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Abstract

Active learning is a promising alternative to alleviate the

issue of high annotation cost in the computer vision tasks

by consciously selecting more informative samples to la-

bel. Active learning for object detection is more challeng-

ing and existing efforts on it are relatively rare. In this pa-

per, we propose a novel hybrid approach to address this

problem, where the instance-level uncertainty and diver-

sity are jointly considered in a bottom-up manner. To bal-

ance the computational complexity, the proposed approach

is designed as a two-stage procedure. At the first stage, an

Entropy-based Non-Maximum Suppression (ENMS) is pre-

sented to estimate the uncertainty of every image, which

performs NMS according to the entropy in the feature space

to remove predictions with redundant information gains. At

the second stage, a diverse prototype (DivProto) strategy is

explored to ensure the diversity across images by progres-

sively converting it into the intra-class and inter-class di-

versities of the entropy-based class-specific prototypes. Ex-

tensive experiments are conducted on MS COCO and Pas-

cal VOC, and the proposed approach achieves state of the

art results and significantly outperforms the other counter-

parts, highlighting its superiority.

1. Introduction

During the past decade, visual object detection [23, 30]

has been greatly advanced by deep Convolutional Neural

Networks (CNN) [12, 27] with persistently increasing per-

formance reported. Unfortunately, strong CNNs generally

make use of huge amounts of annotated data to fit extensive

numbers of parameters, and training such detectors requires

bounding-box labels on images, which is quite expensive

and time-consuming. As one of the most promising alterna-

tives to alleviate this dilemma, active learning [25,38] aims

to reduce this high cost by consciously selecting more in-
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formative samples to label, and it is expected to deliver a

higher accuracy with much fewer annotated images com-

pared to that conducted in the random way.

In the community of computer vision, active learning

is mainly discussed on image classification [15, 25, 28],

where current methods roughly go into two categories,

i.e. uncertainty-based [9, 36] and diversity-based [22, 25].

Uncertainty-based methods [9, 36] screen informative sam-

ples from entire databases according to their ambiguities [3,

9, 15, 36]. As the samples are separately predicted, they are

efficient but tend to incur high correlations. Diversity-based

methods [1, 22, 25] claim that informative samples are the

representatives of the whole data distribution and identify

a subset using distance metric [25] or class probability [1].

They prove effective for small models, but suffer from high

computational complexity. In addition, there exists another

trend to combine the uncertainty- and diversity-based meth-

ods as hybrid ones [2, 6, 35], and the achieved superiority

figures out a promising alternative to other tasks.

As we know, object detection is more complicated than

image classification, where object category and location are

simultaneously output. In this case, active learning is de-

sired to deal with various numbers of objects within images

and the essential issue is to make image-level decisions ac-

cording to instance-level predictions. The diversity-based

method, CDAL [1], applies spatial pooling to roughly ap-

proximate instance aggregation and formulates image se-

lection as a reinforcement learning process. Regarding

uncertainty-based methods, Learn Loss [36] designs a task-

free loss prediction module, and computes the image un-

certainty by image-level features instead of instance-level

ones, while MIAL [37] defines the image uncertainty as

that of the top-K instances and estimates it with multiple

instance learning based re-weighting. Since the diversity-

based methods do not fully make use of categorical infor-

mation and the uncertainty-based ones do not well measure

the discrepancy of informative samples, the two types of

methods leave room for performance improvement.

In this study, we propose a novel hybrid approach to
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Figure 1. Framework overview. The hollow circles refer to uncertainty predictions and the solid ones denote the aggregated prototypes.

At each cycle, the detector is trained with labeled images and infers the unlabeled ones. Instance uncertainty is first computed based on

the entropy. ENMS then performs on each image to remove redundant instances. DivProto aggregates the instances of each image to

prototypes and rejects the images close to the selected ones. The priority of active acquisition is illustrated with 3 examples: I1, I2, I3. At

the end of each cycle, the selected images (e.g. I2, I3) are labeled by an oracle.

active learning for object detection, which considers both

the uncertainty and diversity at the instance level. To

balance the computational complexity, the proposed ap-

proach works in a two-stage manner, as Fig. 1 displays. At

the first stage, we estimate the uncertainty of each image

by an Entropy-based Non-Maximum Suppression (ENMS).

