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Abstract

Current Image Captioning (IC) methods predict textual
words sequentially based on the input visual information
from the visual feature extractor and the partially generated
sentence information. However, for most cases, the par-
tially generated sentence may dominate the target word pre-
diction due to the insufficiency of visual information, mak-
ing the generated descriptions irrelevant to the content of
the given image. In this paper, we propose a Dual Informa-
tion Flow Network (DIFNet1) to address this issue, which
takes segmentation feature as another visual information
source to enhance the contribution of visual information
for prediction. To maximize the use of two information
flows, we also propose an effective feature fusion module
termed Iterative Independent Layer Normalization (IILN)
which can condense the most relevant inputs while retrain-
ing modality-specific information in each flow. Experiments
show that our method is able to enhance the dependence of
prediction on visual information, making word prediction
more focused on the visual content, and thus achieves new
state-of-the-art performance on the MSCOCO dataset, e.g.,
136.2 CIDEr on COCO Karpathy test split.

1. Introduction

Image captioning is a task of generating a description in
natural language based on a given image. It needs a model
to understand the given image from multiple aspects, in-
cluding identifying objects, actions, as well as relationships,
and generate a language description for that image.
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1Source code is available at: https://github.com/mrwu-mac/
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Figure 1. Comparison between the popular captioning paradigm
(top) and the proposed Dual Information FLow Network (DIFNet).
(bottom). Compared with existing methods, DIFNet introduces
the visual representation of the dual information flow to facilitate
reliable and accurate image understanding.

Inspired by the development of neural machine transla-
tion, the encoder-decoder framework has been widely used
in image captioning tasks. The encoder takes a set of visual
features (such as grid feature [10]) extracted by an offline
CNN-based network as input and further encodes them into
visual-language space. Then the decoder uses the visual
information provided by the encoder and the partially gen-
erated caption to predict the next word. Most existing ap-
proaches [5, 9, 22] follow this paradigm to build their cap-
tioning networks, , as shown in Fig.1 (top). However, they
suffer from a main drawback: the visual information from
the visual feature extractor is insufficient and sometimes in-
accurate. Although the research of feature extractors has
made great progress [15, 25], key visual information, such
as action and depth information, may still be ignored, even
using the powerful visual-language pre-trained models [8].
The above drawback leads to an insufficient visual infor-
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mation flow for the decoder, forcing the decoder to rely
excessively on partially generated captions to predict the
rest words in order to ensure the fluency of the generated
description. This issue ultimately makes the generated de-
scriptions irrelevant to the actual visual content, as shown in
Fig. 1 (top), the baseline model generates incorrect phrase
“talking on a cell phone” because the ‘remote control’ fea-
ture is hard to be captured by only grid feature.

To overcome these shortcomings, recent works [15, 19,
31, 37] introduce high-level visual cues, such as concepts,
to supplement visual information. However, due to seman-
tic inconsistency [17] and spatial misalignment, an addi-
tional fusion module is required to align these cues with
visual features, which is inefficient and difficult to be com-
bined with IC models with grid features. In contrast, this
paper considers a new type of cues, i.e. the segmentation
map, where region semantics are naturally aligned with grid
features. As shown in Fig. 1 (bottom), segmentation map
can be regarded as spatial semantic guidance and provide a
coarse-grained context for grid features to facilitate image
understanding. On the one hand, its pixel-level category in-
formation helps correct categories that are misjudged due
to unreliable information in the grid features. On the other
hand, its spatial information also helps to infer the underly-
ing semantic and spatial relationships.

Motivated by this, we propose a Dual Information Flow
Network (DIFNet), which takes the segmentation feature as
another visual information source to supplement grid fea-
tures, thereby enhancing the contribution of visual informa-
tion for reliable prediction. Since it is easy to integrate grid
features and segmentation features, we only need a sim-
ple fusion method. To maximize the benefit of two visual
information flows, we propose an effective feature fusion
module named Iterative Independent Layer Normalization
(IILN), which can condense the most relevant inputs by a
common LN layer while retraining modality-specific infor-
mation in each flow via private LN layer. Note that certain
visual information that is difficult to be captured might be
directly filtered out by the attention layer, we adopt addi-
tional skip connections to further enhance the flow of infor-
mation within and between the encoder and decoder.

