
DIVeR: Real-time and Accurate Neural Radiance Fields
with Deterministic Integration for Volume Rendering

Liwen Wu Jae Yong Lee Anand Bhattad Yu-Xiong Wang David Forsyth
University of Illinois at Urbana-Champaign

{liwenwu2, lee896, bhattad2, yxw, daf}@illinois.edu

Abstract

DIVeR builds on the key ideas of NeRF and its variants –
density models and volume rendering – to learn 3D object
models that can be rendered realistically from small num-
bers of images. In contrast to all previous NeRF methods,
DIVeR uses deterministic rather than stochastic estimates
of the volume rendering integral. DIVeR’s representation
is a voxel based field of features. To compute the volume
rendering integral, a ray is broken into intervals, one per
voxel; components of the volume rendering integral are es-
timated from the features for each interval using an MLP,
and the components are aggregated. As a result, DIVeR can
render thin translucent structures that are missed by other
integrators. Furthermore, DIVeR’s representation has se-
mantics that is relatively exposed compared to other such
methods – moving feature vectors around in the voxel space
results in natural edits. Extensive qualitative and quantita-
tive comparisons to current state-of-the-art methods show
that DIVeR produces models that (1) render at or above state-
of-the-art quality, (2) are very small without being baked,
(3) render very fast without being baked, and (4) can be
edited in natural ways. Our real-time code is available at:
https://github.com/lwwu2/diver-rt

1. Introduction
Turning a small set of images into a renderable model of

a scene is an important step in scene generation, appearance
modeling, relighting, and computational photography. The
task is well-established and widely studied; what form the
model should take is still very much open, with models rang-
ing from explicit representations of geometry and material
through plenoptic function models [1]. Plenoptic functions
are hard to smooth, but neural radiance field (NeRF) [25]
demonstrates that a Multi Layer Perceptron (MLP) with posi-
tional encoding is an exceptionally good smoother, resulting
in an explosion of variants (details in related work). All use
one key trick: the scene is modeled as density and color
functions, rendered using stochastic estimates of volume
rendering integrals. We describe an alternative approach, de-
terministic integration for volume rendering (DIVeR), which
is competitive in speed and accuracy with the state of the art.

NeRF PlenOctrees

DIVeR (Ours) Ground Truth

Figure 1. Monte Carlo vs. feature integration. Methods like
NeRF [25] and PlenOctrees [55] that use Monte Carlo (stochastic)
integrators fail to render the translucent drumhead; it is thin, and
so is hit by few samples. NeRF’s estimator will not model it
with practical numbers of samples. In contrast, our method uses
a deterministic integrator which directly estimates the section of
volume rendering integral near the drum plane through feature
integration (Sec. 4.2); this uses fewer calls to the integrator and still
successfully models the transparency.

We use a deterministic integrator because stochastic es-
timates of integrals present problems. Samples may miss
important effects (Fig. 1). Fixing this by increasing the sam-
pling rate is costly: accuracy improves slowly in the number
of samples N , (for Monte Carlo methods, standard devia-
tion goes as 1/

√
N [4]), but the cost of computation grows

linearly. In contrast, our integrator combines per-voxel esti-
mates of the volume rendering integral into a single estimate
using alpha blending (Sec. 4.2).

Like NSVF [21], we use a voxel based representation of
the color and density. Rather than represent functions, we
provide a feature vector at each voxel vertex. The feature
vectors at the vertices of a given voxel are used by an MLP to
compute the deterministic integrator estimate for the section
of any ray passing through the voxel. Mainly, a model is

16200



learned by gradient descent on feature vectors and MLP
parameters to minimize the prediction error for the training
views; it is rendered by querying the resulting structure with
new rays. Sec. 4 provides the details.

Given similar computational resources, our model is ef-
ficient to train, likely because the deterministic integration
can fit the integral better, and there is no gradient noise pro-
duced by stochastic integral estimates. As Sec. 5 shows, the
procedure results in very small models (∼ 64MB) which
render very fast (∼ 50 FPS on a single 1080 Ti GPU) and
have comparable PSNR with the best NeRF models.

