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Abstract

In recent years, increasing attention has been drawn to
the internal mechanisms of representation models. Tradi-
tional methods are inapplicable to fully explain the feature
representations, especially if the images do not fit into any
category. In this case, employing an existing class or the
similarity with other image is unable to provide a complete
and reliable visual explanation. To handle this task, we
propose a novel visual explanation paradigm called Fea-
ture Activation Mapping (FAM) in this paper. Under this
paradigm, Grad-FAM and Score-FAM are designed for vi-
sualizing feature representations. Unlike the previous ap-
proaches, FAM locates the regions of images that contribute
most to the feature vector itself. Extensive experiments
and evaluations, both subjective and objective, showed
that Score-FAM provided most promising interpretable vi-
sual explanations for feature representations in Person Re-
Identification. Furthermore, FAM also can be employed to
analyze other vision tasks, such as self-supervised represen-
tation learning.

1. Introduction

Over the last few years, the model explanation in-
creasingly draws attention due to the wide applications of
Convolutional Neural Networks (CNNs). To this end, vari-
ous visual explanation methods have been proposed.

For interpreting classification problem, Class Activation
Map (CAM) [1, 33] is proposed to locate which regions
of input image were looked at by the model for assigning
the label. Recent CAM-based works could be divided into
two branches, one is gradient-based CAMs [14] which use
gradient of class confidence to incorporate the importance
of inputs, the other is gradient-free CAMs [12, 22] which
capture the importance by the change of class confidence.
Meanwhile, a number of methods, e.g., DeepLift [16] and
integrated gradients [20], approximate the contribution of
inputs based on the element-wise product with gradients.

It is noteworthy that a target neuron or score must be
specified to evaluate gradient for the above approaches. In
classification, class confidence usually is the target. How-
ever, in some tasks, the class of a test sample might not exist
in train set. As a zero-shot learning problem, the identities
of test set in Person Re-Identification (Re-ID) are totally
different from train set. As showed in Figure 1 (b), Score-
CAM merely concerns on the similar part to the given train
identity, such as umbrella, pants and shoes, rather than the
person body in the test image. In this case, employing an
existing class cannot provide a reliable explanation.

Much less works have focused on understanding the fea-
ture representation [34]. RAM [23] and CG-RAM [15] are
proposed to reveal the associated visual cues between a pair
of images, and other gradient-based methods also can be
applied to the gradient of similarity value. However, the
similarity-based methods still are unable to explain the fea-
ture representation completely. As showed in Figure 1 (c),
the visualization results of RAM based on different images
were quite different, and mostly depend on the selection of
another image. The shoes got high activations in the result
based on the rank-2 gallery image, but got low activations
in others. Based on these conflicting results, it is hard to
interpret the contribution degree of shoes on feature repre-
sentation in this image. Other similarity-based approaches
are also unable to explain this question. Besides that, a suit-
able image for comparison sometimes might be unavailable
in practical work. These issues have restricted interpreting
Re-ID model to assure the reliability.

To ameliorate the aforementioned flaws, we pro-
pose a novel visual explanation paradigm called Feature
Activation Mapping (FAM). FAM highlights the regions of
images that contribute most to the global feature represen-
tation. Specifically, we first proposed Gradient-weighted
FAM (Grad-FAM), which eliminates the dependency of
another image in RAM. Inspired by Score-CAM, a different
gradient-free FAM method Score-weighted FAM (Score-
FAM) is then proposed. Objective evaluation of Score-
FAM outperformed the other methods by large scale on
public datasets. The experimental results demonstrate that
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Figure 1. (a) A test image in Market1501 and the corresponding result of Score-FAM; (b) Score-CAM results w.r.t. the top three similar
identities in train set according to the class confidences; (c) RAM results w.r.t. the top three similar gallery images according to ranking
results. (d) The different colors in the visualizaition results represent corresponding activation values, which are shown in the color bar.
Score-CAM merely concerned on the similar part to the given train identity. RAM got quite different results for different pairs. Score-FAM
provided a complete visual explanation for the feature vector.

Score-FAM provides a faithful visual explanation of the em-
bedding process on Person Re-ID.