We evaluate our method on the MSCOCO benchmark
for image captioning, where the effectiveness of our pro-
posals is well validated. In particular, our proposed model
achieves the new state-of-the-art performance of MSCOCO.
DIFNet achieves 136.2 CIDEr score on the COCO Karpa-
thy test split under the setting of single-model. To gain
more insights, we apply Layerwise Relevance Propagation
(LRP) [4] to estimate how the visual information and par-
tially caption contexts contribute to prediction, whose re-
sults demonstrate that our proposed model can enhance the
contribution of visual information for prediction.

Our contributions are:

• We propose a Dual Information Flow Network
(DIFNet), which takes the segmentation feature as an
additional visual information source. DIFNet can en-
hance the contribution of visual content for prediction.

• We propose a feature fusion module termed Iterative
Independent Layer Normalization (IILN), which can
condense the most relevant inputs by a common LN
layer while retraining modality-specific information in
each flow via the private LN layer.

• Experiments show that our method can enhance the
dependence of prediction on visual information and
achieve significant performance improvements over
the state-of-the-art on MSCOCO benchmark.

2. Related Work

Image Captioning. The encoder-decoder framework has
been widely adopted by image captioning models [2, 5, 9].
However, most previous methods follow a single-stream
pipeline and design architecture typically by increasing
model complexity. Recent works [15, 31, 37] introduced
concepts, attributes, and tags to enhance visual semantics,
but they are hard to be aligned with the visual features [17].
Instead of using concepts, attributes, and tags, we use the
segmentation feature as the second information stream to
enhance the visual representation.
Panoptic Segmentation. Panoptic segmentation task [13,
33] unifies the instance segmentation task and the seman-
tic segmentation task. It can identify the semantic class of
a pixel while providing instance boundaries for classes like
‘person’ in a given image. To take advantage of segmenta-
tion cues, HIP [36] constructs a hierarchy parsing architec-
ture to associate the instance-level, region-level, and image-
level features for image captioning. Different from the HIP,
we use a segmentation map to construct structured visual
semantic representation, which retains the spatial structure
information of the original image and is easier to be fused
with the grid feature.
Multimodal Fusion. A lot of works have been done to-
wards multimodal fusion [17, 20, 21, 30]. Early meth-
ods used simple aggregation operations (e.g. concatena-
tion [21]) to combine multimodal sub-networks. Recent
methods use a cross-modal attention mechanism [17] to
align data from different modalities while still retaining the
sub-networks of all modalities. In order to reduce the bur-
den of computing power brought about by maintaining mul-
tiple subnets, some works [30] use sharing parameters and
privatizes the normalization layer to maintain specific pat-
terns. In relation to these works, we design an Iterative In-
dependent Layer Normalization module for multimodal fu-
sion and interaction.
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Figure 2. The overview of our DIFNet architecture. The grid features and segmentation features are first extracted along the Grid Flow
and Segmentation Flow. Next, segmentation features and grid features are fused together by our proposed IILN module to enrich the
information for visual inference. Besides, extra skip connections are explored to further enhance the information flow within and between
the encoder and decoder.

3. Preliminaries
We first provide the image captioning problem defini-

tion. Given an image I , which can be described by a sen-
tence A, where A = {w1, w2, . . . , wL} consisting of L
words. Let V denote grid visual features [10] which ex-
tracted from image I by an offline visual feature extractor,
where V = {v1,v2, . . . ,vN} consisting of N grids and
vi ∈ RDv . Similar to the most of the existing captioning
system [5, 9], our work is based on encoder-decoder Trans-
former [27] which encodes the grid features V into a se-
quence of continuous representations Z and then decodes it
paired with the previously generated words to generate the
output yt. The model produces one word in the sentence at
each time step in an auto-regressive manner [6]. This stan-
dard paradigm can be formulated as:

yt = Fl (Ev (V ) , w0, w1, w2, . . . , wt−1) , (1)

where Ev is vision encoder and Fl is language decoder, w0

is a start symbol.