ENMS performs Non-Maximum Suppression on the calcu-

lated entropy in the feature space to remove instances that

bring redundant information gains, where a bigger value of

the entropy refined by ENMS indicates the selection priority

of an unlabeled image. At the second stage, unlike existing

uncertainty-based methods [24,37] which choose the top-K
images for annotation, we introduce the diverse prototype

(DivProto) strategy to ensure instance-level diversity across

images. It employs the prototypes [29, 33] as the image-

level representatives by aggregating the class-specific in-

stances, and decomposes the cross-image diversity into the

intra-class and inter-class ones. We then acquire the images

of the minority classes for inter-class diversity and reject the

ones that incur redundancy for intra-class diversity. In this

way, the proposed approach combines the advantages of the

uncertainty and diversity based ones in a bottom-up manner.

We evaluate the proposed approach on MS COCO [19] and

Pascal VOC [7,8] and deliver state of the art scores on both

of them, highlighting its effectiveness.

2. Related Work

2.1. Active Learning on Image Classification

As stated, the majority of the studies on active learn-

ing in computer vision target on image classification and

are mainly categorized into diversity-based [1, 25] and

uncertainty-based [9, 36] ones.

The diversity-based methods screen a subset of samples

to represent the global distribution by clustering [22] or ma-

trix partition [11] techniques. Core-set [25] defines active

learning as a core-set selection problem and adopts k-center

approximation. To improve efficiency, CDAL [1] replaces

distance based similarity with the KL divergence. Those

methods are theoretically complete but computationally in-

efficient when dealing with high-dimensional data.

The uncertainty-based methods select ambiguous sam-

ples which are regarded as the most informative to the entire

dataset [3, 9, 15, 36]. Many efforts are made to estimate the

data uncertainty, e.g. the entropy of class posterior prob-

abilities [15]. In this case, [9] introduces Bayesian CNNs

as an expert; [3] employs deep ensembles and Monte-Carlo

dropout; and Learn Loss [36] proposes a task-free image-

level loss prediction module. The methods above are effi-

cient, but bring in redundant samples for annotation.

Some alternatives [6, 14, 34] combine the advantages of

both types. With the uncertainty and diversity scores, [6]

simply chooses the minimal; [35] emphasizes the diversity

at early cycles and moves to the uncertainty gradually; [13]

views the fusion as a multi-armed bandit problem and re-

weights different scores. VAAL [28] performs uncertainty

estimation on whether a data point belongs to the labeled

or unlabeled pool, and acquires the samples most similar

to the latter. SRAAL [38] further exploits the uncertainty

estimator and the supervised learner to enclose annotation

information. BADGE [2] models the uncertainty and diver-

sity by the gradient magnitudes and directions from the last
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layer respectively. The hybrid methods achieve promising

results and suggest a new fashion for other tasks.

2.2. Active Learning on Object Detection

Object detection has been greatly progressed by

CNNs [12, 27] in the past few years mainly under the one-

stage [18,20,30] and two-stage [10,23] frameworks. As de-

tection annotation is more expensive and time-consuming,

active learning comes into focus in this branch, and prelim-

inary attempts demonstrate its necessity [4, 16, 21, 24, 32].

Meanwhile, with both object category and location to pre-

dict, this task is more challenging.

Both the diversity-based and uncertainty-based methods

have been recently adapted to object detection, and they

extend direct image-level decision by integrating instance-

level predictions. For the former, CDAL [1] represents the

image using the detection features after spatial pooling to

approximate this process. In spite of certain potential, a

substantial performance gain requires global instance-level

feature comparison, which incurs a vast complexity. For the

latter, Learn Loss [36] employs holistic image-level features

for uncertainty estimation and with the task-free loss predic-

tion module, it directly evaluates how much information an

unlabeled image contributes. MIAL [37] selects the image

by measuring its uncertainty based on that of the top-K in-

stances re-weighted in a multiple instance learning frame-

work, with noisy ones suppressed and representative ones

highlighted. They ignore instance-level correlation within

the whole data pool and thus deliver much redundancy. To

address the issues above, this paper presents a way to jointly

use their strengths to advance object detection.