2. Background
NeRF [25] represents 3D scenes with a density field σ(x)

and a color field c(x,d) which are functions of 3D position
x and view direction d encoded by an MLP with weights
w. To render a pixel, a ray r(t) = o + dt is shot from the
camera center o through the pixel center in direction d and
follows the volume rendering equation [14] to accumulate
the radiance:

ĉ(r) =

∫ ∞

0

e−
∫ t
0
σ(r(τ))dτσ(r(t))c(r(t),d)dt. (1)

Closed-form solutions for Eq. 1 are not available, so NeRF
uses Monte Carlo integration by randomly sampling n points
xi = r(ti), i = 1, . . . , n along the ray from eye to far with
their radiance and density values (ci, σi) = MLPw(xi,di).
The radiance and density function is then treated as con-
stant in every interval [ti−1, ti], and an approximation of the
volume rendering equation is given as:

ĉ(r) =

n∑
i=1

i−1∏
j=1

(1− αj)αici (2)

αi = 1− e−σiδi , (3)

where αi denotes the accumulated alpha values along the
interval and δi = ∥xi+1−xi∥2 is the interval length. During
training, NeRF learns to adjust the density and color fields
to produce training images, which is achieved by optimizing
weights w in respect to squared error between rendered pixel
and its ground truth:

L =
∑
k

∥ĉ(rk)− ĉgt(rk)∥22. (4)

3. Related Work
Novel view synthesis: All scene modeling methods at-
tempt to exploit regularities in the plenoptic function (the
spectral radiance traveling in any direction at any point) of
a scene. One approach is to compute an explicit geometric
representations (point clouds [2, 48]; meshes [36, 37, 46])
usually obtained from some 3D reconstruction algorithms
(e.g. COLMAP [39]). The geometry can then carry deep

features, which are projected and then processed by neural
networks to get the image. Building an end-to-end opti-
mizable pipeline is hard, however. Alternatively, one could
use voxel grids [22, 34, 41], where scene observations are
encoded as 3D features and processed by 3D, 2D Convolu-
tional Neural Networks (CNNs) to get the rendered images,
yielding cleaner training but a very memory intensive model
which is unsuitable for high resolution rendering.

Multi-plane images (MPIs) [24, 44, 51, 59] offer novel
views without requiring a precise geometry proxy. One
represents a scene as a set of parallel RGBA images and
synthesizes a novel view by warping the images to the tar-
get view and then alpha blending them; this fails when the
view changes are too large. Image based rendering (IBR) ap-
proaches [6, 7, 49] render a view by interpolating the nearby
observations directly. Most IBR methods generalize well to
unseen data, such that a new scene in an IBR model can be
rendered off-the-shelf or with a few epochs of fine-tuning.

An alternative is to represent proxies for the plenoptic
function using neural networks, and then raycast. [15,42,54]
use signed distance field like functions, and [28,38] represent
the scene geometry as an occupancy field. NeRF [25] models
the plenoptic function using an MLP to encode a density field
(of position) and a color field (of position and direction).
The radiance at a point in a direction is given by a volume
rendering integral [14]. Training is done by adjusting the
MLP parameters to produce the right answer for a given set
of images. The method can produce photo-realistic rendering
on complex scenes, including rendering transparent surfaces
and view dependent effects, but takes a long time to train
and evaluate.

NeRF has resulted in a rich collection of variants. [3, 43,
58] modify the NeRF to allow control of surface materials
and lighting; NeRF-W [23] augments the inputs with image
features to help resolve ambiguity between photos in the
wild. [29, 30, 32] show how to model deformation, and [10,
11, 18, 19, 52] apply NeRF to 4D videos. Finally, [6, 7, 45,
49,56] try to improve the generalizability and training speed,
and [5, 27, 35, 40, 47] adopt the architecture to generative
models.

Rendering NeRF faster: NeRF’s stochastic integrator not
only misses thin structures (which are hard to find with
samples, Figure 1), but also presents efficiency problems.
The main strategy for improving the efficiency of NeRF (as
in any MC integrator) is coming up with better importance
functions [4]. NSVF [21] significantly reduces the number of
samples (equivalently, MLP calls; render time) by imposing
a voxel grid on the density, and then pruning voxels with
empty density at training time. An alternative is a depth
oracle that ensures that MLP samples occur only close to
points with high density [26]. AutoInt [20] further offers a
more efficient estimator for the volume rendering integral
by constructing an approximate antiderivative (though the
absorption integral must still be approximated), which allows
fewer MLP queries at rendering time. In contrast to these