3.1. The Transformer Architecture

The Transformer is a sequence transduction model. To
process 2D inputs, we need to convert them into a series of
1D tokens, as follows:

U ′ = Flatten(Pool(U)), (2)

where U is vision feature(original grid feature O ∈
RH×W×Dv or segmentation feature S(will be discussed
in Sec. 4.1)), U ′ = {u′

1,u
′
2, . . . ,u

′
N} is input vision fea-

ture sequence(such as V ), Pool is the AdaptiveAvgPool2d
which output size is H ′ ×W ′. Then we use a linear projec-
tion mapping each token to Rdmodel , as follows,

X = LN(σ(W1U
′ + b1))), (3)

where σ (·) is ReLU activation function, LN is Layer
Normalization [3], X = {x1,x2, . . . ,xN} consisting of
N(N = H ′ ×W ′) tokens.

Then a encoder consisting of a stack of Ne transformer
layers is used to map X into Z. Each transformer layer
has two sub-layers, Multi-Head Self-Attention (MHSA)
and Position-Wise Feed-Forward (PWFF) networks [27],
each of two sub-layers around a residual connection [7]
and layer normalization. We denote a transformer layer,
Zl+1 = Transformer(Zl) as

M = LN(MHSA(Zl) + Zl),

Zl+1 = LN(PWFF (M) +M),
(4)

where LN is Layer Normalization.
The decoder is composed of a sequence of Nd trans-

former layers and each layer inserts a third sub-layer in the
middle of MHSA and PWFF, which takes the output of the
encoder and the output of the MHSA as input, more details
refer to Transformer [27].

4. Method
In this section, we describe our proposed DIFNet, which

uses segmentation features and additional skip connections
to enhance visual information flow. Figure 2 gives the
overview of the DIFNet. We begin by describing the in-
troduction of segmentation features(Sec. 4.1). Then we in-
vestigate the VSA fusion method and describe our IILN fu-
sion method(Sec. 4.2) to fuse segmentation features with
grid features. Next, we discuss the use of extra skip con-
nection for visual information flow enhancement(Sec. 4.3).
The training details are presented in Sec. 4.4.

4.1. Segmentation Feature

Panoptic segmentation map contains the semantic cate-
gory information of each pixel and discriminative instance
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information. As a result, panoptic segmentation map can
be regarded as a high-level visual semantic cue and pro-
vides a coarse-grained context. To simply and effectively
fit the grid features, we only extract the semantic segmen-
tation map instead of the panoptic segmentation map from
the semantic segmentation head of a panoptic segmentation
network and then convert them into semantic feature vec-
tor S, where S ∈ RH×W×C , C, H and W are the class
number, height, and width respectively. Each dimension of
the semantic feature vector S is a bit-map which denotes a
semantic class. After additionally integrating the segmenta-
tion feature, our paradigm can be formulated as:

yt = Fl (Ev (V, S) , w0, w1, w2, . . . , wt−1) , (5)

where Ev is vision encoder and Fl is language decoder.

4.2. Fusing Grids with Segmentations

In this section, we show how to integrate the two input
representations in Transformer. We first investigate a fusion
strategy VSA, and then present our fusion method IILN.

Fusion via Vanilla Self-Attention. We begin by dis-
cussing a Vanilla Self-Attention (VSA) [20] fusion method,
which simply uses the transformer layers for encoding and
fusing the two input sequences. Given the grid input se-
quence Xv ∈ RN×dmodel and the segmentation input se-
quence Xs ∈ RN×dmodel , we first encode them with the
transformer layers respectively, which allows each repre-
sentation to have its own parameters. Then an element-
wise sum is applied to integrate them into a single sequence
Zvs ∈ RN×dmodel . In order to exchange information and
form a common representation, the transformer layers are
used to encode Zvs. This can be formulated as follows,

Zl+1
v = Transformer(Zl

v),

Zl+1
s = Transformer(Zl

s), if l < Lf ;

Zl+1
vs = Transformer(Zl

v + Zl
s), if l == Lf ;

Zl+1
vs = Transformer(Zl

vs), otherwise.