3. Problem Statement

This section starts with the formulation of active learning

for object detection. The generic pipeline can be roughly

grouped into three steps: (1) inference on unlabeled images

with the existing detector, (2) image acquisition and anno-

tation under a budget, and (3) detector training and evalua-

tion on newly labeled images. These three steps execute in a

loop and each iteration is viewed as a cycle (or stage). After

each active learning cycle, the performance of the detectors

represents the ability of the active acquisition methods since

they select different images to annotate, where a fixed im-

age amount is adopted as the annotation budget [1, 36, 37].

As detector training and evaluation are set in the same way,

we focus on exploring a more effective acquisition method.

Suppose we have a large collection of candidate images

{Ii}i∈[n] as well as a selected image set S = {Is(j)|s(j) ∈
[n]}j∈[m], where [n] = {1, · · · , n} and [m] = {1, · · · ,m}.

Note that S denotes the labeled subset before each active ac-

quisition cycle, which is initially chosen at random. Given

a budget b, the batch active learning algorithm aims to ac-

quire an image subset ∆S in each cycle such that |∆S| = b.

∆S is subsequently labeled by an oracle, and is applied to

update S as S := S ∪∆S . The oracle is requested to pro-

vide labels Y = {ys(j)}j∈[m] for each selected image. The

learning model DS is successively trained by S and Y .

As depicted in Core-set [25], the active learning

problem is defined as minimizing the core-set loss
∑

i∈[n] l(Ii, yi;DS), where yi is the label of Ii. In the set-

ting of object detection, the detector DS is decomposed to

an encoder PS and a successive predictor AS . PS encodes

a set of spatial positions {posk}k∈[t] in Ii to a set of fea-

tures PS(Ii) = {PS(Ii, k)}k∈[t] by adopting the receptive

fields [20, 23] or positional embeddings [5] from DS . Af-

terwards, AS predicts AS(PS(Ii)) = {ỹi,k, ci,k, pi,k}k∈[t]

based on PS(Ii), where ỹi,k, ci,k and pi,k are the predicted

bounding box, object class and confidence score, respec-

tively. The image-level core-set loss l(·) for object detection

can be reformulated as:
∑

k∈[t] lD(PS(Ii, k), yi,k;AS),
where lD is the instance-level loss function. To adopt the

Core-set based solution, l(·) should be Lipschitz continu-

ous as required by Theorem 1 in [25]. However, PS(Ii)
is unordered, and thus is difficult to be explicitly defined,

making l(·) not Lipschitz continuous.

To address this issue, inspired by the uncertainty-based

studies [24, 37], we alternatively explore the empirical un-

certainty from PS(Ii) and adopt the entropy-based formu-

lation. Specifically, we calculate the following entropy [26]

for the k-th instance:

H(Ii, k) = −pi,k log pi,k − (1− pi,k) log (1− pi,k), (1)

where pi,k is the confidence score predicted as the fore-

ground of a certain category and 1−pi,k as the background.

From Eq. (1), the image-level basic detection entropy is

defined by replacing lD(·) with H(Ii, k) in l(·) as below:

H(Ii|DS) =
∑

k∈[t]
H(Ii, k). (2)

Based on H(Ii|DS), the unlabeled images are sorted,

and the top-K images are selected as the acquisition set ∆S .

As visually similar bounding boxes contain redundant

information which are not preferred when training robust

detectors, it is desirable to select the most informative ones

and abandon the rest. Moreover, such information redun-

dancy occurs not only within each image but also across

images, making it more difficult to retain the instance-level

diversity. There still lacks a hybrid approach that considers

the instance-level evaluation and achieves the image-level

acquisition in the mean time.

4. Method

4.1. A Hybrid Framework

In this subsection, we describe the details about our pro-

posed hybrid framework, specifically designed for active

learning on object detection.
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Figure 2. The hierarchy of the instance-level diversity is dis-

played in (a). (b) refers to the intra-image diversity by removing

the instance-level redundancy via ENMS. (c) and (d) strengthen

the intra-class and inter-class diversities across images formulated

with the class-specific prototypes, respectively.

As shown in Fig. 1, the proposed framework mainly

consists of three modules: uncertainty estimation using

the basic detection entropy, Entropy-based Non-Maximum

Suppression (ENMS) and the diverse prototype (DivProto)

strategy. The basic detection entropy in Eq. (2) is adopted

to quantitively measure the image-level uncertainty from

object instances. ENMS is subsequently presented to re-

move redundant information according to the entropy, thus

strengthening the instance-level diversity within images.

