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Abstract

Video Instance Segmentation (VIS) aims to simultane-

ously classify, segment, and track multiple object instances in

videos. Recent clip-level VIS takes a short video clip as input

each time showing stronger performance than frame-level

VIS (tracking-by-segmentation), as more temporal context

from multiple frames is utilized. Yet, most clip-level meth-

ods are neither end-to-end learnable nor real-time. These

limitations are addressed by the recent VIS transformer

(VisTR) [25] which performs VIS end-to-end within a clip.

However, VisTR suffers from long training time due to its

frame-wise dense attention. In addition, VisTR is not fully

end-to-end learnable in multiple video clips as it requires

a hand-crafted data association to link instance tracklets

between successive clips. This paper proposes EfficientVIS,

a fully end-to-end framework with efficient training and in-

ference. At the core are tracklet query and tracklet proposal

that associate and segment regions-of-interest (RoIs) across

space and time by an iterative query-video interaction. We

further propose a correspondence learning that makes track-

lets linking between clips end-to-end learnable. Compared

to VisTR, EfficientVIS requires 15× fewer training epochs

while achieving state-of-the-art accuracy on the YouTube-

VIS benchmark. Meanwhile, our method enables whole video

instance segmentation in a single end-to-end pass without

data association at all.

1. Introduction

Video Instance Segmentation (VIS) is a challenging video

task recently introduced in [28]. It aims to predict a tracklet

segmentation mask with a class label for every appeared ob-

ject instance in a video as illustrated in Fig. 1. Existing meth-

ods typically solve the VIS problem at either frame-level or

clip-level. The frame-level methods [10, 14, 16, 24, 26, 29]

follow a tracking-by-segmentation paradigm, which first

performs image instance segmentation and then links the

current masks with history tracklets via data association as

shown in Fig. 1 (a). This paradigm typically requires com-
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Figure 1. Overview of real-time VIS pipelines. Compared to (a)

or (b), our method features 1) Efficient training thanks to the RoI-

wise design; 2) Efficient framework that achieves whole video

instance segmentation in a single end-to-end pass without any data

association and post-processing; 3) Strong performance thanks to

the clip-by-clip processing and fully end-to-end paradigm.

plex data association algorithms and limits temporal context,

making it susceptible to object occlusions. By contrast, the

clip-level methods [2,3,15,25] jointly perform segmentation

and tracking clip-by-clip. Within each clip, object informa-

tion is propagated back and forth. Such a paradigm usually

performs stronger than the frame-level methods thanks to

larger temporal receptive field. However, most clip-level

methods are not end-to-end and require elaborated inference

that causes slow speed. These issues are addressed by the

recent VIS transformer (VisTR) [25] which extends image

object detector DETR [7] to the VIS task. VisTR generates

VIS predictions within each video clip in one end-to-end

pass, which greatly simplifies the clip-level paradigm and

makes VIS within a clip end-to-end trainable.

However, the VIS transformer is confronted with two

issues: (i) The convergence speed of VisTR is slow since

the frame-wise dense attention weights in the transformer

need long training epochs to search for properly attended

regions among all video frame pixels. It is difficult for

researchers to experiment with this algorithm as it requires

long development cycles. (ii) When a video is too long to fit

into GPU memory in one forward-pass, it has to be divided

into multiple successive clips for sequential processing. In
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this case, VisTR becomes partially end-to-end. As shown in

Fig. 1 (b), VisTR requires a hand-crafted data association

to link tracklets between clips. Such a hand-crafted scheme

is not only more complicated but also less effective than an

end-to-end learnable association as evidenced in Table 1d.

In this paper, we propose a new clip-level VIS frame-

work, coined as EfficientVIS. EfficientVIS delivers a fully

end-to-end framework that can achieve fast convergence and

inference with strong performance. Our work is inspired

by the recent success of the query-based R-CNN architec-

ture [10, 20] in image object detection. EfficientVIS extends

the spirit of sparse object proposal [20] to the video domain

to model the complex space-time interactions. Specifically,

EfficientVIS uses tracklet query paired with tracklet pro-

posal to represent an individual object instance in video.

Tracklet query is latent embeddings that encode appearance

information for a target instance, while tracklet proposal is a

space-time tube that locates the target in the video. Our track-

let query collects the target information by interacting with

video in a clip-by-clip fashion through a designed temporal

dynamic convolution. This way enriches temporal object

context that is an important cue for handling object occlu-

sion and motion blur in videos. We also design a factorised

temporo-spatial self-attention allowing tracklet queries to

exchange information over not only space but also time. It

enables one query to correlate a target across multiple frames

so as to end-to-end generate target tracklet mask as a whole

in a video clip. Compared to prior works, EfficientVIS en-

joys three remarkable properties:

(i) Fast convergence: In EfficientVIS, tracklet queries

interact with video CNN features only in the region of the

space-time RoIs defined by the tracklet proposal. This is

different from VisTR [25] that is interacting with all video

pixels on the transformer [22] encoded features using dense

attention. Our RoI-wise design drastically reduces video

redundancies and therefore allows EfficientVIS for faster

convergence than transformer as shown in Table 1g.