16201



Figure 2. Rendering pipeline overview of our DIVeR. To render
a ray, we first find its intersection with voxels. For each voxel,
features at its eight vertices represent a trilinear function. We
integrate this trilinear function from the ray’s intersection at the
entry to exit, passing the result to an MLP that decodes to color and
alpha values for the voxel. We obtain the final integral estimate for
the ray by accumulating color and alpha values along the ray.

methods, we use a deterministic integral estimator.
But pure importance based methods cannot render in real-

time, because they rely on MLPs that are relatively expensive
to evaluate. FastNeRF [12] discretizes continuous fields into
bins and caches the bins that have been evaluated for subse-
quent frames. PlenOctrees [55] and SNeRG [13] pre-bake
the results of the NeRF into sparse voxels and use efficient
ray marching to achieve interactive frame rate. These meth-
ods achieve real-time rendering at a cost of noticeable loss
in quality (ours does not), or of requiring a high-resolution
voxel grid and so a large storage cost (ours does not). Al-
ternative strategies include: caching MLP calls into MPIs
(Nex [51]); and speeding up MLP evaluation by breaking
one MLP into many small local specialist MLPs (KiloN-
eRF [33]). In contrast, we use the representation and MLP
obtained at training time.

4. Method
As shown in the overall rendering pipeline (Fig. 2), our

DIVeR method differs from the NeRF style models in two
important ways: (1) we represent the fields as a voxel grid
of feature vectors fijk, and (2) we use a decoder MLP with
learnable weight w (Fig. 6) to design a deterministic inte-
grator to estimate partial integrals of any fields of the scene.
To estimate the volume rendering integral for a particular
ray, we decompose it into intervals corresponding to the
voxels the ray passes through. We then let each interval
report an approximate estimate of the voxel’s contribution
and accumulate them to the rendering result. The learning of
the fields is done by adjusting fijk and w to produce close
approximations of the observed images.

Figure 3. The simple voxel model overfits: Training a model with
independent fijk has a strong tendency to overfit. In this example,
the model has interpreted a gloss feature as empty space. Our
regularization procedure is explained in the text.

Figure 4. The implicit MLP generates correlated vertex features
by taking a positional encoding of vertex location and producing a
feature vector.

4.1. Voxel based deep implicit fields

As in NSVF [21], the feature vectors are placed at ver-
tices of the voxel grid; feature values inside each voxel are
given by the trilinear interpolation of the voxel’s eight cor-
ners, which yields a piecewise trilinear feature function f(x).
The voxel grid can be thought of as a 3D cache of interme-
diate sums of NeRF’s MLP, which explains why inference
should be fast (Sec. 5.3) but still can model complicated spa-
tial behaviors compactly (Sec. 5.2). Because voxels in the
empty space make no contribution to the volume rendering,
the voxel grid can also be stored in a sparse representation
(Sec. 4.5), which further speeds up the rendering and reduces
the storage cost (Sec. 5.3).

Initializing voxel features using implicit MLP: If each
fijk is trained independently and randomly initialized, our
representation scheme tends to overfit during the training
(Fig. 3). This suggests that the optimization of each fijk
should be correlated, but it is not obvious which correlation
strategy should be applied. Instead, we take an MLP that
accepts the positional encoded vertex position on the voxel
grid to output the feature vector at that position (the implicit
MLP, with parameters wr; see Fig. 4) to correlate each fea-
ture vector implicitly. Although an MLP can in principle
approximate any function, there is overwhelming experi-
mental evidence that the approximated function tends to be
smooth (e.g. [51]), which makes it unsuitable for rendering
high frequency details. Therefore, we first train the implicit
MLP to generate a reasonable initialization of fijk placed
in the corresponding voxel grid vertex, then discard the reg-
ularization MLP and directly optimize on fijk explicitly.
Experiments show this ‘implicit-explicit’ strategy prevents
overfitting while preserving high-frequency contents.

16202



Monte Carlo Feature integration

Figure 5. Integration strategy comparison. Monte Carlo method
fills an interval by a constant; Feature integration fits the interval
with trilinear functions that are analytically integratable and blends
them using an MLP.