DivProto further ensures the instance-level diversity across

images by converting it into the inter-class and intra-class

diversities formulated with class-specific prototypes.

To be specific, the hierarchy of our method for diversity

enhancement is illustrated in Fig. 2. The overall instance-

level diversity (a) is divided into the intra-image diversity

(b) via ENMS and the inter-image diversity is accomplished

by DivProto, which is then decomposed into the inter-class

and intra-class ones as shown in (c) and (d), respectively.

By virtue of this progressive way, the diversity constraints

on the predicted instances are effectively undertaken. The

details are elaborated in the rest part.

4.2. ENMS for IntraImage Diversity

As Eq. (2) depicts, the basic detection entropy H(Ii|DS)
is a simple sum of the entropy of the candidate bounding

boxes. Nevertheless, existing object detectors often gener-

ate a large amount of proposal bounding boxes with heavy

overlaps, incurring severe spatial redundancy and high com-

putational cost. This issue can be partially mitigated by ap-

plying Non-Maximum Suppression (NMS) [20, 23], based

on which bounding boxes belonging to the same instance

are merged to a unified one. But NMS cannot deal with

the instance-level redundancy, i.e. instances with similar

appearances presenting in the same context, which is sup-

posed to be reduced in active acquisition.

Algorithm 1 Entropy-based Non-Maximum Suppression

Input: the predicted classes {ci,k}k∈[t]

the confidence scores {pi,k}k∈[t]

the instance-level features {fi,k}k∈[t]

the threshold Tenms (0.5 by default)

Output: the image-level entropy Ei after ENMS

Initialize: Ei := 0

1: Calculate the instance entropy {H(Ii, k)}k∈[t] accord-

ing to Eq. (1)

2: Initialize the indicating set Sins := [t]
3: while Sins ̸= ∅ do

4: Select the most informative instance kpick according

to kpick := argmaxk∈[Sins] H(Ii, k) from Sins and

update Sins := Sins − {kpick}
5: Update the entropy Ei := Ei +H(Ii, kpick)
6: for j in Sins do

7: if ci,j = ci,kpick
and Sim(fi,j ,fi,kpick

) > Tenms

then

8: Remove the instance j as Sins := Sins − {j}
9: end if

10: end for

11: end while

To overcome this shortcoming of NMS, we propose a

simple yet effective Entropy-based Non-Maximum Suppres-

sion (ENMS) as a successive step of NMS for instance-level

redundancy removal. Specifically, we first compute the fol-

lowing Cosine distance Sim(·, ·) to measure pair-wise inter-

instance duplication: Sim(fi,k,fi,j) =
fT
i,k·fi,j

∥fi,k∥∥fi,j∥
, where

fi,k is the feature of the instance k in the image Ii extracted

by PS(·). Subsequently, ENMS is performed on the indi-

cating set Sins initialized as [t], where [t] is the set of all in-

stances in Ii. As summarized in Algorithm 1, the basic idea

of ENMS is to select the most informative instance kpick
from Sins with the corresponding entropy H(Ii, kpick) be-

ing accumulated for the image-level entropy Ei. Mean-

while, the remaining within-class instances that are simi-

lar to kpick (i.e. the pair-wise similarity is larger than a

threshold Tenms) are deemed as redundant ones, and fur-

ther removed from Sins. The procedure aforementioned is

iteratively conducted until Sins becomes empty.

It is worth noting that ENMS only compares instances

from the same categories w.r.t. the selected informative in-

stance, and is thus computationally efficient. Meanwhile,

ENMS extracts the instance-level features on-the-fly, which

significantly reduces the memory cost. Additionally, ENMS

can mitigate the unbalanced amount of instances per image,

by means of redundant instance removal.

4.3. Diverse Prototype for InterImage Diversity

ENMS enhances the intra-image diversity, and the inter-
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Algorithm 2 Diverse Prototype

Input: the labeled images S
the unlabeled images {Ii}i∈[n] − S
the budget b and the thresholds Tintra and Tinter

Output: the selected image set ∆S to be labeled

Initialize: ∆S := ∅

1: Calculate the entropy {Ei} as well as the prototypes

{{protoi,c}c∈[C]} for the set of the unlabeled images

{Ii}i∈[n] − S by ENMS and Eq. (3), respectively.