Furthermore, our proposed FAM can be applied to more
vision tasks including representation learning [2] and open-
set recognition [5]. For a model that outputs feature vec-
tors, the traditional visual explanation approaches require
an additional classifier. Instead, FAM-based methods can
interpret the feature representations directly.

Our key contributions are summarized as follows:

• We propose a novel localization technique FAM, in-
cluding Grad-FAM and Score-FAM, to generate com-
plete visual explanations for the feature vectors. Un-
like the previous approaches, FAM is applicable to vi-
sion tasks that output feature vectors, such as Re-ID
and representation learning.

• We propose new metrics in this work to objectively
evaluate the faithfulness of visual explanations on Per-
son Re-ID, i.e., whether the visualization result di-
rectly correlates with feature representation. Our re-
sults with these metrics show superior performance
of Score-FAM over other approaches on dataset Mar-
ket1501 [30] and CUHK03 [7].

• FAM can be employed to visualize self-supervised rep-
resentation learning models without separately train-
ing linear classifiers.

The rest of this paper is organized as follows. Section 2
refers to recent works of Visualizing CNNs and Person Re-

ID. In Section 3, we propose Grad-FAM and Score-FAM
respectively. Experimental results in Section 4 demonstrate
the effectiveness and outperformance of our proposed meth-
ods. We draw conclusions in Section 5.

2. Related Work
2.1. Visualizing CNNs

As one of the first efforts to interpret CNNs, Zeiler &
Fergus [27] used deconvolution approach to get the regions
of input image responsible for one neuron activation. Si-
monyan et al. [17] produced class-specific saliency maps
by the partial derivatives of predicted class confidences
w.r.t. inputs. Further, Guided Backpropagation [18] modi-
fied the backpropagation gradients to improve the quality of
saliency maps. Yosinski et al. [26] visualized the function-
ality of a specific unit in networks, by synthesizing input
image that cause the unit to have high activation. Sundara-
jan et al. [20] employed integrated gradients to attribute the
prediction to inputs.

For a CNN with Global Average Pooling (GAP) layer,
Zhou et al. [33] demonstrated that the class confidence Y c

for the class of interest c could be written as a linear combi-
nation of its global average pooled last feature maps Ak,

Y c =
∑
k

wk
c ·

 1

Z

∑
i

∑
j

Ak
ij

, (1)

wherewk
c is the weight for k-th neuron after GAP layer,Ak

ij
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Figure 2. Pipeline of our proposed Score-FAM. Firstly, the given model extracts feature vector from the input image. In forward propaga-
tion, feature maps in the specified layer are taken out as masks on the input image after upsampling and normalization. Then, the generated
images are input into the same model to obtain feature vectors, and corresponding cosine similarities to the original feature vector. Finally,
the visualization result would be generated by linear combination of feature maps and similarity-based weights.

is the value of pixel (i, j) in the k-th channel of feature map,
andZ is the number of pixels. Then the class activation map
(CAM) for class c could be defined as:

Lc
CAM =

∑
k

wk
c ·Ak. (2)

Similar methods were proposed for other pooling layers,
such as global max pooling [9] and logsum-exp pooling
[11]. But these approaches were restricted to CNNs with
special architecture where the penultimate layer is a speci-
fied pooling.

As a generalization of CAM, Grad-CAM [14] extends
the definition of wk

c as the gradient of class confidence Y c

w.r.t. Ak to remove this restriction of architecture.

Lc
Grad-CAM = ReLU

∑
k

 1

Z

∑
i

∑
j

∂Y c

∂Ak
ij

 ·Ak

 .

(3)
ReLU was applied to focus on the regions that had positive
influence on the class of interest. Due to its applicability
and well-understood visualization results, Grad-CAM has
been widely applied in many tasks including classification,
image captioning and visual question answering.

Considering the risk of gradient saturation problem,
which would cause the gradients to diminish, Du et al.
[22] proposed a gradient-free method Score-CAM. Score-
CAM first upsampled feature map to original input shape,

and then perturbed the input image with it. After the for-
ward propagation with the masked input, the importance
of that feature map is obtained by class confidence on the
target category. Further, RISE [10] and mask [4] inter-
preted black-box models based on randomized and mean-
ingful perturbations on inputs, respectively. From a dif-
ferent perspective, Desai & Ramaswamy [12] proposed an-
other gradient-free approach Ablation-CAM based on Ab-
lation studies.

