (b) (c) (d)

Intermediate
Faces

Geometry

Intermediate
Images

Geometry

Figure 11. Comparison of intermediate images and meshes in
response to Q3. The cross-modal joint training strategy in our un-
supervised CMP produces better-quality images than the baseline.
More reliable images as latent representations from our CMP can
facilitate the mesh prediction. We include real faces for face shape
references.

the test, and 154 subjects with no prior knowledge of our
work were invited to the test. In the first section, each of the
ten questions consisted of three images– a reference face
image, a face image from our unsupervised CMP, and a
face image generated from the Base-2 ( [54]+ [56]). The
order of the generated images was randomized. The sub-
jects were asked to select the face image ”whose shape is
geometrically more similar to the reference face?”. In the
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Table 1. ARE metric study. Compared with baseline in Fig. 6,
results from CMP show that cross-modal joint training with voice
input can obtain around 20% improvements. We also highlight the
largest improvement, ER, that answers to Q4.

ARE Base-1 Base-2 CMP-
supervised

CMP-
unsupervised

ER 0.0319 0.0311 0.0152 0.0181
FR 0.0184 0.0173 0.0186 0.0169
MR 0.0177 0.0173 0.0169 0.0174
CR 0.0562 0.0551 0.0457 0.0480

Mean 0.0311 0.0302 0.0241 0.0251
Gain - 0% -20.2% -16.9%

0% 50% 100%
Preference (%)

0 770 1540

 60.52%
(932)

 39.48%
(608)

Image

 59.35%
(914)

 40.65%
(626)

3D Model

 57.79%
(890)

 42.21%
(650)

Image + 
3D Model

0 2310 4620
Number of preference votes

Overall  59.22%
(2736)

 40.78%
(1884)

Image 3D Model Image +
3D Model

Overall

p-value ∼10−16 ∼10−14 ∼10−10 ∼10−16

Figure 12. Results of subjective preference tests. The blue bars
are the preference for our method, while the red bars are the pref-
erence for the baseline method. The percentages are labeled on the
bar, and the total number of votes is enclosed in the parentheses.
The x-axis on the bottom labels the total number of responses, and
that on the top denotes the percentage. The p-values of the statis-
tical significance tests are provided under the bar. ∼ shows the
value’s order of magnitude.

second section (10 questions), a similar design was laid out,
but 3D face models from Base-2 and our CMP were used in-
stead of images. Finally, in the third section (10 questions),
each of the two options comprised a face image and a 3D
face model; the subject was asked to jointly consider over
the two materials: ”overall, whose shape geometrically fits
the given reference image better?”

Statistical significance test. Fig. 12 summarizes our
subjective evaluation. We conduct a statistical significance
test with the following formulation. A subject’s response to
a question is considered as a Bernoulli random variable with
a parameter p. The null hypothesis (H0) assumes p ≤ 0.5,
meaning that the subjects do not prefer our model. The al-
ternative hypothesis H1 assumes p > 0.5, meaning that the
subjects prefer our model. For each section, there are 154

subjects and ten responses per subject. For a significance
level γ = 0.001, let bn,p(γ) denote the quantile of order γ
for the binomial distribution with parameters p and n. We
can decide whether the subjects prefer our model by

RejectH0 versusH1 ⇔ np ≥ bn,p(1− γ)

H0 : p ≤ 0.5,H1 : p > 0.5.
(8)

As shown in Fig. 12, np is well above the threshold
bn=1540,p=0.5(1 − γ) = 831, rejecting H0 and suggest-
ing that the subjects significantly prefer our model over the
baseline. The single-sided p-values are displayed under the
bar chart. A lower p-value means stronger rejection of H0.
The p-values from our tests are much lower than the level
0.001, showing high statistical significance. In conclusion,
the hypothesis test verifies that the subjects indeed favor the
predictions from our method.

5. Conclusion and Discussion
In this work, we investigate a root question in human

perception: can face geometry be gleaned from voices? We
first point out shortcomings in previous studies in which 2D
faces are predicted: such synthesis contains variations in
hairstyles, backgrounds, and facial textures with controver-
sial correlations to voices. We instead focus on 3D faces
whose correlations to voices have been supported by neu-
roscience and cognitive science studies. As a pioneering
work toward this direction, we innovate a way to construct
Voxceleb-3D that includes paired voices and 3D face mod-
els, devise and test baseline methods and oracles, and pro-
pose a set of evaluation metrics. Our proposed main frame-
work, CMP, learns 3DMM parameters from voices under
both supervised and unsupervised settings. Based on CMP,
we answer the core question with a four-part breakdown by
detailed analyses and subjective evaluations. We conclude
that 3D faces can be roughly reconstructed from voices. Our
study is far from complete, but hopefully, it lays a founda-
tion for speech and 3D cross-modal studies in the future.

Ethical statement. There are arguably implicit factors,
such as voices after smoking and drinking might be differ-
ent. The data of Voxceleb contains speech from interviews,
where interviewees usually speak in normal voices. More
implicit and subtle factors such as drug use or health con-
ditions might affect voices, but it needs clinical studies and
should be validated from physiological views. The results
shown in this work only aim to point out the correlation be-
tween voice and face (skull) structure exist and do not make
assumptions on race/ethnic origin, and this work does not
indicate the relation between race and voice or race and face
structure. As mentioned in Introduction, the correlation be-
tween race/ethnicity cannot be easily resolved. Besides, the
reconstructed meshes do not contain skin color, facial tex-
tures, or hairstyles that can explicitly correspond to one’s
true identity, and thus anonymity can be preserved.
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Theobalt. Reconstruction of personalized 3d face rigs from
monocular video. ACM Transactions on Graphics (TOG),
35(3):1–15, 2016. 2, 3

[13] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. NeurIPS,
2014. 2
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