2: Calculate the quotas {qc}c∈[Cminor] based on S
3: Sort {Ii}i∈[n] − S in descending order according to

{Ei}
4: for i in

[
∣

∣{Ii}i∈[n] − S
∣

∣

]

do

5: if Mg(Ii, [C]) < Tintra and Mp(Ii, [Cminor]) >
Tinter then

6: Select Ii and update ∆S := ∆S ∪ {Ii}
7: for c in [Cminor] do

8: Update qc := qc − 1 if p(i, c) > Tinter

9: Update Cminor := Cminor − 1 if qc = 0
10: end for

11: end if

12: end for

13: Fill up ∆S with the rest images from the sorted set

{Ii}i∈[n] − S until |∆S| = b

image diversity, i.e. the redundancy across images, still re-

mains. Most conventional approaches [1] address this issue

based on holistic image-level features, which are too coarse

to fulfill instance-level processing in object detection. Some

re-weighting based methods [13, 35] can be adapted from

image-level to instance-level, mitigating the inter-image re-

dundancy. However, they need to compute the distances

between all instance pairs, which incurs high memory and

computational cost. Besides, current studies rarely consider

the imbalanced classes of instances, making it hard to esti-

mate the normalized diversity.

Inspired by the previous attempts [29, 33, 39], we intro-

duce the prototypes to address the drawbacks above. Con-

cretely, the i-th prototype of class c is formulated as:

protoi,c =

∑

k∈[t] ✶(c, ci,k) ·H(Ii, k) · fi,k
∑

k∈[t] ✶(c, ci,k) ·H(Ii, k)
, (3)

where ✶(c, ci,k) equals to 1 if c = ci,k, and 0 otherwise.

As shown in Eq. (3), the prototype is formulated based

on the entropy and the predicted class instead of the confi-

dence score as in existing work [33], since our framework

focuses on the information gain. Therefore, the instances

with high classification confidence scores contribute less to

the prototype than the uncertain ones.

Based on ENMS and the prototypes, we propose the Di-

verse Prototype (DivProto) strategy to enhance the instance-

level diversity across images. Specifically, we firstly sort

the unlabeled images according to their entropy {Ei} via

ENMS in descending order. Subsequently, we improve the

intra-class diversity via intra-class redundancy rejection as

shown in Fig. 2 (c) and the inter-class diversity via inter-

class balancing as in Fig. 2 (d).

Intra-class Diversity. Given a candidate image Ii and

the prototypes of the acquired set ∆S , the intra-class diver-

sity of Ii is measured by the following metric:

Mg(Ii, [C]) = min
c∈[C]

max
j∈|∆S|

Sim(protoj,c,protoi,c) (4)

In Eq. (4), we can observe that: 1) by using Mg , the

inter-image diversity is measured by the similarity between

the prototypes instead of instance-level pair-wise compari-

son, thereby remarkably reducing the computational com-

plexity, and 2) Mg(Ii, [C]) encodes the similarity between

intra-class prototypes across images and increases if Ii is

more similar to the picked image set ∆S .

Based on the observations above, we thus adopt the fol-

lowing intra-class redundancy rejection process to enhance

the intra-class diversity across images: reject the image Ii
when Mg(Ii, [C]) is larger than a threshold Tintra (0.7 by

default), and accept otherwise.

Inter-class Diversity. Though the intra-class diversity

can be enhanced based on Mg(Ii, [C]), the image set ac-

quired by the intra-class rejection process tends to favor

certain classes (i.e. the majority classes), leading to severe

class imbalance. To deal with this issue, we increase the

inter-class diversity by introducing the inter-class balanc-

ing process, i.e. adaptively providing more budgets for the

minority classes than the majority ones.

Concretely, we first build the minority class set [Cminor]
by sorting the overall classes according to the frequency of

occurrences in the labeled image set S and selecting the

classes with the Cminor fewest instances, where Cminor =
αC (0 < α < 1). We assign each minority class c ∈
[Cminor] a relatively large quota qc =

β
αC

b (α < β < 1) as

the class-specific budget.

For an unlabeled image Ii, we check if it contains the

instances from the minority classes by computing

Mp(Ii, [Cminor]) = max
c∈[Cminor]

p(i, c), (5)

where p(i, c) = max
k∈[t]

✶(c, ci,k) · pi,k estimates the probabil-

ity about the existence of instances from the class c in Ii.