4.2. Feature integration
Intersecting a ray with the voxel grid yields a set of in-

tervals, which are processed separately by our integrator.
Write (tin

1 , t
out
1 ), . . . , (tin

n , t
out
n ) for parameter values defining

these intervals, from eye to far end. For interval i, we obtain
density σi and radiance ci by passing the normalized inte-
gral of f(x) along the interval to the MLP. Let f i1, . . . , f

i
8 be

the feature vectors at corners of the voxel the interval passes
through and χ1(x), . . . , χ8(x) be the corresponding trilinear
interpolation weights, so:

(σi, ci) = MLPw(

∫ tout
i

tin
i

f̂(r(t))dt,d) (5)

where
∫ tout

i

tin
i

f̂(r(t))dt =

∫ tout
i

tin
i

8∑
k=1

f ik
χk(r(t))

|tout
i − tin

i |
dt =

8∑
k=1

f ik

∫ tout
i

tin
i

χk(r(t))

|tout
i − tin

i |
dt.

(6)

Here w are the learnable weights of the MLP, and we in-
corporate viewing direction d to model the view dependent
effect. These approximations are accumulated into a single
value of the integral by

ĉ(r) =

n∑
i=1

i−1∏
j=1

(1− αj)αici (7)

αi = 1− e−σi (8)

σi =

∫ tout
i

tin
i

σ(r(t))dt, ci =

∫ tout
i

tin
i

c(r(t),d)dt (9)

(which is an approximation of Eq. 1, see the supplemen-
tary). Notice that, if the MLP had no hidden layers, and
the integrand was a known function, we would be adjusting
components of a basis function expansion of the integrand
to produce the approximation.

Our integrator has two advantages over MC. First, we
get a slightly better estimate per interval (the MC estimate
assumes fields inside an interval are constant; ours fits them
using an MLP; see Fig. 5), and this manifests in better ren-
dering quality (Sec. 5.4). Second, because the integrator is

DIVeR64

DIVeR32

Figure 6. Decoder architecture. DIVeR64 has around 8K pa-
rameters; DIVeR32 has around 4k parameters. Both MLPs take
integrated features and positional encoded viewing direction as
inputs and output corresponding integrated density and color.

deterministic, the error in integral estimates is deterministic,
and so is the gradient, which may help learning; our experi-
ence has been that our method has vanishing gradients less
often than standard NeRF, and is less sensitive to the choice
of learning rate.

4.3. Architecture
We choose the feature dimension to be 32, and the voxel

grid size varies according to the target image resolution. The
grid is relatively coarse and can be represented very effi-
ciently with a sparse representation (Sec. 5.1). As shown in
Fig. 6, we investigate two different MLP decoders: DIVeR32
and DIVeR64. Similar to [25], we apply positional encoding
to the viewing direction d, but we directly pass the integrated
feature f into the MLP without positional encoding. We use
10 bands for positional encoding in the implicit regulariza-
tion MLP and 4 bands in the decoder MLP. Because the
architectures are tiny, one call of MLP takes less than 1ms,
which allows MLP evaluation to happen in real time.

4.4. Training
We optimize fijk, w, and wr for each scene. During a

training step, we randomly sample a batch of rays from the
training set and follow the procedure described in Sec. 4.2
to render the color, and then apply gradient descent on fijk
and w using Eq. 4. We want the voxel grid to be sparse, and
so discourage the model from predicting background color
in empty space using the regularization loss of [13]:

Lsparsity = λs

∑
i

log(1 +
σ2
i

0.5
), (10)

where σi denotes the ith accumulated density; λs is the
regularization weight. In contrast to NeRF, we do not need
hierarchical volume sampling because we use deterministic
integration.

16203



Coarse to fine: We speed up training with a coarse to
fine procedure. Early in training, it is sufficient to use coarse
resolution images to determine whether particular regions are
empty using the culling strategy discussed in Sec. 4.5. Based
on the coarse occupancy map, we then train high resolution
images and efficiently skip the empty space. When we do
so, we discard the features and MLP weights trained on the
coarse images (which are trained to ignore fine details).

4.5. Inference time optimization

To avoid querying voxels that have no effect on the image
(empty voxels; occluded voxels), we follow [55] by record-
ing maximum blended alpha

∏i−1
j=1(1−αj)αi for each voxel

from training views, and then culling all voxels with maxi-
mum blended alphas below the threshold τvis = 0.01. This
culls 98% of voxels on average but preserves transparent
surfaces. We cull after the coarse training step (to accelerate
fine-scale training) and then again after fine-scale training.

To avoid working on voxels occluded to a certain camera
view, we evaluate intervals from the eye and stop working on
a ray when a transmittance estimate

∏
i(1− αi) falls below

a threshold (τt = 0.01). Furthermore, if an interval’s alpha
is below τt, there is no need to evaluate color.