(ii) Fully end-to-end learnable framework: EfficientVIS

goes beyond a short clip and is fully end-to-end learnable

over the whole video. When there are multiple successive

clips, one needs to link instance tracklets between clips. In

contrast to prior clip-level works [3,18,23,25] that manually

stitch the tracklets, we design a correspondence learning

that enables tracklet query to be shared among clips for

seamlessly associating a same instance. In other words, the

tracklet query output from one clip is enabled to be fed into

the next clip to associate and segment the same instance.

Meanwhile, the query is dynamically updated in terms of

the next clip content so as to achieve a continuous tracking

for the future. Such a scheme makes EfficientVIS fully

end-to-end, without any explicit data association for either

inner-clip or inter-clip tracking as shown in Fig. 1 (c).

(iii) Tracking in low frame rate videos: Tracking object

instances that have dramatic movements is a great challenge

for motion-based trackers [18, 23, 31], as they suppose in-

stances move smoothly over time. In contrast, our method

retrieves a target instance in a frame conditioned on its query

representation regardless of where it is in nearby frames.

Thus, EfficientVIS is robust to dramatic object movements

and can track instances in low frame rate videos as shown in

Fig. 5 and Table 1h.

We summarize our major contributions as follows:

• EfficientVIS is the first RoI-wise clip-level VIS

framework that runs in real-time. The RoI-wise de-

sign enables a fast convergence by drastically reducing

video redundancies. Fully end-to-end learnable track-

ing and rich temporal context of the clip-by-clip work-

flow together bring a strong performance. EfficientVIS

ResNet-50 achieves 37.9 AP on Youtube-VIS [28] in

36 FPS by training 33 epochs, which is 15× training

epochs fewer and 2.3 AP higher than VIS transformer.

• EfficientVIS is the first fully end-to-end neural net

for VIS. Given a video as input despite its length, Effi-

cientVIS directly produces VIS predictions without any

data association or post-processing. We will demon-

strate by diagnostic experiments that this fully end-to-

end paradigm is not only simpler but also more effective

than the previous partially/non end-to-end frameworks.

2. Related Works

Frame-level VIS: Most video instance segmentation meth-

ods work at the frame-level fashion, a.k.a. tracking-

by-segmentation [6, 10, 11, 14, 16, 19, 24, 26, 29]. This

paradigm produces instance segmentation frame-by-frame

and achieves tracking by linking the current instance mask to

the history tracklet. So it requires an explicit data association

algorithm in either a hand-crafted or trainable way. Some

attempts [11, 14, 26, 29] strive to exploit temporal context to

improve VIS, yet their temporal context is limited to one or

only a few frames ignoring fertile resources of videos. In

contrast to the above methods, our method does not require

data association algorithm at all and we take advantage of

richer temporal context by performing VIS clip-by-clip.

Clip-level VIS: Recent clip-level works [2,3,15,25] demon-

strate promising VIS accuracy by exploiting rich tempo-

ral knowledge from multiple frames of a video clip. This

paradigm propagates object information back and forth in

a clip, which can well handle object occlusion and motion

blur. However, most clip-level methods have a complex

inference process (e.g. extra mask refinement, box ensem-

ble, etc) that makes them neither end-to-end learnable nor

real-time in inference. To address these limitations, the VIS

transformer (VisTR) [25] extends DETR [7] from images to

videos, achieving efficient and end-to-end VIS within each

clip. Nevertheless, VisTR suffers from slow convergence due

to the frame-wise dense attention. Besides, if there are two or
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Figure 2. EfficientVIS architecture. EfficientVIS performs VIS clip-by-clip where the above figure illustrates how it works in one clip.

more video clips, VisTR is not fully end-to-end and requires

a hand-crafted data association to link tracklets between

clips. In contrast to the above methods, EfficientVIS is fully

end-to-end learnable without the need of data association for

either inner- or inter-clips. Moreover, EfficientVIS performs

VIS in an RoI-wise manner through an efficient query-video

interaction, enabling fast convergence and inference.

3. EfficientVIS

EfficientVIS performs VIS clip-by-clip, where we present

the main VIS architecture for inner-clip in Sec. 3.1 and the

inter-clip tracklets correspondence learning in Sec. 3.3.

3.1. Main Architecture

EfficientVIS is an RoI-wise clip-level VIS framework.