(6)

where l is from 0 to Ne, Z0
v and Z0

s are Xv and Xs, re-
spectively. Lf denotes the layer after which to aggregate
the two sequences, Lf=0 corresponds to ‘early fusion’,
0 < Lf < Ne corresponds to ‘mid fusion’ and Lf = Ne

corresponds to ‘late fusion’. When Lf = Ne, there is no
Transformer layer after the aggregation operation. Gener-
ally, the ‘early fusion’ cannot retain the specific patterns of
the two representations, the ‘late fusion’ cannot effectively
exchange information between the two representations, the
‘late fusion’ and the ‘mid fusion’ are both introduce a large
number of parameters.

MHSA

PWFF

Common LN

+ +

+ +

Private LN

+ +

Private LN

Private LN Private LN

Figure 3. The Iterative Independent LN (IILN) module.

Fusion via Iterative Independent LN. We propose Iter-
ative Independent Layer Normalization (IILN) to overcome
the aforementioned problems. The transformer encoder lay-
ers are equipped with IILN when l < Lf , as shown in Fig-
ure 2 encoder part. The schema of IILN is shown in Fig-
ure 3. Inspired by [30], we first share the parameters of
the MHSA layer and the PWFF layer to avoid the increase
of network parameters. And we adopt a common LN layer
to obtain a single distribution which includes the common
information crossing two representations,

Mv = LN(MHSA(Zl
v; θvs) + Zl

v;αvs, βvs),

Ms = LN(MHSA(Zl
s; θvs) + Zl

s;αvs, βvs),
(7)

where θ is model parameter of MHSA and PWFF, α and
β are learnable scale and shift parameters. Then two pri-
vate LN layer are applied to affine the single distribution
into two pattern-specific distributions which integrate the
private information(through the affine transformation of the
private LN layer and the residual connection) of each rep-
resentation and common information(through the common
LN layer) of two representations,

Mv = LN(Mv + Zv;αv, βv),

Ms = LN(Ms + Zs;αs, βs).
(8)

Finally, PWFF and two private LN are applied to further
enhance two representations,

Zl+1
v = LN(PWFF (Mv; θvs) +Mv;αv, βv),

Zl+1
s = LN(PWFF (Ms; θvs) +Ms;αs, βs).

(9)

We also apply iteration [17] with the proper number of
iterations T on IILN to integrate more information into each
representation. After IILN, the distributions of the two rep-
resentations will be closer to each other while simultane-
ously maintaining modality-specific information.
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4.3. Extra Skip Connection

The unique nature of the attention mechanism enables it
to filter out irrelevant information. However, it may also
filter out some weak but potentially useful information. To
enhance the information flow within and between encoder
and decoder to protect some fragile visual information from
being filtered out by the attention layer, we add extra skip
connections on them.

Similar to recursive skip connection [18], we first add
an extra skip connection on the MHSA of the transformer,
which can be formulated as,

M = LN(LN(MHSA(Z) + Z) + Z), (10)

it can incorporate more information that may have been fil-
tered out by MHSA.

The information obtained from the IILN layer may not
be effectively retained after passing through multiple trans-
former layers. We add the skip connection from the output
of Lf th encoder layer to the output of encoder to force use-
ful information from various flows to flow directly into the
decoder:

Z = ZNe
vs + Z

Lf
v + Z

Lf
s . (11)

After combining IILN with skip connection, the visual in-
formation from the encoder is maximized.

4.4. Training Details

We follow a standard two-stage training strategy in im-
age captioning [5, 9, 26]: pre-train the model with cross-
entropy loss(XE) and finetune the model with reinforcement
learning. For the reinforcement learning stage, we follow
the training approach of the M2 Transformer [5], the whole
model is optimized with CIDEr reward which is the most
popular metric of image captioning.

5. Experiments

5.1. Experimental setup

Datasets and Evaluation Metrics. We evaluate our
method on the most popular image captioning benchmark,
MS-COCO dataset [16]. The whole MS-COCO dataset
contains 123,287 images, which includes 82,783 training
images, 40,504 validation images, and 40,775 testing im-
ages, each of which corresponded with 5 different captions.
We adopt the Karpathy splits [11], where 5,000 images
are used for validation, 5,000 images for testing, and the
rest images for training. All results are evaluated on the
COCO Karpathy test split. Following the standard evalu-
ation protocol, we employ the captioning metrics: BLEU
at K(B@K) [23], METEOR(M) [14], ROUGE(R) [14],
CIDEr(C) [28], and SPICE(S) [1].