In contrast to other voxel based real-time applications,
we do not need to convert the trained model (so there is no
precision loss, etc. from discretizing the model). While in
principle, our inference time optimizations must result in
loss of accuracy, the results of Sec. 5.3 suggest that this loss
is negligible.

5. Experiments
We evaluate using both the offline rendering task

(FPS≤20) and the real-time rendering task (FPS>20). We
use the NeRF-synthetic dataset [25] (synthetic images of
size 800 × 800 with camera poses); a subset of the Tanks
and Temples dataset [17] and the BlendedMVS dataset [53]
(chosen by NSVF authors [21]). Tanks and Temples im-
ages are 1920× 1080; BlendedMVS images are 768× 576.
Backgrounds in both datasets are cropped by NSVF. The
qualitative results of our experiments can be seen in Fig. 7
and Fig. 8. In all quantitative measurements, we mark the
best result by bold font and second best by italic font with
underline.

5.1. Implementation detail

Training: We use PyTorch [31] for network optimization
and customized CUDA kernels to accelerate ray-voxel in-
tersection. For high resolution image training, both implicit
and explicit models use a voxel grid of size 2563 for NeRF-
synthetic and BlendedMVS, and 3203 for Tanks and Tem-
ples. For coarse model training, we take the voxel grid and
images at 1/4 of the fine model scale. We follow NSVF’s [21]
strategy to sample rays from the training set, and we choose
a batch size of 1024 pixels for coarse training, 6144 for fine

Method PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-Synthetic

NeRF [25] 31.00 0.947 0.081
JaxNeRF [9] 31.65 0.952 0.051
AutoInt [20] 25.55 0.911 0.170
NSVF [21] 31.74 0.953 0.047
DIVeR64 32.32 0.960 0.032

BlendedMVS

NeRF [25] 24.15 0.828 0.192
JaxNeRF [9] - - -
AutoInt [20] - - -
NSVF [21] 26.90 0.898 0.113
DIVeR64 27.25 0.910 0.073

Tanks & Temples

NeRF [25] 25.78 0.864 0.198
JaxNeRF [9] 27.94 0.904 0.168
AutoInt [20] - - -
NSVF [21] 28.40 0.900 0.153
DIVeR64 28.18 0.912 0.116

Table 1. Quantitative results on different benchmarks show
ours (DIVeR64) is overall the best compared with NeRF and its
variant for offline rendering. ‘-’ means no publicly available results.
(Best; Second best).

training of Tanks and Temples, and 8192 for fine training of
other datasets. The coarse model is trained for 5 epochs first
explicitly, and then we train the model with implicit MLP
until the validation loss has almost converged. Finally, we
train the explicit grid initialized from the implicit model and
stop the training when the total training time reaches 3 days.
In total, the peak GPU memory usage is around 40GB. We
use the Adam [16] optimizer with a learning rate of 5e-4 for
the fine model, 1e-3 for the coarse model, and λs =1e-5 in
the sparsity regularization loss.
Real-time application: Our real-time application is imple-
mented by using CUDA and Python, with all the operations
being parallelized per image pixel. For each frame and each
pixel, ray marching finds a fixed number of hits on the voxel
grid; the MLP is evaluated for each hit, and the result is then
blended to the image buffer. This sequence is repeated until
the ray termination criteria is reached (Sec. 4.5).
Storage: Because the voxel grid is sparse, we need to store
only: indices and values of feature vectors for non-empty
voxels; a binary occupancy mask; and the MLP weight. At
inference, we keep feature vectors in a 1D array and then
build a dense 3D array that stores the indices to the spe-
cific feature value, thereby reducing GPU memory demand
without much sacrifice of performance.

5.2. Offline rendering
We evaluate the offline model by measuring the similarity

between rendered and ground truth images using PSNR,
SSIM [50], and LPIPS [57]. We use our DIVeR64 model for
all scenes.
Baselines: We compare with original NeRF [25]; the reim-
plementation in Jax [9]; AutoInt [20]; and NSVF [21] (which
uses similar voxel grid features). Pre-trained models from

16204



NeRF-Synthetic
NeRF [25] PlenOctrees [55] DIVeR32(RT) Ground Truth

Figure 7. Qualitative rendering results show that our method successfully models fine and translucent structures (shrouds and ratlines on
the ship; studs on lego; drumhead) which NeRF and PlenOctrees find hard. Our method is slightly slower than PlenOctrees (real-time) but
much smaller; NeRF runs offline.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF-SH [55] 31.57 0.952 0.063
JaxNeRF+ [13] 33.00 0.962 0.038
NeRF [25] 31.00 0.947 0.081
DIVeR32 32.16 0.958 0.032