In each forward-pass, it takes as input a video clip {It}
T
t=1

and directly yields the VIS predictions, i.e. tracklet masks

{mi}
N
i=1 along with tracklet classifications, where It ∈

R
HI×WI×3 and mi ∈ R

T×HI×WI×1. T is the number of

frames in the clip, and N is the number of unique object

instances. HI ×WI is the frame spatial size. As detailed in

Fig. 2, EfficientVIS starts with a CNN backbone that extracts

a video base feature. Afterward, EfficientVIS iterates over

the following query-video interaction M times: 1) Query

interaction: tracklet queries self-interact and communicate

in space and time by our factorised temporo-spatial self-

attention so that a tracklet query consistently associates the

same instance over time and different tracklet queries track

different instances; 2) Video interaction: tracklet queries

interact with video feature to collect the target instance in-

formation by our temporal dynamic convolution. At the end

of each interaction, a couple of head networks are applied to

update tracklet queries, proposals, masks, and classifications.

Finally, EfficientVIS takes tracklet masks and classifications

output from the last iteration as the VIS results.

Base Feature: We apply a standard CNN backbone frame-

by-frame to the input video clip. The extracted features

are then concatenated along the time dimension to form the

base feature f ∈ R
T×H×W×C , where C is the number of

channels and H ×W is the spatial size of feature map. The

base feature contains full semantic information of the clip.

Tracklet Query and Proposal: We use tracklet queries

{qi}
N
i=1 paired with tracklet proposals {bi}

N
i=1 to represent

every unique object instance throughout a video. Tracklet

query qi is embedding vectors that encode exclusive ap-

pearance information for the i-th instance, indicating the

instance identity. Tracklet proposal is a space-time box tube

bi ∈ R
T×4, which tracks and locates the i-th instance across

the entire video clip. bti ∈ R
4 determines the four corners

of the box at time t. Each tracklet query has T embeddings,

i.e. qi ∈ R
T×C , where C is the channel number of an em-

bedding. In this way, we enforce different embeddings to

focus on different frames. This is more effective than using

only one embedding as evidenced in Table 1f, because one

instance at different time could have significant appearance

changes. It is harsh to enforce a single embedding to encode

various appearance patterns of an instance.

Factorised Temporo-Spatial Self-Attention (FTSA): The

goal of FTSA is to achieve a query-target correspondence

that makes each query associate to a unique target instance

in the video. We take advantage of the idea of factorised

temporo-spatial self-attention in the video transformer [1, 4]

which is originally used for encoding video backbone fea-

tures. Here, we exploit it on instance tracklet queries

to achieve an instance communication. Concretely, we

separately perform temporal and spatial Multi-Head Self-

Attention (MSA) [22] one after the other on tracklet queries

as shown in Fig. 2. Let qt
i ∈ R

1×C denote the t-th em-

bedding in the i-th instance tracklet query. The temporal

self-attention is computed within the same tracklet query,

across the T embedding pairs as:

{qt
i}

T
t=1 ← MSA({qt

i}
T
t=1), i = 1, ..., N. (1)

The temporal self-attention allows the embeddings of one

instance query from different frames to exchange the target
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instance information, such that the embeddings can jointly

associate the same instance over time. Therefore, instance

association/tracking in each clip is implicitly achieved and

end-to-end learned by our temporal self-attention. The spa-

tial self-attention is then computed at the same frame, across

the N embedding pairs from different tracklet queries as:

{qt
i}

N
i=1 ← MSA({qt

i}
N
i=1), t = 1, ..., T. (2)

The spatial self-attention allows each query to acquire object

context from other queries in each frame, reasoning about

the relations among different object instances. We observe

in experiments that the order of temporal and spatial self-

attention does not cause a noticeable performance difference.

Joint temporo-spatial self-attention that computes MSA

across all T ×N embedding pairs for once is another alter-

native for a query communication. Compared to this scheme,

our FTSA saves more computation and is more effective as

we will demonstrate in Table 1a.

Temporal Dynamic Convolution (TDC): The aim of TDC

is to collect the target instance information from the video

clip. Specifically, we generate a dynamic convolutional

filter [13, 21] conditioned on tracklet query embedding. We

then use it to perform convolution on an RoI region of the

base feature specified by the corresponding tracklet proposal.

Different from the still-image dynamic convolution [10, 20,

21], we perform a 3D dynamic convolution in order to collect

temporal instance context from nearby frames as well. Let

wt
i denote the dynamic convolutional filter generated from

tracklet query embedding qt
i . The TDC is computed as:

ot
i =

t+1
∑

t′=t−1

ai,(t,t′) ◦ conv2d(wt
i , φ(f

t′ , bt
′

i )). (3)

φ denotes RoI align [12] whose output spatial size is Hr ×
Wr and ◦ is element-wise product. ai,(t,t′) ∈ R

Hr×Wr is

a simple adaptive weight that measures the similarity of

conv2d(·) outputs between time step t and t′. Similar to [27,

32], the adaptive weight is calculated by cosine similarity

and softmax such that
∑t+1

t′=t−1 a
x,y

i,(t,t′) = 1. {ot
i}

T
t=1 ∈

R
T×Hr×Wr×C is the tracklet feature of the i-th instance.

Eq. 3 differs from regular 3D convolution, where we share

the same filter over the time dimension.

Since the dynamic filter wi is generated from qi, wi has

distinct cues and appearance semantics of the i-th instance.