In this work, we adopt a threshold Tinter (0.3 by de-

fault), where the image Ii is accepted as containing minority

classes if Mp(Ii, [Cminor]) > Tinter, and is rejected other-

wise. Once Ii is accepted, the quota {qc} will be updated as

qc := qc − 1 if p(i, c) > Tinter. During image acquisition,

the class with qc = 0 will be removed from the minority

class set [Cminor], while the number of the minority classes
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(a) FRCNN on MS COCO (b) RetinaNet on MS COCO (c) SSD on Pascal VOC

Figure 3. Comparison results. (a)/(b) AP (%) on MS COCO by using different portions of training data; (c) mAP (%) on Pascal VOC. (a),

(b) and (c) adopt Faster R-CNN and RetinaNet with ResNet-50, SSD with VGG-16, respectively.

Cminor is updated by Cminor := Cminor − 1. The whole

process is terminated when Cminor reaches 0.

Since an image may contain instances from multiple mi-

nority classes and β < 1, the number of acquired images by

using the inter-class balancing process should not exceed

the budget b. We therefore fill up ∆S with the remaining

unlabeled images until the budget b runs out.

By performing the process above, we can make a bal-

ance w.r.t. the number of instances from various classes,

and finally increase the inter-class diversity. The details of

DivProto are summarized in Algorithm 2.

5. Experiments

5.1. Experimental Settings

Datasets. We evaluate the proposed method on two bench-

marks for object detection: MS COCO [19] and Pascal

VOC [7, 8]. MS COCO has 80 object categories with

118,287 images for training and 5,000 images for valida-

tion [19]. Similar to [28] in dealing with large-scale data,

we report the performance with 20%, 25%, 30%, 35%, 40%

of the training set, where the first 20% subset is randomly

collected. At each acquisition cycle, after the detector is

fully trained, 5% (i.e. 5,914) of the total images are ac-

quired from the rest unlabeled set via active learning for

annotation. We adopt the Average Precision (AP) over IoU

thresholds ranging from 0.5 to 0.95 as the evaluation met-

ric. Pascal VOC contains 20 object categories, consisting

of the VOC 2007 trainval set, the VOC 2012 trainval set and

the VOC 2007 test set. By following the settings [36], we

combine the trainval sets with 16,511 images as unlabeled

images, and randomly select 1,000 images as the initial la-

beled subset. The budget at each acquisition cycle is fixed

to 1,000. The mean Average Precision (mAP) at the 0.5 IoU

threshold is used as the evaluation metric.

Implementation Details. We set Tenms for instance-level

redundancy removal in ENMS, Tintra for the intra-class di-

versity and Tinter for the inter-class diversity to 0.5, 0.7

and 0.3, respectively. α and β are set to 0.5 and 0.75, en-

suring that at least 75% budgets are assigned to 50% of the

classes (minority classes). We utilize Faster R-CNN [23]

and RetinaNet [18] with ResNet-50 [12] and FPN [17] as

the detection models on MS COCO. At all active learning

cycles, we train the detector for 12 epochs with batch size

16. The learning rate is initialized as 0.02 and is reduced to

0.002 and 0.0002 after 2/3 and 8/9 of the maximal training

epoch. On Pascal VOC, we adopt the settings in [36] using

SSD [20] with VGG-16 [27] as the base detector.

Counterpart Methods. We make comparison to the state-

of-the-art methods. The diversity-based ones include Core-

set [25] and CDAL [1]. To adapt Core-set [25] to the

detection task, we follow Learn Loss [36] to perform k-

Center-Greedy over the image-level features. In regard

of CDAL [1], we apply the reinforcement learning policy

on the features after the softmax layer. The uncertainty-

based methods contain Learn Loss [36] and MIAL [37].

We follow Learn Loss [36] to add a loss prediction module

to simultaneously predict the classification and regression

losses. The loss prediction module is trained by compar-

ing image pairs, which empirically performs better than the

mean square error [36]. Since loss prediction can affect de-

tector training, we separately conduct active acquisition and

detector retraining for fair comparison.