Table 2. Image quality comparisons to real-time pre-trained
models on NeRF-synthetic strongly support our method (almost as
good as JaxNeRF+). In Tab. 3, we show the performance of their
corresponding baked real-time applications.

real-time NeRF variants produce good rendering quality but
are trained and evaluated on very large computational re-
sources (for example, JaxNeRF+ [13] doubles the feature
size of NeRF’s MLP and takes 5 times more samples for
volume rendering, which is impractical for evaluation on a
standard GPU). Therefore, we exclude them from the base-
line models.

Results: DIVeR rendering quality is comparable with
other offline baselines, while its architecture is much simpler
(Tab. 1). Our PSNR is only slightly worse than that of NSVF
on Tanks and Temples; but we use a much simpler decoder
MLP.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ MB ↓ GPU GB ↓
PlenOctrees [55] 31.71 0.958 0.053 76±66 1930 1.65±1.09
SNeRG [13] 30.38 0.950 0.050 98±37 84 1.73±1.48
FastNeRF [12] 29.97 0.941 0.053 - - -
KiloNeRF [33] 31.00 0.950 0.030 28±12 161 1.68±0.27
DIVeR32(RT) 32.12 0.958 0.033 47±20 68 1.07±0.06

Table 3. Comparisons to other real-time variants on NeRF-
synthetic show that our method produces small models with very
low GPU demand and renders very fast with very strong image
quality metrics. PlenOctrees is baked from NeRF-SH; SNeRG is
baked from JaxNeRF+; KiloNeRF and FastNeRF directly convert
from the original NeRF. Performance measurements of FastNeRF
are not publicly available.

5.3. Real-time rendering

For the real-time rendering task, we use our DIVeR32
model with the inference time optimization described in
Sec. 4.5. Besides rendering quality, we show the inference
time efficiency by running all the models on a GTX1080
GPU and recording their FPS and GPU memory usage. To
compare the compactness of the architecture, we report the
average memory usage for storing a scene. As most real-time
models are converted from some pre-trained models, we also
show the rendering quality of those models and compare the
precision loss after the conversion. For the models that have

16205



Tanks and Temples BlendedMVS
DIVeR64 Ground Truth DIVeR64 Ground Truth

Figure 8. Qualitative rendering results of Tanks and Temples and BlendedMVS data show our method successfully models real-world fine
structures.

variants based on quality-speed trade-off, we report their
variants with the best rendering quality.

Baselines: For our real-time rendering baselines, we com-
pare with PlenOctrees [55], SNeRG [13], FastNeRF [12],
and KiloNeRF [33]. Since SNeRG did not provide their
pre-trained models, we directly report the measurements
from their paper. For the same reason, we report only the
rendering quality for the FastNeRF as reported in their paper.
For KiloNeRF, we measure the performance of those scenes
for which their model was made available (chair, lego, and
ship).

Results: Our rendering quality is either best (Tab. 3) or
second best (Tab. 2), but our method achieves very high
frame rates for very small models. All other methods must
(1) convert to achieve a real-time form and then (2) fine-tune
to recover precision loss after conversion. Fine-tuning is
crucial for these models; for example, if SNeRG is not fine-
tuned, its PSNR degrades dramatically to 26.68. In contrast,
our model is evaluated as trained without conversion or fine-
tuning. Early ray termination (Sec. 4.5) causes the mild
degradation in quality observed in our real-time methods.

5.4. Ablation study
Architecture: We perform all our ablation studies on the
NeRF-synthetic dataset. In Tab. 4, we show the performance
trade-off between different network architectures. Without
any real-time optimization, our model still runs faster than
regular NeRF that takes minutes to run a single frame; if
we use a smaller decoder for speed, there is a minor loss of
quality but speed doubles (because DIVeR32 uses half as
many registers as DIVeR64, allowing more threads to run in
the CUDA kernel). Further economy with acceptable PSNR
can be obtained by reducing the voxel grid size (compare

N Decoder RT PSNR ↑ FPS ↑ MB ↓
256 DIVeR64 No 32.32 0.62 62
256 DIVeR32 No 32.16 0.62 68
128 DIVeR64 No 30.72 0.62 12
128 DIVeR32 No 30.53 0.62 12
256 DIVeR64 Yes 32.30 26±9 62
256 DIVeR32 Yes 32.12 47±20 68
128 DIVeR64 Yes 30.64 37±20 12
128 DIVeR32 Yes 30.52 82±37 12

Table 4. Ablation study on network architecture shows that
real-time optimization (RT) and smaller MLPs (Decoder) involve
minimal loss of rendering quality but huge speedups; going to a
coarser grid (N ) involves a larger loss of quality, for further very
large speedup and improvement in model size.