However, the above approaches are all built on class con-
fidence. Which means the visualization result is biased to-
wards the selected class, and meaningless for samples not in
train classes or models without classifiers. To handle these
tasks, Yang et al. [23] proposed a method to visualize the
similarity between a pair of images for models with GAP
layer. For an image q, the similarity with another image g
is proportional to 〈vg,vq〉

|vg| , which could be formulated as

1

|vg|
∑
k

vkg ·
1

Z

∑
i

∑
j

Ak
ij =

1

Z

∑
i

∑
j

∑
k

1

|vg|
vkg ·Ak

ij ,

(4)
where vq , vg are the feature representations of q and g re-
spectively, vkg is the k-th element, 〈, 〉 is the inner product
of two vectors, and | · | is magnitude of the vector. Then
Ranking Activation Map (RAM) is defined as

Lg
RAM =

∑
k

1

|vg|
vkg ·Ak, (5)
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to reveal the associated visual cues between the query and
gallery images in Re-ID task.

To remove the restriction of model structure, Confi-
dence Gradient-weighted RAM (CG-RAM) [15] is pro-
posed based on the gradient of cosine similarity. Neverthe-
less, the visualization results of these methods are biased
towards the other chosen image, and still cannot provide a
complete visual explanation for the input image.

2.2. Person Re-identification

Re-ID has been widely studied as a specific retrieval
problem across non-overlapping cameras [3]. The key point
is obtaining a feature representation with robust identity-
discriminative information. With the superiority of deep
learning, CNNs have been generally recognized as the most
efficient method in Re-ID tasks. The widely-used ID-
discriminative Embedding (IDE) model [31] constructed
the training process as a classification problem by treat-
ing each training identity as a distinct class. In forward
propagation with test example, the feature vector fed into
the classification layer is regarded as feature representation
of the input image. Given a query of interest, images that
might belong to the same identity could be retrieved by the
distances between corresponding feature vectors. It is now
widely used in Re-ID community [24, 25].

3. Approach

In this section, we introduce the mechanism of pro-
posed Grad-FAM and Score-FAM respectively for inter-
preting feature representation.

3.1. Grad-FAM

The visual result of RAM locates the similar regions be-
tween two images for the model. When the two images are
almost same, such as the Rank 1 in Figure 1 (c), the entire
regions could be regarded as associated visual cues. In this
case, the activation degree of different sub-regions would
be closely relevant to the importance of feature representa-
tion. Furthermore, employing exactly the same image might
make the relevance closer. Therefore, we assume that RAM
for an image with itself could point out the sub-regions that
are critical to feature representation.

Meanwhile, we remove the architecture restriction of
RAM in a similar manner as Grad-CAM. Grad-RAM is de-
fined as:

Lg
Grad-RAM = ReLU

∑
k

 1

Z

∑
i

∑
j

∂
〈f(Xg),f(X)〉

|f(Xg)|

∂Ak
ij

 ·Ak

 ,

(6)
where X , Xg is the input and the other image, f(X) is the
feature representation of X . The ReLU layer ensures that
only the regions with positive influence on the similarity

would be retained. For CNNs with GAP layer, Grad-RAM
is a strict generalization of RAM.

It is noteworthy that Grad-RAM is different with CG-
RAM, which is based on the gradient of cosine similarity:

dcos(f(X), vg) =
〈f(X), f(Xg)〉
|f(X)| · |f(Xg)|

. (7)

The cosine similarity would be close to 1 for any model,
when the two images are very similar. In this case, the gra-
dient of similarity would become vanishing, and the visual
result is unreliable.

According to the previous assumption, we replace the
other image Xg in Equation (6) with X to get rid of extra
input. Then we could obtain the equation:

〈f(X), f(X)〉
|f(X)|

= |f(X)|, (8)

and thus define Grad-FAM as:

LGrad-FAM = ReLU

(∑
k

(
1

Z

∑
i

∑
j

∂|f(X)|
∂Ak

ij

)
·Ak

)
. (9)

The proposed framework could be achieved by slight mod-
ification to the derivative part of Grad-CAM.