Grid Feature
Backbone

Seg. Feature
Backbone B@1 B@4 M R C S

X101 % 80.9 38.7 29.1 58.7 131.7 22.8
X101 R50 81.2 39.3 29.6 59.1 133.8 (2.1↑) 23.3
X101 R101 81.5 39.2 29.5 59.0 135.1 (3.4↑) 23.3

X152 % 81.1 39.6 29.4 59.1 133.3 23.2
X152 R101 81.9 39.7 29.7 59.2 136.3 (3.0↑) 23.5
X152 GT 82.5 40.4 29.8 59.6 137.3 (4.0↑) 23.8

Table 1. Impact of feature quality. ‘X’ and ‘R’ denote ResNeXt
and ResNet respectively.

Feature
Size

Seg.
Feature FLOPS B@1 B@4 M R C S

7x7 % 0.76G 80.9 38.7 29.1 58.7 131.7 22.8
! 0.92G 81.5 39.2 29.5 59.0 135.1 23.3

10x10 % 1.41G 81.0 38.8 29.1 58.5 131.3 23.0
! 1.74G 81.9 40.0 29.7 59.2 135.2 23.5

14x14 % 2.66G 80.9 38.9 29.2 58.5 131.4 22.9
! 3.33G 81.7 39.5 29.7 59.2 134.5 23.3

Table 2. Impact of feature size.

Implementation Details. For the visual representations
of the input image, we follow the operation in [10] to ex-
tract gird features. For segmentation representation, we take
UPSNet [33] as the segmentation feature extractor. We con-
vert the segmentation map that came from the semantic seg-
mentation head to semantic feature vector S whose size is
H ×W × 133, the dimension of 133 is logit corresponding
to COCO classes.

Our model is implemented in PyTorch [24]. All the
models are trained/tested on a single NVIDIA GTX1080Ti
10GB GPU. We use Aadm [12] with β1 = 0.9, β2 = 0.98
to optimize model training. We employ the Vanilla Trans-
former [27] with extra skip connection on multi-head atten-
tion as our baseline model. We follow the implementation
of M2 Transformer [5] to train our model. Specifically, the
number of layers in transformer encoder and decoder are Ne

= 3 and Nd = 3 respectively. More information on network
setups are given in Appendix.

5.2. Analysis of Segmentation Feature

We perform ablation experiments in Sec. 5.2 and 5.3.
Unless otherwise specified, the backbone of the grid feature
extractor is ResNeXt-101 [32], the backbone of the seg-
mentation feature extractor is ResNet-101 [7], the feature
size is 7x7, the fusion method is VSA (Lf=1), all trans-
former models use recursive skip connection on the multi-
head self-attention, and all listed perplexities are based on
ten words piece. The parameter and GFLOPs analysis is
based on the Transformer pipeline excluding the feature ex-
traction phase. All ablation results are evaluated on COCO
“Karpathy” test split.
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Models Seg.
Feature B@1 B@4 M R C S

Transformer % 80.9 38.7 29.1 58.7 131.7 22.8
! 81.5 39.2 29.5 59.0 135.1 (3.4↑) 23.3

M2 Transformer % 80.1 38.6 29.3 58.6 129.2 23.1
! 81.0 39.0 29.5 58.9 132.7 (3.5↑) 23.2

M2 Transformer* % 80.9 38.7 29.0 58.4 131.2 22.5
! - - - - - -

AoA Transformer % 80.8 39.2 29.2 58.7 131.5 22.7
! 81.2 39.4 29.5 58.9 134.2 (2.7↑) 23.3

Table 3. Impact on different Transformer models. The ‘*’ in-
dicates using the original warm-up learning rate policy. The ‘-’
indicates failure for the unacceptable metric results.