DIVeR64 DIVeR32 DIVeR64 Ground Truth
N = 256 N = 256 N = 128

Figure 9. Qualitative comparison of different architectures
shows larger voxel grid can better model the fine texture on the
chair surface; switching to a smaller MLP does not affect the quality
too much.

DIVeR32 at 128 voxels yielding 30.42 PSNR for an about
12MB model to PlenOctree’s variant with 30.7 PSNR, about
400MB). Fig. 9 compares different MLP sizes and voxel grid
sizes qualitatively.

16206



Scene composition Object swapping

Figure 10. Our representation admits useful editing in a straightforward way. Left: shows a composite of pretrained models, obtained by
blending voxel grids. Right: the mustard on the plate (first hot-dog) is replaced with ketchup (second hot-dog); this edit is preserved under
view change (third hot-dog).

Integrator Regularization Data type PSNR ↑ MB ↓
Det Im-Ex float32 35.52 64
Rand Im-Ex float32 33.89 67
Det Im-Ex uint8 35.44 19
Det Im float32 34.69 64
Det Ex float32 34.02 64

Table 5. Ablation study on training strategy. Implicit (Im) MLP
initialization with explicit (Ex) training gives the best rendering
quality. Mapping feature vectors with tanh allows features to be
stored more efficiently (uint8) with acceptable loss of rendering
qualities.

Training strategy: Tab. 5 shows the effect of differ-
ent training strategies on the lego scene trained with our
DIVeR64 model. The deterministic integrator is important:
using a random integrator (implemented with sampling strat-
egy of NSVF [21]) in train and test causes a notable loss
of quality. The implicit-explicit training strategy is impor-
tant: replacing it either with a pure implicit model or with
no implicit MLP initialization (compare Fig. 3) results in a
less significant loss of quality. A lower precision represen-
tation of the feature vectors (trained with a tanh mapping;
converted to unit8) results in a minor loss of quality, but the
model size is reduced by a factor of 3.
Editability: The voxel based representation allows us to
perform some basic scene manipulations. We can composite
scenes by blending their voxel grids and then using the cor-
responding decoder for rendering. Because feature vectors
incorporate high level information of the local appearance,
we can extract the segmentation of an object from a se-
lected area by using k-mean clustering on the feature vectors,
which allows us to swap objects without noticeable artifacts.
Fig. 10 shows some examples.

6. Limitations
Training NeRF-like representations is expensive, and our

method does not speed up training in any natural way. Alias-
ing error in a deterministic integrator tends to be patterned,
whereas a stochastic integrator breaks it up [8]. In turn,
rays near tangent to voxels or accumulated error in the in-
tersection routine can cause problems (Fig. 11). A mixed

Ours Ground Truth Ours Ground Truth

Figure 11. Intersection errors can cause aliasing problems, typi-
cally for structures near the scale of the voxel grid and rays near
tangent to voxel faces. Worse, our current intersection routine,
while efficient, can accumulate intersection errors, occasionally
producing blocky aliasing artifacts at some view directions and
scales (the scale of the blocky artifacts in each case is close to the
scale of the voxel grid).

NeRF [25] Ours Ground Truth

Figure 12. NeRF variants fail to extrapolate view dependent
effect that is unseen from the training set. Neither ours nor other
NeRF variants are able to model the reflection on the shovel cor-
rectly.

stochastic-deterministic method (say, jittering voxel posi-
tions) may help. Our method, like NeRF, can fail to model
view dependent effects correctly (Fig. 12); more physical
modeling might help. Our method does not currently apply
to unbounded scenes, and our editing abilities are currently
quite limited.

Acknowledgements: We thank Sara Aghajanzadeh,
Derek Hoiem, Shenlong Wang, and Zhen Zhu for their
detailed and valuable comments on our paper.