5.2. Experimental Results

On MS COCO. The comparison results on MS COCO

are summarized in Fig. 3 (a). The detector built with the

complete (100%) training set achieves 36.8% AP according

to the open-source implementation*, which can be treated

as an approximated upper bound. As demonstrated, our

method consistently reaches the best performance in all ac-

tive learning cycles, showing the superiority of the pro-

posed acquisition strategy. In the last cycle with 40% an-

notated images, our method achieves 32.87% AP with an

*https://github.com/facebookresearch/maskrcnn-benchmark

9402



Method Entropy ENMS DivProto
Annotated Percentage

20% 25% 30% 35% 40%

Random 27.57±0.18 28.97±0.12 30.07±0.24 30.99±0.12 31.62±0.29

Ours

✓ 27.57±0.18 29.38±0.13 30.61±0.12 31.47±0.17 32.36±0.07

✓ ✓ 27.57±0.18 29.76±0.16 30.82±0.23 31.79±0.15 32.56±0.09

✓ ✓ 27.57±0.18 29.73±0.16 30.64±0.11 31.86±0.09 32.53±0.14

✓ ✓ ✓ 27.57±0.18 29.78±0.06 30.90±0.14 31.99±0.05 32.87±0.04

Table 1. AP (%) by using different components of the proposed method with Faster R-CNN (ResNet-50) on MS COCO. “Random” refers

to uniform acquisition. With various active acquisition strategies applied, the results are reported with standard deviation over 5 trials.

α β AP AP50 AP75

0.50 0.25 30.68 52.48 31.93

0.50 0.50 30.74 52.97 31.86

0.50 0.75 30.90 53.08 32.01

0.50 1.00 30.79 53.00 32.01

0.25 0.75 30.71 52.90 31.63

0.75 0.75 30.58 52.62 32.15

Table 2. Results at the 30% cycle using Faster R-CNN (with the

ResNet-50 backbone) on MS COCO with various α and β. AP50

(%) and AP75 (%) refer to AP at the IoU thresholds 0.5 and 0.75,

respectively.

Method
Annotated Percentage

20% 25% 30% 35% 40%

Random 29.38 31.03 32.10 33.13 33.58

Entropy 29.38 31.48 32.53 33.98 34.12

Ours 29.38 31.79 32.95 34.14 34.89

Table 3. AP (%) using Faster R-CNN (ResNet-101) on MS COCO.

increase of 1.25%, compared to the uniform random sam-

pling. The uncertainty based methods, i.e. Learn Loss [36]

and MIAL [37], deliver almost the same performance as the

basic entropy. The diversity-based ones, i.e. Core-set [19]

and CDAL [1], perform poorly, since they utilize holistic

features after spatial pooling without aggregating instance-

level information.

Additionally, we report the results with small budgets

(no more than 10%) following MIAL [37]. As in Fig. 3 (b),

our method still outperforms the counterpart methods by a

large margin in those settings. Though the detection per-

formance under such small budgets does not meet the level

of real-world applications, the remarkable gains compared

with MIAL [37] demonstrate its effectiveness.

On Pascal VOC. We follow the same settings and open-

source implementation† as reported in previous studies

[1, 36, 37], whose result is 77.43% mAP with all (100%)

training images. As shown in Fig. 3 (b), our method

achieves better results than the other counterparts among the

4k to 10k cycles. Note that our method reaches a 73.68%

†https://github.com/amdegroot/ssd.pytorch

mAP by using only 7k images. As a contrast, CDAL [1] and

MIAL [37] need 8k and Learn Loss [36] needs 10k, show-

ing the advantage of our method in regard of saving annota-

tions. Indeed, our method does not perform better at the 2k
and 3k cycles. It happens since the detectors are limited due

to insufficient training at the initial cycles and cannot distin-

guish the difference between uncertain queries. This moti-

vates us that the uncertainty and diversity should have vary-

ing weights during different active learning periods, but we

do not go further here in case of increasing the complexity.

MIAL [37] achieves the best performance when using 1k,

2k and 3k images. It should be noted that MIAL performs

semi-supervised learning with unlabeled images, which is

unfair for comparison, especially when labeled images are

far fewer than the unlabeled. On the contrary, our method

focuses only on active learning and the semi-supervised part

is not introduced temporarily.

5.3. Ablation Study

On ENMS and DivProto. As shown in Table 1, the base-

line entropy-based methods (Faster R-CNN with ResNet-

50) separately applying ENMS or DivProto outperform that

using uniform sampling and entropy only, showing the su-

periority by ensuring the diversity at the instance level. A

combination of both the modules further boosts the over-

all accuracy, indicating that the intra-image diversity and

inter-image diversity provide complementary diversity con-

straints for performance improvement.