Fusion
Method Lf Params FLOPs B@1 B@4 M R C S

MIA - 29.1M 0.92G 81.4 39.1 29.3 58.8 133.6 23.1
1 35.1M 1.24G 81.3 39.5 29.5 59.0 133.0 23.2

VSA

0 32.1M 0.77G 81.2 39.4 29.6 59.2 134.6 23.2
1 35.1M 0.92G 81.5 39.2 29.5 59.0 135.1 23.3
2 38.1M 1.08G 81.4 39.5 29.5 59.1 134.3 23.2
3 41.1M 1.24G 81.4 39.2 29.4 58.9 133.8 23.2

IILN
1 32.1M 1.24G 81.5 39.5 29.6 59.1 135.0 23.3
2 32.1M 1.71G 81.4 39.4 29.4 59.0 134.6 23.3
3 32.1M 2.18G 81.4 39.5 29.5 59.1 134.5 23.3

Table 4. Impact of fusion method at different fusion layer Lf .
The ‘-’ indicates we use original MIA without Transformer layer
behind for fusion.

Impact of feature quality. We compare variants of
DIFNet equipped with different quality visual features and
segmentation features. For visual features, we adopt the
features extracted by ResNeXt-101 and ResNeXt-152 back-
bone respectively. For the segmentation feature, we use
the features extracted by UPSNet equipped with ResNet-
50, ResNet-101 backbone, and ground-truth (GT) respec-
tively. Results are shown in Table 1. Compared to the
model only with grid features, the introduction of segmenta-
tion features can significantly improve model performance.
With the growth of the quality of the two features, the per-
formance of the model can be further improved.

Impact of feature size. We compare models with differ-
ent input feature sizes H ′×W ′ ∈ {7×7, 10×10, 14×14},
results shown in Table 2. Compared to the model with fea-
ture size 7× 7, the larger size does not provide a significant
performance boost while increasing the huge computational
cost. This is potential because the large size makes it diffi-
cult for self-attention to decide which grids need to attend.

Impact on different Transformer models. To show the
generality of segmentation features, we compare different
Transformer models with the segmentation features, includ-
ing our baseline Transformer, M2 Transformer, and AoA

(a) (b)

Figure 4. Impact of iteration times T. IILN with T=3 performs
similarly compared to the one with T=2, indicating that T=2 is
enough for information integration.

Transformer. For M2 Transformer, we use original ar-
chitecture and provide two versions of results, one uses
our epoch decay schedule, the other applies their original
warm-up learning rate policy. For AoA Transformer, we
replace transformer encoder layers of our baseline Trans-
former with AoA Refine modules and use the same decoder
as our baseline, the reason for this setting is that the encoder
is mainly related to the segmentation feature.

Results are shown in Table 3. We can see that the per-
formance of all the aforementioned models has been sig-
nificantly improved after the introduction of segmentation
features. Note that, for the M2 Transformer model with the
original warm-up learning rate strategy, we got unaccept-
able metric results due to the unstable training process after
the introduction of the segmentation feature.

Impact of fusion method. We explore different meth-
ods to fuse grid features and segmentation features, such
as MIA [17], VSA, and our IILN(T=2). And we investi-
gate the impact of varying the fusion layer Lf = 0, 1, 2, 3
on the VSA and IILN. Results are shown in Table 4. We
can see that the best performance is achieved at Lf=1. Fur-
ther increasing Lf not only reduces the performance, but
also increases the parameters and calculation costs. Com-
pared with MIA and VSA fusion model, IILN can maintain
the same number of parameters without significant perfor-
mance degradation.

We also compare the IILN(Lf=1) with different itera-
tion times T . As shown in Fig. 4, the computational cost
increases linearly with T , while the best performance is
achieved at around T=3. As T continues to increase, per-
formance begins to decline, which may be caused by too
many iterations causing the over-smoothing problem [17].
And IILN with T=3 performs similarly compared to the one
with T=2, suggesting that T=2 already integrates enough
information into each feature.

5.3. Analysis of Information Flow

Impact of extra skip connection. We investigate the
models with extra skip connections. We first conduct exper-
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Models B@1 B@4 M R C S

Vanilla Transformer 80.8 38.9 29.0 58.5 129.3 22.7
+MHSA,PWFF 80.8 38.8 29.2 58.7 131.5 (2.2↑) 22.8
+Dec: MHSA 80.6 38.7 29.1 58.6 130.9 (1.6↑) 22.8
+MHSA 80.9 38.7 29.1 58.7 131.7 (2.4↑) 22.8

MIA 81.3 39.5 29.5 59.0 133.0 23.2
MIA + skip 81.2 39.5 29.6 59.2 134.5 (1.5↑) 23.3

VSA 81.5 39.2 29.5 59.0 135.1 23.3
VSA + skip 81.8 39.9 29.5 59.2 135.4 (0.3↑) 23.2

IILN 81.5 39.5 29.6 59.1 135.0 23.3
IILN(w/o com LN) + skip 81.7 40.0 29.7 59.3 135.3 (0.3↑) 23.4
IILN + skip 81.7 40.0 29.7 59.4 136.2 (1.2↑) 23.2

Table 5. Impact of extra skip connection.