References

[1] Edward H. Adelson and James R. Bergen. The plenoptic
function and the elements of early vision. In Computational
Models of Visual Processing, 1991. 1

16207



[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graphics,
2020. 2

[3] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P.A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In ICCV,
2021. 2

[4] Phelim P. Boyle. Options: A monte carlo approach. Journal
of Financial Economics, 4(3):323–338, 1977. 1, 2

[5] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and
Gordon Wetzstein. pi-gan: Periodic implicit generative ad-
versarial networks for 3d-aware image synthesis. In CVPR,
2021. 2

[6] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo,
2021. 2

[7] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis from sparse views of novel scenes. In CVPR, 2021.
2

[8] Robert L. Cook. Stochastic sampling in computer graphics.
ACM Transactions on Graphics, 5(1):51–72, 1986. 8

[9] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020. 5

[10] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view
synthesis and video processing. In ICCV, 2021. 2

[11] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
ICCV, 2021. 2

[12] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps, 2021. 3, 6, 7

[13] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis, 2021. 3, 4, 6, 7

[14] James T. Kajiya and Brian P Von Herzen. Ray tracing volume
densities. SIGGRAPH Comput. Graph., 18(3):165–174, Jan.
1984. 2

[15] Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari
Pulli, and Gordon Wetzstein. Neural lumigraph rendering. In
CVPR, 2021. 2

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015. 5

[17] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Trans. Graph., 36(4), July 2017. 5

[18] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, and Zhaoyang Lv. Neural 3d
video synthesis, 2021. 2

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of
dynamic scenes. In CVPR, 2021. 2

[20] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume render-
ing. In CVPR, 2021. 2, 5

[21] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 1, 2, 3, 5, 8

[22] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, July 2019. 2

[23] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections. In CVPR, 2021. 2

[24] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion. ACM Transactions on
Graphics (TOG), 38:1 – 14, 2019. 2

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1, 2, 4, 5, 6, 8

[26] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller,
C. R. A. Chaitanya, A. Kaplanyan, and M. Steinberger. Don-
erf: Towards real-time rendering of compact neural radiance
fields using depth oracle networks. Computer Graphics Fo-
rum, 40(4):45–59, 2021. 2

[27] Michael Niemeyer and Andreas Geiger. Giraffe: Representing
scenes as compositional generative neural feature fields. In
CVPR, 2021. 2

[28] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle,
and Andreas Geiger. Differentiable volumetric rendering:
Learning implicit 3d representations without 3d supervision.
In CVPR, pages 3501–3512, 2020. 2

[29] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, 2021. 2

[30] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 2

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. 5

[32] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. In CVPR, 2020. 2

[33] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps, 2021. 3, 6, 7

[34] Konstantinos Rematas and Vittorio Ferrari. Neural voxel
renderer: Learning an accurate and controllable rendering
tool. In CVPR, 2020. 2

16208



[35] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. Sharf: Shape-conditioned radiance fields from a
single view. In ICML, 2021. 2

[36] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
ECCV, 2020. 2

[37] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In
CVPR, 2021. 2

[38] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, pages 2304–2314, 2019. 2

[39] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 2

[40] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 2

[41] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In CVPR,
2019. 2

[42] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In NeurIPS, 2019. 2

[43] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T. Barron. Nerv: Neu-
ral reflectance and visibility fields for relighting and view
synthesis. In CVPR, 2021. 2

[44] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
CVPR, pages 175–184, 2019. 2

[45] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In CVPR, 2021. 2

[46] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural textures.
ACM Trans. Graph., 38(4), July 2019. 2

[47] Alex Trevithick and Bo Yang. Grf: Learning a general ra-
diance field for 3d scene representation and rendering. In
arXiv:2010.04595, 2020. 2

[48] Cen Wang, Minye Wu, Ziyu Wang, Liao Wang, Hao Sheng,
and Jingyi Yu. Neural opacity point cloud. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(7):1570–
1581, 2020. 2

[49] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas A. Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In CVPR, 2021.
2

[50] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 5

[51] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
2, 3

[52] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In CVPR, pages 9421–9431, 2021. 2

[53] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
CVPR, 2020. 5

[54] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. In NeurIPS, volume 33, 2020. 2

[55] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 3, 5, 6, 7

[56] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images,
2020. 2

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 5

[58] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E.
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: Neural factorization of shape and reflectance under an
unknown illumination. ArXiv, abs/2106.01970, 2021. 2

[59] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification. ACM Transactions
on Graphics (TOG), 37:1 – 12, 2018. 2

16209