The TDC exploits wi to exclusively collect the i-th instance

information from the video base feature yet filter out irrel-

evant information. Therefore, tracklet feature oi shall be

highly activated by wi in the region where the i-th instance

appears but will be suppressed in the region of uncorrelated

instances or background clutter as evidenced in Fig. 4.

Head Networks: For each instance i, we employ light-

weight head networks on its tracklet feature oi to output its

VIS predictions and renewed tracklet query and proposal.

Since tracklet feature oi exclusively carries the i-th instance

information across the clip, these outputs can be readily de-

rived by applying regular convolutions or fully connected

layers (FCs). Specifically, we apply convolutions to segment

tracklet mask, and FCs to classify tracklet, regress tracklet

proposal, and update tracklet query. The updated query and

proposal are fed into the next iteration. The head network

architectures are similar to [10, 12, 20]. In a nutshell, our

tracklet (proposal) for a video clip is directly generated as a

whole determined by tracklet query. So we do not need ex-

plicit data association to link instances/boxes across frames

in a clip as frame-level VIS methods [10,11,14,16,19,24,29].

Initial Tracklet Query and Proposal Details: As [10, 20],

the initial tracklet query and proposal at the input of the first

iteration are model parameters learned from training. Each

initial query has one embedding, i.e. q⋆
i ∈ R

1×C . As shown

in Fig. 2, we repeat it T times over the time dimension before

starting the first iteration1. Besides, we find in experiments

that all the learned initial proposals tend to be the frame size

which covers the whole scene. We think this is reasonable

because it is easier for later stages to regress the proposal to

the target region by first taking a glance at the whole image.

3.2. Training

For each video clip, EfficientVIS is trained by the one-to-

one matching loss [7, 10, 20, 25], which first obtains a one-

to-one assignment between predictions and ground truths

by bipartite matching and then computes the training loss

in terms of the assignment. Let {yi}
N
i=1 denote the tracklet

predictions and {ŷj}
G
j=1 denote the tracklet ground truths,

where G (≤ N ) is the total number of ground truths. We

denote σ as a G-elements permutation of {1, ..., N}. The

bipartite matching between y and ŷ is found by searching

for a σ with the lowest cost as:

σ̂ = argmin
σ

G
∑

j=1

Lmatch

(

yσ(j), ŷj
)

. (4)

The optimal assignment σ̂ is obtained by the Hungarian al-

gorithm. Each instance tracklet has three types of annotation

ŷj = (ĉj , b̂j , m̂j), where ĉj ∈ R
T is the class label in-

cluding background class ∅. ĉtj = ∅ indicates the instance

disappears at time step t. Let pσ(j)(ĉj) be the predicted clas-

sification score of the σ(j)-th tracklet for the class ĉj . The

matching cost is computed by Lmatch =
∑T

t=1−pσ(j)(ĉ
t
j) +

1{ĉt
j
̸=∅}(Lbox(b

t
σ(j), b̂

t
j) − LmaskIoU(m

t
σ(j), m̂

t
j)), where b

and m are the predicted tracklet proposal and mask re-

spectively. Lbox is calculated by box IoU and L1 distance

as [7]. After finding the optimal assignment σ̂ that one-to-

one matches between tracklet predictions and ground truths,

the training loss for the video clip is computed as:

1We repeat the parameter q⋆
T times rather than directly setting the

parameter to be q⋆
∈ R

T×C , because it gives an initial prior that all the T

embeddings shall belong to a same instance.
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inference in multiple clips.

Lclip(σ̂) =

G
∑

j=1

T
∑

t=1

[−pσ̂(j)(ĉ
t
j) + LCE(m

t
σ̂(j), m̂

t
j)

+ 1{ĉt
j
̸=∅}(Lbox(b

t
σ̂(j), b̂

t
j) + Ldice(m

t
σ̂(j), m̂

t
j))],

(5)

where LCE is the binary cross-entropy loss and Ldice is the

dice loss [17]. All the losses and balancing weights are

similar to [7, 10,20,25], except that we add a LCE to enforce

predicted mask to be zero if the instance disappears. Eq. 5 is

averaged by the total number of entries. For those unmatched

tracklet predictions, we only impose classification loss to

supervise them to be background class.

3.3. Correspondence Learning

If a long video cannot fit into GPU memory in one

forward-pass, it needs to be split into multiple successive

clips for sequential processing. To stitch tracklets between

two clips, prior works [3,18,23,25] turn to hand-crafted data

association. However, human-designed rules are cumber-

some and not end-to-end learnable. Therefore, we design

a correspondence learning that makes the tracklet linking

between clips end-to-end learnable without data association,

which is not only simpler but also more effective.
Correspondence learning: As shown in Fig. 3, every two

clips from the input video are paired2 in training. For the

first clip of a pair, the initial tracklet queries are the model

parameters q⋆ as described in Sec. 3.1, and the training

procedure is the same as Sec. 3.2, i.e. finding the optimal

assignment σ̂ and backpropagating Lclip(σ̂). For the initial

queries of the second clip, we use the output tracklet queries

from the first clip averaged along the time dimension. The

average operation can extract a comprehensive abstract for

the instance representation. As for the assignment of the

second clip, we do not perform bipartite matching. Instead,

we use the same assignment σ̂ that is already obtained by

the first clip to train the second clip. Such a training manner

enforces the tracklet queries output from one clip to segment

and correspond to the same object instances in the next clip.