Obviously, Grad-FAM is only related to the given image,
and provide a complete visual explanation for the feature
representation. Furthermore, other gradient-based methods
can be also applied in this paradigm.

3.2. Score-FAM

In Re-ID tasks, the retrieval results are based on the rank-
ing of similarities among gallery images, which are usually
measured by cosine similarity between corresponding fea-
ture vectors.

Inspired by CIC [22], we generate Channel-wise
Increase of Similarity (CIS) based on cosine similarity, in
order to measure the importance of each feature map to fea-
ture representation.

Channel-wise Increase of Similarity: Given a CNN model
v = f(X) that takes an input imageX and outputs a vector
v. The k-th channel of a feature map Al for an internal
convolutional layer l in f is denoted as feature mapAk

l . For
a known baseline input B, the contribution of Ak

l towards v
is defined as

S(Ak
l ) = dcos

(
f(X ◦Mk

l ), f(X)
)
− dcos (f(B), f(X)) ,

(10)
Mk

l = Norm
(
Up(Ak

l )
)
,

where dcos(·, ·) is the cosine similarity between two vectors,
Up(·) denotes the operation that upsamples Ak

l into input
size, and Norm(·) is a normalization function that maps el-
ements within [0, 1] range,

Norm(M) =
M −minM

maxM −minM
. (11)
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Algorithm 1 Score-FAM algorithm

Require: Image X , Baseline Image B, Model f(·), layer l
Ensure: Saliency Map LScore-FAM

initialization;
// get activation of layer l and feature vector;
Al, v0 ← f(X), vb ← f(B)
M ← [], C ← the number of channels in Al

for k ∈ [0, C − 1] do
// get the mask from feature map;
Mk

l ← Norm
(
Upsample(Ak

l )
)

// Hadamard product;
M .append(X ◦Mk

l )
end for
M ← Batchify(M)
// extract feature vectors from generated images;
vl ← f(M)
// compute the similarity-based weights;
for k ∈ [0, C − 1] do
Sk
l ← dcos(v

k
l , v0)− dcos(vb, v0)

end for
ak ←

exp(Sk
l )∑

h exp(Sh
l )

LScore-FAM ← ReLU
(∑

k ak ·Ak
l

)
The upsampled feature map works as a mask to perturb

the input image with only the regions of interest retained.
The normalized function is employed to make the mask
smoother. To avoid sharp boundaries between masked and
salient regions, we employ the blurred image of input to re-
place the masked regions. Further, the blurred image is also
employed as the baseline image B in this work.

When the mask captures more characteristics that the
feature representation focuses on, the similarity to input im-
age would be higher. Therefore, the CIS score of feature
map indicates the importance to feature representation.

Finally, our proposed visual explanation method Score-
FAM is described as:

LScore-FAM = ReLU

(∑
k

ak ·Ak
l

)
, (12)

ak =
exp

(
S(Ak

l )
)∑

h exp
(
S(Ah

l )
) . (13)

Similar to [14,22], a ReLU is also applied to the linear com-
bination of feature maps. Because only the regions that have
a positive influence on feature representation are interested
in. Meanwhile, the CIS scores of different feature maps
have different amplitude. Thus it is reasonable to represent
the weights of Score-FAM as post-softmax value.

The pipeline of the proposed framework is illustrated in
Figure 2, and complete details of the implementation are
described in Algorithm 1.

methods time (seconds per image)
Grad-FAM 0.05
Score-FAM 9.69

Table 1. The computational time of Grad-FAM and Score-FAM.

As showed in Table 1, Score-FAM requires much more
computational cost than Grad-FAM, but the gap is accept-
able for few samples.

The last convolution layer is usually the preferable
choice because it is end point of feature extraction [14].
However, all other convolutional layers also could be em-
ployed in both Grad-FAM and Score-FAM.