On hyper-parameters in DivProto. α and β control the

instance-level balance of classes, which is important to the

inter-class diversity. We study the effect of these two hyper-

parameters at the 30% cycle on MS COCO, where the same

Faster R-CNN detector is used. As summarized in Table 2,

our method achieves the best performance when α = 0.5
and β = 0.75. On different backbones. To evaluate the

effect of backbones on the detection accuracy, we report

the performance on Faster R-CNN by using ResNet-101.

As shown in Table 3, ResNet-101 can generally improve

the performance, since it is a stronger backbone compared

to ResNet-50. Our active acquisition strategy still consis-

tently outperforms the random uniform sampling and basic
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Method Inference (s) Acquisition (s) Full (s)

CDAL [1] 5,599 2,798 8,397

UB 1,666 9.95×10
7 9.96×10

7

Ours 1,702 1,015 2,717

Table 4. Comparison of time cost for active learning on MS COCO

at the 20% cycle. “Inference” refers to prediction on unlabeled

images and “Acquisition” refers to image selection. UB denotes

the upper bound of raw instance-level diversity computation.

Broccoli Bird Giraffe Orange Sheep Zebra

O
u
rs

E
n
tr

o
p
y

𝜎 = 11.21 𝜎 = 16.15 𝜎 = 16.19 𝜎 = 14.57 𝜎 = 15.02 𝜎 = 11.70

𝜎 = 13.38 𝜎 = 17.60 𝜎 = 17.45 𝜎 = 16.36 𝜎 = 17.23 𝜎 = 17.15

Figure 4. Visualization of the prototypes on MS COCO for 6

classes via t-SNE. Gray points indicate the unselected prototypes.

The top and bottom rows are the results by using our method and

the Entropy baseline.

entropy, showing its effectiveness with various backbones.

5.4. Analysis

Computational complexity. We introduce the diversity

into the uncertainty-based solution, and the computational

complexity and time cost grow accordingly. Thanks to the

design ensuring the diversity at the instance level, we re-

duce the massive computations by converting them into all

the three steps of active learning for object detection and

thus avoid remarkable complexity increase. The time cost

of the diversity-based methods are reported in Table 4, eval-

uated on a server with 8 NVIDIA 1080Ti GPUs. As shown

in Table 4, the time cost is unacceptable when comparing

each predicted instance pairs (UB), where exponential time

increase occurs as each image usually contains multiple ob-

jects. By contrast, our proposed method implements the

instance-level diversity constraints through the progressive

framework and significantly reduces the time cost. Besides,

our method spends less time than CDAL [1], since it re-

quires REINFORCE based model training.

Visualization of prototypes. We qualitatively evaluate our

method on enhancing the diversity in the presence of pro-

totypes. We choose the basic entropy as the baseline and

visualize the prototypes of six categories from MS COCO

via t-SNE [31]. We also report the standard deviation σ ac-

cordingly. As illustrated in Fig. 4, the prototypes obtained

by DivProto are more representative to the whole unlabeled

dataset. Besides, these prototypes are more diverse accord-

ing to the standard deviation.

Discussion on inter-class diversity. The active acquisition

subsets of MS COCO can be used to make more evalua-

Figure 5. Curves in terms of the standard deviation of instance

amounts for 80 classes on MS COCO. Statistics are made on the

active acquisition subsets.

tion on our method. For instance, as shown in Fig. 5, we

calculate the standard deviations of instance amounts for

80 classes from the subsets, to analyze the inter-class di-

versity. As illustrated, both the proposed ENMS and Di-

vProto modules decrease the standard deviation, indicating

that they perform better in selecting class-balanced subsets

of images compared to the basic entropy. A combination

of ENMS and DivProto further improves the overall per-

formance, confirming that our method improves the inter-

class diversity and helps to construct a balanced subset for

stronger detectors.

6. Conclusion

In this paper, we propose a novel hybrid active learning

method for object detection, which combines the instance-

level uncertainty and diversity in a bottom-up manner.

ENMS is presented to estimate the instance-level uncer-

tainty for a single image, while DivProto is developed to

enhance both the intra-class and inter-class diversities by

employing the entropy-based class-specific prototypes. Ex-

perimental results achieved on MS COCO and Pascal VOC

show that our method outperforms the state of the arts.
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