In this way, tracklet query is able to serve as a generic video-

level representation to seamlessly associate and correlate an

instance across a whole video instead of only a clip.

2The order of the two clips in a pair is randomized.

Inference: EfficientVIS simply takes output queries from

the last clip as the initial queries to correlate and segment the

same instances in the current clip without data association.

Meanwhile, the queries are continuously updated by our

query-video interaction to collect the current clip information

so as to achieve a continuous tracking for the future. If a

tracklet query has been classified as background for many

clips, one may re-initialize it with q⋆ in order to allocate

slots. Since instance positions vary in different clips, we

use the same initial proposals for every clip, i.e. the trained

model parameters rather than the last clip output proposals.

4. Experiments

4.1. Experimental Setup

Datasets: Our experiments are conducted on the YouTube-

VIS [28] benchmark in two versions. YouTube-VIS 2019

is the first dataset for video instance segmentation, which

contains 2,883 videos labeled at 6 FPS, 131K instance masks,

and 40 object classes. YouTube-VIS 2021 is an increased

version that contains 3859 videos.

Evaluation Metric: The video-level average precision (AP)

and average recall (AR) are the metrics. Different from the

image domain, the video intersection over union (IoU) is

computed between the predicted tracklet mask and ground

truth tracklet mask. So, in order to achieve high performance,

a model needs to not only correctly classify and segment the

target instance but also accurately track the target over time.

Architecture Settings: Following [25], the default video

clip length and the number of tracklet queries are set to

T = 36 and N = 10, respectively. Following [10, 20, 25],

the number of iterations is M = 6 and the default CNN

backbone is ResNet-50. We use the above default settings

for all experiments unless otherwise specified. Image frame

size and pretrained model are the same as [6, 10, 25, 29].

Training: EfficientVIS is trained by AdamW with an initial

learning rate of 2.5×10−5. We train the model for 33 epochs

where the learning rate is dropped by a factor of 10 at the

27-th epoch. For example, the model can be trained in 12

hours with 4 RTX 3090 GPUs on YouTube-VIS 2019. The

correspondence learning is enabled if the maximum frame

number of videos in a dataset is larger than T . No training

data augmentation is used unless otherwise specified.

Fully end-to-end Inference: EfficientVIS does not include

any data association or post-processing. Reason: Target

tracklet within a clip is generated as a whole in a single

forward-pass thanks to the implicit association of our FTSA

(Sec. 3.1). Target tracklets between two clips are auto-

matically correlated owing to our correspondence learning

(Sec. 3.3). The one-to-one matching loss (Sec. 3.2) further

enables our method to get rid of post-processing like NMS.
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Self-attention AP AP50 AP75 AR1 AR10

Spatial (S) 32.8 56.3 34.9 36.1 42.2

Temporal (T) 30.4 49.0 32.1 34.2 39.1

Joint T-S 33.7 56.8 36.1 36.6 44.6

Factorised T-S (FTSA) 37.0 59.6 40.0 39.3 46.3

(a) Self-attention schemes. We perform different multi-head self-

attention schemes on tracklet queries.

Dynamic Conv AP AP50 AP75 AR1 AR10

Still-image 36.0 59.5 39.5 38.4 45.3

Temporal 37.0 59.6 40.0 39.3 46.3

(b) Still-image vs. Temporal - dynamic convolution. Temporal

dynamic convolution is more effective by taking into account temporal

object context from nearby frames.

Length AP AP50 AP75 AR1 AR10

T = 9 35.3 57.6 38.5 37.7 43.5

T = 18 36.4 58.1 39.5 39.1 46.8

T = 36 37.0 59.6 40.0 39.3 46.3

(c) Video clip length T . We experiment with different number of

frames for each video clip. Larger temporal receptive filed provides

richer temporal context and therefore yields better performance.

Scheme AP AP50 AP75 AR1 AR10

T = 9
Hand-craft 33.7(−1.6) 55.5 36.4 33.9 40.3

Fully e2e (ours) 35.3 57.6 38.5 37.7 43.5

T = 18

VisTR [25] 29.7(−6.7) 50.4 31.1 29.5 34.4

Hand-craft 34.6(−1.8) 55.3 37.4 36.6 44.6

Fully e2e (ours) 36.4 58.1 39.5 39.1 46.8

(d) Fully end-to-end (e2e) vs. Partially e2e. Both “Hand-craft” and

VisTR are partially e2e, where tracklet association within each clip is

e2e but that between clips requires a hand-crafted linking. For “Hand-

craft”, we report the best results by varying matching score thresholds.Scheme AP AP50 AP75 AR1 AR10

w/o CL 7.4 19.0 5.9 9.8 13.5

w/ CL 35.3 57.6 38.5 37.7 43.5

(e) Correspondence learning (CL). We train EfficientVIS with and

without CL. After training, we test both using our fully end-to-end

inference paradigm. T = 9 in this study.