4. Experiment
In this section, we conduct experiments to evaluate the

effectiveness of the proposed FAM methods. First, Sec-
tion 4.2 introduce the experimental setup in this work. Sec-
ond, we objectively compare the performance against ex-
isting state-of-the-art methods on Person Re-ID in Section
4.2. Then the sanity check of Score-FAM is followed in
Section 4.3. Finally, we employ Grad-FAM to analyze the
self-supervised representation learning in Section 4.4.

4.1. Experimental Setup

All experiments are implemented with the Pytorch 1.6
framework on a NVIDIA Tesla P40 GPU.

In the following experiments, we employed ResNet-50
as a base model on two public Re-ID benchmark datasets.

Market1501 [30] dataset contains 32,668 person images
of 1,501 identities captured by six cameras. Train set is
composed of 12,936 images of 751 identities, and test data
is composed of images of other 750 identities.

CUHK03 [7] dataset contains 14,096 images of 1,467
different identities. Each person is captured from two cam-
eras in the CUHK campus, and the protocol proposed in
[32] providing fixed train/test splits with 767 and 700 dis-
joint identities, respectively. The dataset provides both
manually annotated and DPM-detected bounding boxes.

The Re-ID models were trained accordingly for each
dataset with the bag of tricks [8], which is a strong base-
line with ImageNet [13] pre-training for Person Re-ID.

The input images of Re-ID models are resized to [256,
128]. We blur the original input with Gaussian Blur to gen-
erate the baseline image for Score-CAM and Score-FAM.
Following [28], the parameters of Gaussian Blur, radius and
sigma are set as 51 and 50 respectively.

Our experiments involve 4 state-of-the-art visual expla-
nation methods, including Grad-CAM, Score-CAM, RAM
and CG-RAM. Grad-CAM and Score-CAM require select-
ing a class to generate saliency map, which would be the
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Figure 3. (a) 2 test images in Market1501; (b) the visualization
results; (c) explanation maps by retaining pixels with top 50% val-
ues; (c) explanation maps by retaining pixels with top 10% values;
(e) our proposed explanation maps. The traditional explanation
maps based on a fixed ratio cannot match the visualization results
for all examples. Meanwhile, the explanation maps generated by
our proposed method are closely related to the saliency maps in
visual sense.

predicted train class for test images. RAM and CG-RAM
are based on a pair of images, in which we choose the Rank-
1 gallery image for comparison.

4.2. Objective Evaluation for Person Re-ID

In this section, we objectively evaluate the faithfulness
of visual explanations for Re-ID tasks.

The reliability of visualization results for classification
is judged by the explanation map, which usually retains a
fixed ratio (like 50%) of pixels with top activation values for
the input. However, the explanation maps generated in this
way cannot match the visualization results for all examples,
as showed in Figure 3. In this work, we propose a more
adaptive way to generate explanation maps.

From the view of visual perception, the color bar in Fig-
ure 1 (d) can be divided into three parts as red, green and
blue. For an observer, the red sub-regions seem to be sig-
nificant, and the blue parts show little influence.

Based on the division of saliency map, we create a mask
M for every image.

Mij =

 1, Lij ≥ BHigh
δ, BLow ≤ Lij < BHigh
0, Lij < BLow

(14)

where L is the saliency map, BHigh, BLow are the bound-
aries for high activation (red) and low activation (blue) re-
spectively, and δ is the retained proportion of inputs in the
medium activation region (green). Then we define explana-
tion map E by masking M on the input.

Figure 4. Visualization results of two samples in Market1501
by Score-CAM, RAM, CG-RAM and our proposed Grad-FAM,
Score-FAM.

The basic idea behind explanation map is preserving the
emphasized sub-regions, and partly retaining the parts with
medium activation. As showed in the Figure 1 (d), we set
0.3 and 0.6 as the boundaries respectively. δ is set as 0.9
in this work, because the results of Person Re-ID are very
sensitive to disturbance. In our experiments, masking inputs
with 10% would have real impact on the retrieval results.
The masked sub-regions would be replaced by the blurred
image of original input. Sample qualitative result is shown
in Figure 3.

The feature representation of explanation map would be
similar to original input, if the sub-regions with high ac-
tivation really contribute most in the embedding process.
Although the selection of hyper-parameters is a little sub-
jective, we believe it is fair to compare different approaches
with the same evaluation method.