Figure 5. Contribution of visual information. DIFNet significantly
improves the visual contribution, making the final prediction faith-
ful to the visual content.

iments on the Vanilla Transformer with only grid features to
explore where to add extra skip connection: (i) MHSA and
PWFF; (ii) MHSA; (iii) only MHSA in Decoder. Then, we
add an extra skip connection from the output of Lf encoder
layer to the output of encoder for MIA, VSA, and IILN.

Results are shown in Table 5. Overall, the models with
extra skip connections can significantly improve perfor-
mance. For Vanilla Transformer, the best performance is
achieved by adding the extra skip connection to MHSA,
which is higher than the performance of adding extra skip
connection on both MHSA and PWFF, we believe this is
because it retains a lot of useful information filtered by
MHSA. In addition, we can see that the IILN fusion model
with skip connection gets the most benefit. To find out why
it works, we also conduct an experiment to replace the com-
mon LN layer with two private LN layers. We can see that
it performs similar to VSA with skip connection, which is
potential because the common LN layer makes the fusion
representation distribution and each flow representation dis-
tribution close to each other, so that they are easier to aggre-
gate before being input to the decoder.

Contribution of Visual Information. We use αβ-
LRP [4, 29] to evaluate the contribution of visual informa-
tion to the prediction at each time step. More information

Baseline: a baby sitting at a table holding a spoon 
DIFNet: a baby sitting at a table cutting paper with scissors 
Ground Truth:
The young child is cutting up some paper.
There is a boy in a blue pajamas holding a pair of scissors.
A toddler plays with scissors and construction paper
Baseline: a pan of food with a pair of scissors
DIFNet: a close up of a pizza with a pizza cutter 
Ground Truth :
A pizza cutter is laying next to the pizza.
A pizza cutter lying next to a well baked pizza
a close up of a pizza cutter next to a pizza pie.
Baseline: a black and white cat laying on a desk 
DIFNet: a black and white cat laying on a green pillow 
Ground Truth :
A cat laying on a pillow on a desk.
A black and white cat is lying on a green pillow.
Black and white cat laying on a green pillow.

(d)

(a)

(b)

(c)

(e)

Baseline: a row of motorcycles parked on a street
DIFNet: a row of motorcycles parked on the side of a street
Ground Truth:
A bunch of motorcycles parked on the side of the road
A number of motorbikes parked on an alley
a bunch of motorcycles parked along the side of the street 
Baseline: a woman sitting in the woods with a suitcase 
DIFNet: a woman sitting on a suitcase in the woods 
Ground Truth: 
A woman sitting on a piece of luggage in a field.
a woman sits on a brief case in the woods 
A woman with lots of tattoos sits on a suitcase in a forest. 

Baseline: a woman holding a box with two women 
DIFNet: two women are holding a cake 
Ground Truth :
A couple of women holding up a cake together.
Two smiling women holding a big cake together.
two women hold a cake with a picture on it 

(f)

Figure 6. Examples of captions generated by the baseline model
and our model, along with the ground-truth sentence.

about LRP are given in Appendix. We compare the mod-
els: (i) Baseline without adding extra skip connection in
Encoder; (ii) Baseline; (iii) Our model. Note that at each
time step, the sum of the contribution of the visual informa-
tion and the context of the partial caption is equal to 1.

Results are shown in Figure 5. We can see that the visual
contribution of baseline without adding extra skip connec-
tion into encoder is mostly below 0.5, which indicates that
the contribution to the prediction is dominated by the cap-
tion context. When adding extra skip connections into the
encoder, the situation has improved. Results show that our
model further improves the visual contribution, making the
final prediction faithful to the visual content.