Query AP AP50 AP75 AR1 AR10

Time shared 35.5 57.1 38.5 38.7 43.9

Time disentangled 37.0 59.6 40.0 39.3 46.3

(f) Time disentangled vs. Time shared - query. For each tracklet

query, the time disentangled scheme uses T embeddings, while the

time shared scheme only uses one embedding.Method Train Aug. Epopchs AP AP50 AP75 AR1 AR10

VisTR [25] random crop ∼500 35.6 56.8 37.0 35.2 40.2

EfficientVIS ✗ 33 37.0 59.6 40.0 39.3 46.3

EfficientVIS multi-scale 33 37.9 59.7 43.0 40.3 46.6

(g) Convergence speed. (EfficientVIS vs. VIS Transformer). T =

36 for both VisTR and EfficientVIS. VisTR is equipped with random

cropping training augmentation by default.

Video Frame Rate AP AP50 AP75 AR1 AR10

Original FPS 35.3 57.6 38.5 37.7 43.5

1.5 FPS 35.3 57.4 39.1 37.5 42.8

(h) Tracking in low frame rate videos (T = 9). We downsample the

frame rate of the original YouTube-VIS videos to 1.5 FPS. EfficientVIS

is not affected by low video frame rate or dramatic object motions.

Table 1. Ablation studies on the YouTube-VIS 2019 val set.

4.2. Ablation Studies

Time Disentangled Query: As described in Sec. 3.1, our

tracklet query is designed to be disentangled in time, i.e.

each query contains T embeddings instead of one embed-

ding. As shown in Table 1f, we compare it with the time

shared query scheme that only uses one single embedding for

each tracklet query. Our time disentangled query achieves

1.5 AP higher than the time shared one. We argue that this is

because objects in different time may have dramatic appear-

ance changes like heavy occlusion or motion blur. It is more

reasonable to use multiple embeddings to separately encode

different appearance patterns of an instance.

Factorised Temporo-Spatial Self-Attention: To evaluate

our factorised temporo-spatial self-attention (FTSA), we

experiment with different self-attention schemes as shown

in Table 1a. “S” indicates the spatial self-attention that only

performs multi-head self-attention (MSA) within the same

frame across the embeddings of different tracklet queries.

“T” denotes the temporal self-attention that only performs

MSA within the same tracklet query across the embeddings

of different time. “Joint T-S” is the joint temporo-spatial self-

attention that performs MSA across all T ×N embeddings

as described in Sec. 3.1. We see from the table that the

FTSA and “Joint T-S” achieve better performance than using

either “S” or “T” standalone. This is because the temporal

self-attention can let a query in different time exchange

information so as to associate the same instance, while the

spatial self-attention models different instances relations in

space. Such a query communication in both space and time

is necessary for the VIS task. Compared to “Joint T-S”, our

FTSA yields better VIS results. We think the reason is that

all attendees in FTSA are strongly related to each other. For

example, the embeddings in temporal self-attention are all

from the same tracklet query, while those in spatial self-

attention are all from the same frame. However, by mixing

up all T × N embeddings in a single self-attention pass,

much less relevant information from other tracklets at far

temporal positions is directly involved during “Joint T-S”.

Temporal Dynamic Convolution: To assess our temporal

dynamic convolution (TDC), we compare it with the still-

image dynamic convolution that performs 2D convolution on

the current frame only. As shown in Table 1b, our temporal

dynamic convolution improves 1 AP over the still-image

version. It suggests that the temporal object context from

nearby frames is also an informative cue. Moreover, we

visualize the tracklet feature. As shown in Fig. 4, tracklet

feature is highly activated by our TDC in the region where

the target instance appears. We also see that tracklet fea-

ture is suppressed when the target instance disappears, even

if its tracklet proposal has drifted to background clutter or

uncorrelated instance. This demonstrates the dynamic filter
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Zebra #3Zebra #2Zebra #1 Tracklet
Query #1

Tracklet
Query #2

Tracklet
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t=
1

Temporal Dynamic 
Conv (TDC)
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TDC

t=
5 TDC TDCTDC
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1
0 TDC TDCTDC

Tracklet Proposals Final Results

Tracklet
Feature

maskhead

maskhead

maskhead

Figure 4. Tracklet features carry exclusive target instance in-

formation. The dynamic conv filter conditioned on tracklet query

activates tracklet feature only in the region where the target instance

appears. The #2 tracklet feature at t=1 is suppressed by the filter of

#2 zebra query even the proposal has drifted to the #3 zebra.

conditioned on tracklet query is target-specific, which exclu-

sively collects the query’s target information from the video

base feature yet discards irrelevant information.