By observing the similarities and retrieval results of ex-
planation map among gallery images, we could measure
whether the saliency map captures the sub-regions that are
critical to feature representation. Inspired by the metrics
used in [1], we studied the performance objectively with
three new metrics: (i) AS Drop; (ii) AP Drop; and (iii) AP
Increase, which would be described below.

(i) AS Drop: Average Similarity Drop.

A good explanation map should contain the regions that
are most relevant to feature representation, and it is ex-
pected to be close to not only the original input but also
other images in the same identity. We employ the change
of Average Similarity (AS) to all images in the same iden-
tity, as compared to the original input, to measure the per-
formance of explanation map. The saliency map would be
more relevant to the corresponding feature representation,
if AS drops less.
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methods
Market1501 [30] CUHK03 [7]

AS Drop (%) AP Drop (%) AP Increase (%) AS Drop (%) AP Drop (%) AP Increase (%)
Grad-CAM 52.08 77.18 2.49 56.97 74.53 8.57
Score-CAM 54.07 67.41 7.66 51.27 62.62 18.07
RAM 29.65 38.45 14.61 35.88 51.32 22.00
CG-RAM 57.95 79.05 2.70 59.63 77.73 7.64
ours/Grad-FAM 28.28 35.14 15.97 33.11 47.55 24.86
ours/Score-FAM 16.57 17.01 30.26 17.49 28.68 38.86

Table 2. Evaluation results on Person Re-ID (lower is better in AS Drop and AP Drop, higher is better in AP Increase). The best records
are marked in bold.

The AS Drop is expressed as

1

NQ

∑
q∈Q

max (0, Dq(Xq, Eq))

Dq(Xq, Bq)
, (15)

Dq(I, J) =
∑
g∈Gq

[dcos (f(I), f(Xg))− dcos (f(J), f(Xg))],

where Q is the query set, NQ is the size of Q, Gq is com-
posed of gallery samples from the same identity of the query
q, Xq , Eq , Bq are the original image, corresponding expla-
nation map and baseline image of q respectively. We em-
ploy max to handle the case where explanation map gets
closer to other images than the original input.

(ii) AP Drop: Average Precision Drop.
AS Drop measures the absolute distance between the

explanation map and corresponding identity in embedding
space of the model. However, Re-ID tasks are more con-
cerned with the relative distances among all samples for re-
trieval. Thus the explanation map is expected to be closer to
the samples in the same identity than other identities. In Re-
ID tasks, the retrieval result is usually evaluated by Average
Precision (AP) [30], which is the area under the Precision-
Recall curve.

The definition of AP Drop is similar to AS-Drop:

1

NQ

∑
q∈Q

max (0, AP(Xq)− AP(Eq))

AP(Xq)− AP(Bq)
, (16)

where AP(I) is the AP of image I for the gallery set.

(iii)AP Increase: Increase in Average Precision.
Complementary to AP Drop, there might be scenarios

where the explanation map get a better retrieval result than
original input (especially when the query image gets serious
background interference). In this metric, we measure the
number of query samples, whose explanation map gets a
higher AP than original image. Formally, the Increase in
Average Precision (denoted as AP Increase) is defined as

1

NQ

∑
q∈Q

Sign (AP(Xq) < AP(Eq)), (17)

where Sign(·) is indicator function, which returns 1 if the
input is True.

The three metrics are calculated per query image and av-
eraged over the entire query set. Results on Market1501 and
CUHK03 are reported in Table 2.

As shown in Table 2, the experimental results of Grad-
CAM and Score-CAM were much worse than RAM on all
metrics. These results prove that the visual explanations
based on train classes are meaningless for test images as
expected. CG-RAM got the worst performance in this test,
which means the gradient of similarity is not suitable for
visual explanation as mentioned in Section 3.1.

Meanwhile, Grad-FAM got a better performance than
RAM, which verified the effectiveness of our method. The
visualization result based on the original input itself is more
reliable than the similarity with other image. Score-FAM
outperformed the other methods on three metrics by large
scale in both datasets. Especially in Market1501, the AP
Drop and AP increase are 17.01% and 30.26% respectively.
The masked explanation maps got a similar retrieval results
to the original inputs, which means the feature vectors de-
pend almost entirely on the sub-regions that are emphasized
by Score-FAM.