5.4. Visualizations

Fig. 6 shows representative examples of captions gener-
ated by the baseline model and our model. Compared to
the baseline model which generates some phrases that vio-
late visual content, our model can generate the description
consistent with the visual content of the image. For exam-
ple, in Fig. 6 (a), because the feature of the scissor is dif-
ficult to capture, the baseline model tends to generate the
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Models B@1 B@4 M R C S

SCST [26] - 34.3 26.7 55.7 114.0 -
UpDown [2] 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM [35] 80.5 38.2 28.5 58.5 128.3 22.0
SGAE [34] 80.8 38.4 28.4 58.6 127.8 22.1
AoANet [9] 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer [5] 80.8 39.1 29.2 58.6 131.2 22.6
X-Transformer [22] 80.9 39.7 29.5 59.1 132.8 23.4
DLCT [19] 81.4 39.8 29.5 59.1 133.8 23.0
RSTNet [38] 81.1 39.3 29.4 58.8 133.3 23.0

Ours 81.7 40.0 29.7 59.4 136.2 23.2

Table 6. Comparison with state-of-the-art methods.

phrase “holding a spoon” according to the language context
“baby sitting at a table”, which appears more frequently in
the dataset. However, DIFNet uses segmentation map infor-
mation to correct visual semantics, thereby generating the
description that is strongly related to the image. In addition,
as shown in Fig. 6 (e)(f), DIFNet can infer the underlying
semantic and spatial relationships compared to the baseline.

Fig. 7 shows a failure example of captions generated by
the baseline model and our model. The “two adult ele-
phants” is misjudged as “an adult elephant” by our DIFNet,
which may be because the segmentation feature we used
in our implementation is semantic segmentation instead of
panoptic segmentation map, which makes it hard to distin-
guish instances of the same category. And the model also
failed to correctly distinguish which instance the related
grids should be aligned with.

5.5. Comparison to State-of-the-art

We compare our DIFNet with state-of-the-art meth-
ods on the COCO ‘Karpathy’ test split. The com-
pared models include: SCST [26], UpDown [2], GCN-
LSTM [35], SGAE [34], AoANet [9], M2 Transformer [5],
X-Transformer [22], DLCT [19], RSTNet [38]. The visual
feature extractor is all ResNet-101 or ResNeXt-101. The
backbone of the segmentation feature extractor of our model
is ResNet-101, the feature size is 7 × 7, the fusion method
is IILN(Lf=1, T=2) with skip connection.

The results are shown in Table 6. Our model achieves
significant performance gain over existing methods. Our
model outperforms the DLCT [19] by 2.4% on CIDEr. Note
that DLCT uses the grid feature and the region feature at the
same time, but these two features are difficult to effectively
align and there is a lot of information redundancy.

5.6. Discussions

Limited by resources, we still have two aspects to ex-
plore in the future. On the one hand, it is possible to perform
multi-task, e.g. panoptic segmentation and captioning, in
an end-to-end manner to reduce computational complexity.

Baseline: a baby elephant standing between two adult elephants
DIFNet: a baby elephant standing next to an adult elephant
Ground Truth :
Two adult elephants are surrounding a baby elephant
a baby elephant kneeling in front of two bigger elephants 
A baby elephant and it's parents eat fruit.

Figure 7. A failure case of captions generated by baseline model
and our model. Presented images are input image (left) and panop-
tic segmentation map (right), respectively.

On the other hand, we believe that a variety of visual rep-
resentations, such as object detection, action recognition,
depth estimation, etc., could be integrated together to facil-
itate flexible and accurate visual-lingual understanding.

6. Conclusion

In this work, we present DIFNet to generate caption se-
quence faithful to the given image. We first use the seg-
mentation feature to enhance grid visual representation by
the Iterative Independent LN (IILN) fusion module to max-
imize the use of two information flows. We also use addi-
tional skip connections to enhance the flow of information
within and between encoder and decoder to protect some
fragile visual information. Experiments show that the vari-
ous transformer variants with the segmentation features get
better performance, and DIFNet with segmentation features
outperforms state-of-the-art methods. Comprehensive abla-
tion studies reveal several key factors that lead to this suc-
cess and show that dual information flow is highly effective
in boosting the dependence of prediction on visual content.
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