Video Clip Length: As shown in Table 1c, we experiment

with different video clip lengths. EfficientVIS improves 1.7

AP by increasing the number of frames from 9 to 36. It is

reasonable because more frames can provide richer temporal

context which is important to video tasks. Moreover, since

our method runs clip-by-clip in 36 FPS as shown in Table 2,

it can be regarded as a near-online fashion with a delay of
T
36 . For example, there is a 0.25s delay when T = 9.

Correspondence Learning: To validate the effectiveness of

our correspondence learning, we train an EfficientVIS with-

out the correspondence learning. Concretely, we treat every

clip as an individual video and do not use tracklet queries

from other clips as input during training. In inference, we

keep our fully end-to-end paradigm, i.e. the output tracklet

queries from one clip are used as the initial queries of the next

clip. As shown in Table 1e, the performance significantly

drops if EfficientVIS is trained without the correspondence

learning. It suggests that our correspondence learning is the

key to enabling tracklet query to be a video-level instance

representation that can be shared among different video clips.

Fully End-to-end Learnable Framework: Thanks to the

correspondence learning, EfficientVIS fully end-to-end per-

forms VIS by taking tracklet queries from one clip as the

initial queries of the next clip. To evaluate this fully end-to-

end framework, we compare it with two partially end-to-end

schemes, “hand-craft” and VisTR [25] in Table 1d. These

two methods perform VIS end-to-end within each clip but

require a hand-crafted data association to link tracklets be-

tween clips. For the “hand-craft” scheme, all the model

architectures keep the same as EfficientVIS except that track-

lets between two clips are linked by a human-designed rule:

1) We first construct an affinity matrix by taking into account

box IoU, box L1 distance, mask IoU, and class label match-

ing like prior tracking works [26, 31]; 2) We then solve the

tracklet association by the Hungarian algorithm. As shown in

Table 1d, our fully end-to-end scheme performs better than

the partially end-to-end framework in different T settings

while greatly simplifying the previous VIS paradigms. The

reason for this performance gap is that the tracklet linking be-

tween clips in hand-crafted scheme tends to be sub-optimal,

while that in our fully end-to-end framework is learned and

optimized by ground truths during training.

Tracking in Low Frame Rate Videos: Tracking object in-

stances in low frame rate videos is a hard problem, where

motion-based trackers usually fail. Motion-based trackers

suppose instances move smoothly over time and impose

spatial movement constraints to prevent trackers from asso-

ciating very distant instances. In contrast, our tracking is

determined by instance appearance rather than motion, as

we retrieve a target instance solely conditioned on its query

representation regardless of the target spatial distance among

different frames. Therefore, our tracking is not limited by

dramatic instance movements. To demonstrate this property,

we downsample the frame rate of the YouTube-VIS dataset

to 1.5 FPS and test our method. As shown in Table 1h, Effi-

cientVIS successfully maintains its VIS performance in the

low frame rate video setting. As shown in Fig. 5, we also

visualize the results of EfficientVIS on a very low frame rate

video whose frame is sampled every 5 seconds, i.e. 0.2 FPS.

Fast Convergence: In our method, we crop video using

tracklet proposal and collect target information from the

proposal. Compared to VIS transformer (VisTR) [25] that

uses frame-wise dense attention, this RoI-wise design elimi-

nates much background clutter and redundancies in videos

and enforces EfficientVIS to focus more on informative re-

gions, making our convergence 15× faster as shown in Ta-

ble 1g. This RoI-wise pipeline also leads to better accuracy

than VisTR. This is because tracklet proposal can avoid re-

gions outside the target being segmented (second figure in

appendix), which results in more precise masks and signifi-

cantly higher AP75 as evidenced in Table 1g.

4.3. Comparison to State of the Art

YouTube-VIS 2019: In Table 2, we compare EfficientVIS

with the real-time state-of-the-art VIS models. EfficientVIS

is the only fully end-to-end framework while achieving su-

perior accuracy. We attribute the strong performance to

two main aspects: 1) Our object tracking is learned via the

end-to-end framework; 2) Our clip-by-clip processing and

temporal dynamic convolution enrich temporal object con-

text that is helpful for handling occlusion or motion blur. As

shown in Table 2, we achieve notably higher recall (AR)
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Method Publication Augmentations Backbone FPS AP AP50 AP75 AR1 AR10