Meanwhile, the visualization results shown in Figure
4 also support the superior performance of Score-FAM,
which emphasizes the sub-regions that other methods easily
overlook.

The good performance on Person Re-ID demonstrates
that Score-FAM successfully points out the most distin-
guishable part of person body for feature representation,
and reveal the embedding process of Re-ID model more
faithfully than previous approaches.

4.3. Sanity Check

In this section, we employ sanity check [21] to check
whether Grad-FAM and Score-FAM provide reliable expla-
nation for model’s behavior. In the cascading randomiza-
tion, the weights of model are randomized from the top to
bottom layers. An explanation method would fail the san-
ity check, if the outputs remain similar for networks with
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Figure 5. Sanity check results of Grad-FAM and Score-FAM by
cascading randomization. The weights of ResNet50 trained on
Market1501 are reinitialized randomly from the top layers to bot-
tom. In this procedure, visualization results show sensitivity to
model parameters randomization.

widely differing parameters.
As shown in Figure 5, the results of Grad-FAM and

Score-FAM show sensitivity to model parameters random-
ization, and the quality of saliency maps could reflect the
quality of model. Therefore, two types of FAM both pass
the sanity check.

4.4. Application on Self-Supervised Learning

Besides Person Re-ID, the proposed FAM methods also
can be applied to analyze the feature representations in other
vision tasks.

For instance, self-supervised representation learning can
learn a good representation without human annotations.
Since the self-supervised models do not have classifiers, the
class-based visual explanation approaches cannot help ex-
plain the feature representations. To handle this task, Zhou
et al. [29] separately trained a linear classifier on the fea-
ture vectors for class-specific gradients [17]. However, this
method is limited to the existing classes, and it is inconve-
nient to train additional classifiers for every model. Instead,
FAM can easily solve the above issues.

As an example, a HRNet-W30 [19] model is trained over
200 epochs on the ImageNet dataset [13] by BYOL [6],
which is a state-of-the-art algorithm for self-supervised rep-
resentation learning. As showed in Figure 6, we visualize
the self-supervised models without additional classifiers at
different training epochs by Grad-FAM. For the model at 80
epochs, the foreground objects have got high attention, but
the salient regions are spread across the background at this
point. At 140 epochs, the attention on the background get
lower. Finally, the salient regions are localized to a small
region at 200 epochs. See Appendix for more examples.

Analyzing the change of Grad-FAM results in different

Figure 6. Visualizing the training process of the HRNet-W30
model trained by BYOL. Given images for the models at 80, 140,
200 epochs in self-supervised training, we visualize the change of
salient regions generated by Grad-FAM. The model at 80 epochs
has noticed the foreground objects, but is prone to distraction by
backgrounds at this point. In the subsequent training process, the
salient regions are gradually localized to a small region.

training stage can help researchers get a better understand-
ing of self-supervised representation learning. Furthermore,
the FAM methods can be employed for analyzing the differ-
ence among various pretext tasks and different model archi-
tectures in self-supervised representation learning, which
will be explored in future work.

5. Conclusion

In this work, we proposed a novel visual explanation
paradigm FAM, including Grad-FAM and Score-FAM, to
explain the embedding process of CNN-based models. Our
methods address a principal shortcoming of previous ap-
proaches, which are based on a target neuron or similar-
ity with other image, and fail to interpret the feature vec-
tor completely. Contrarily, FAM methods locate the re-
gions of inputs that contribute most to the global feature
vectors. We validate the effectiveness of our methods both
objectively and subjectively on Person Re-ID. Experimen-
tal results on Market1501 and CUHK03 demonstrate that
Score-FAM achieves a much better performance than the
current state-of-the-art explanation approaches. Further-
more, Score-FAM can be employed to analyze other vision
tasks without classifiers, such as self-supervised represen-
tation learning.

Future work will be to explore deeper connection be-
tween the feature vectors and inputs, and combine FAM
with other traditional approaches and more vision tasks.
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