MaskTrack R-CNN [28] ICCV’19 ✗ ResNet-50 33 30.3 51.1 32.6 31.0 35.5

SipMask [6] ECCV’20 ✗ ResNet-50 34 32.5 53.0 33.3 33.5 38.9

CompFeat [11] AAAI’21 ✗ ResNet-50 <33 35.3 56.0 38.6 33.1 40.3

TraDeS [26] CVPR’21 ✗ ResNet-50 26 32.6 52.6 32.8 29.1 36.6

QueryInst [10] ICCV’21 ✗ ResNet-50 32 34.6 55.8 36.5 35.4 42.4

CrossVIS [29] ICCV’21 ✗ ResNet-50 40 34.8 54.6 37.9 34.0 39.0

VisSTG [24] ICCV’21 ✗ ResNet-50 22 35.2 55.7 38.0 33.6 38.5

EfficientVIS (Ours) CVPR’22 ✗ ResNet-50 36 37.0 59.6 40.0 39.3 46.3

STMask [14] CVPR’21 DCN backbone [9] ResNet-50 29 33.5 52.1 36.9 31.1 39.2

SG-Net [16] CVPR’21 multi-scale training ResNet-50 23 34.8 56.1 36.8 35.8 40.8

VisTR [25] CVPR’21 random crop training ResNet-50 30 35.6 56.8 37.0 35.2 40.2

QueryInst [10] ICCV’21 multi-scale training ResNet-50 32 36.2 56.7 39.7 36.1 42.9

CrossVIS [29] ICCV’21 multi-scale training ResNet-50 40 36.3 56.8 38.9 35.6 40.7

VisSTG [24] ICCV’21 multi-scale training ResNet-50 22 36.5 58.6 39.0 35.5 40.8

EfficientVIS (Ours) CVPR’22 multi-scale training ResNet-50 36 37.9 59.7 43.0 40.3 46.6

MaskTrack R-CNN [28] ICCV’19 ✗ ResNet-101 29 31.9 53.7 32.3 32.5 37.7

SRNet [30] ACMMM’21 ✗ ResNet-101 35 32.3 50.2 34.8 32.3 40.1

CrossVIS [29] ICCV’21 ✗ ResNet-101 36 36.6 57.3 39.7 36.0 42.0

EfficientVIS (Ours) CVPR’22 ✗ ResNet-101 32 38.7 61.3 44.0 40.6 47.7

SipMask [6] ECCV’20 multi-scale training ResNet-101 24 35.8 56.0 39.0 35.4 42.4

STMask [14] CVPR’21 DCN backbone [9] ResNet-101 23 36.8 56.8 38.0 34.8 41.8

SG-Net [16] CVPR’21 multi-scale training ResNet-101 20 36.3 57.1 39.6 35.9 43.0

VisTR [25] CVPR’21 random crop training ResNet-101 28 38.6 61.3 42.3 37.6 44.2

EfficientVIS (Ours) CVPR’22 multi-scale training ResNet-101 32 39.8 61.8 44.7 42.1 49.8

Table 2. Comparison with real-time state-of-the-art methods on the YouTube-VIS 2019 val set.

Frame#1, 0s Frame#2, 5s Frame#3, 10s Frame#4, 15s Frame#5, 20s

Figure 5. Video instance segmentation in a 0.2 FPS video. EfficientVIS successfully tracks the instances with dramatic movements.

Method Publication AP AP50 AP75 AR1 AR10

MaskTrack R-CNN [28] ICCV’19 28.6 48.9 29.6 26.5 33.8

SipMask⋆ [6] ECCV’20 31.7 52.5 34.0 30.8 37.8

CrossVIS [29] ICCV’21 33.3 53.8 37.0 30.1 37.6

EfficientVIS (Ours) CVPR’22 34.0 57.5 37.3 33.8 42.5

Table 3. Comparison with real-time state-of-the-art methods on

the YouTube-VIS 2021 val set. ⋆ denotes multi-scale training.

than other competitors. We think the reason for the high

recall is that we recognize more heavily occluded or blurred

objects, which are usually missed by common methods.

For a fair comparison, Table 2 only lists real-time meth-

ods using single model without extra data. There are two

works with 40+ AP, MaskProp [3] (<5.6 FPS) and Propose-

Reduce [15] (1.8 FPS), which however are not real-time and

adopt multiple models or extra training data. MaskProp uses

DCN backbone [9], HTC detector [8], extra High-Resolution

Mask Refinement network, etc. Propose-Reduce is trained

with additional DAVIS-UVOS [5] and COCO pseudo videos

datasets. These elaborated implementations are beyond the

scope of our work, as our main goal is to present a simple

end-to-end model with real-time inference and fast training.

YouTube-VIS 2021: We experiment with EfficientVIS on

YouTube-VIS 2021 in Table 3. EfficientVIS achieves state-

of-the-art AP without bells and whistles. Similar to the

findings on YouTube-VIS 2019, EfficientVIS significantly

improves AR over other state of the arts.

5. Conclusion

This work presents a new VIS model, EfficientVIS, which

simultaneously classifies, segments, and tracks multiple ob-

ject instances in a single end-to-end pass and clip-by-clip

fashion. EfficientVIS adopts tracklet query and proposal

to respectively represent instance appearance and position

in videos. An efficient query-video interaction is proposed

for associating and segmenting instances in each clip. A

correspondence learning is designed to correlate instance

tracklets between clips without data association. The above

designs enable a fully end-to-end framework achieving state-

of-the-art VIS accuracy with fast training and inference.
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