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Abstract

While the majority of FSL models focus on image classi-

fication, the extension to action recognition is rather chal-

lenging due to the additional temporal dimension in videos.

To address this issue, we propose an end-to-end Motion-

modulated Temporal Fragment Alignment Network (MT-

FAN) by jointly exploring the task-specific motion modu-

lation and the multi-level temporal fragment alignment for

Few-Shot Action Recognition (FSAR). The proposed MT-

FAN model enjoys several merits. First, we design a mo-

tion modulator conditioned on the learned task-specific mo-

tion embeddings, which can activate the channels related to

the task-shared motion patterns for each frame. Second,

a segment attention mechanism is proposed to automati-

cally discover the higher-level segments for multi-level tem-

poral fragment alignment, which encompasses the frame-

to-frame, segment-to-segment, and segment-to-frame align-

ments. To the best of our knowledge, this is the first work to

exploit task-specific motion modulation for FSAR. Extensive

experimental results on four standard benchmarks demon-

strate that the proposed model performs favorably against

the state-of-the-art FSAR methods.

1. Introduction

Deep learning has achieved tremendous success in the

field of action recognition [31,37,38,43]. However, modern

deep learning approaches require large amounts of anno-

tated data, and collecting these data is laboriously difficult

and costly [1]. To reduce the need for human annotation,

Few-Shot Learning (FSL) [9, 32, 41, 44] has been proposed

and gained increasing interest, which aims at classifying un-

labeled samples (query set) into new unseen classes with

only a few labeled examples (support set).

While the majority of FSL models [9, 32, 41, 44] focus

on image classification, its extension to video classifica-

tion is rather challenging. This is because videos have a

much more complicated structure than images with an ad-

ditional temporal dimension [4]. To utilize the temporal

information, some recent methods [3, 4, 25] perform tem-
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Figure 1. Different ways of alignment. (a), (b): The previous

methods [3, 4, 25] match videos at the single level, i.e., “frame

to frame” or “segment to segment”. (c) The temporal fragment

alignment is performed at multiple levels, i.e., “frame to frame”,

“segment to segment”, and “frame to segment”, which suits the

videos with different speeds in the real-world setting.

poral alignment to match the video frames or segments in

the temporal dimension (see Figure 1), which helps to dif-

fer order-sensitive actions. In [4], Cao et al. use Dynamic

Time Warping [24] to find the optimal alignment path be-

tween frames. Then the video distance is measured as the

alignment cost of frame sequences. In [3] and [25], the at-

tention mechanisms are utilized to achieve temporal align-

ment. In [3], Bishay et al. first uniformly sample segments

from videos, with each of them containing the fixed length

of frames. Then they feed these segments into 3D CNNs to

extract motion features, and conduct segment-level atten-

tion for temporal alignment. Similarly, in [25], it randomly

samples pairs/triplets of frames from videos to form video

segments, and performs attention over these segments.

By studying the previous Few-Shot Action Recogni-

tion (FSAR) methods that are based on temporal align-

ment [3, 4, 25], we sum up two aspects that are imperative

for building a robust FSAR model. (1) Task-specific Mo-

tion Pattern Mining. Motion modeling has been proved

essential for action recognition, as videos contain rich tem-

poral structures [19]. Some methods [3, 16, 48] adopt 3D
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CNNs to extract motion features for FSAR. However, they

have high computational costs and lack specific consider-

ation in modeling temporal structure for the few-shot set-

ting. Specially in FSAR, the tasks are composed of novel

categories, which causes large inter-task variances. Thus,

utilizing the same network to extract motion features for all

tasks may not be suitable, as the motion patterns have sub-

stantial variances in different specific tasks. Therefore, how

to effectively mine task-specific motion patterns is of vi-

tal importance for FSAR. (2) Multi-level Temporal Frag-

ment Alignment. Most previous methods perform either

the frame-level alignment [4] or the segment-level align-

ment [3,25] (see Figure 1 (a) and (b)), which may cause am-

biguity and misalignment when matching videos at different

speeds. Furthermore, the segments in [3, 25] are obtained

by pre-defined sampling strategies, and thus suffer large

randomness and may exacerbate the problem of misalign-

ment. In fact, the temporal alignment in the real-world set-

ting not only includes the “frame-to-frame” and “segment-

to-segment” alignment, but also includes the “frame-to-

segment” alignment, where segments are composed of sev-

eral semantically-related frames (see Figure 1(c)). Here,

we use the temporal fragments to uniformly represent

both frames and segments. To achieve robust matching for

videos at different speeds, the model should have abilities to

automatically discover higher-level segments and perform

multi-level temporal fragment alignment.

Inspired by the above insights, we propose an end-to-end

Motion-modulated Temporal Fragment Alignment Net-

work (MTFAN) by jointly exploring the task-specific mo-

tion modulation module and the multi-level temporal frag-

ment alignment module for FSAR. In the task-specific mo-

tion modulation module, we first aggregate the temporal

differences over the consecutive frames from the support

videos to induce the task-specific motion pattern. Subse-

quently, a motion modulator is proposed to excite motion-

relevant channels for frames according to the task-level tem-

poral knowledge. In this way, the networks are forced

to discover and enhance the task-shared informative mo-

tion information, which facilitates a better alignment be-

tween videos in the same task. In the multi-level temporal

fragment alignment module, we propose a Transformer-

inspired Segment Attention Layer to adaptively generate

segments by aggregating the arbitrary number of related

frames. Specifically, we introduce several learnable seg-

ment prototypes conditioned on the prior video context to

serve as queries, and take frame features as keys and val-

ues. We can obtain higher-level segments by operating at-

tention between the segment prototypes and frames. With

the frames and the discovered segments, we can exploit

more diverse alignments between the temporal fragments,

including the “frame to frame”, “segment to segment”, and

“frame to segment”. By considering the multi-level tempo-

ral fragment alignment, the model could flexibly discover

and align similar temporal patterns with different time dura-

tions. Finally, we reformulate the temporal fragment align-

ment process as an Optimal Transport problem [40] and use

the Sinkhorn algorithm [8] to solve it.

The contributions of our model could be summarized

into three-fold: (1) We propose an end-to-end Motion-

modulated Temporal Fragment Alignment Network (MT-

FAN) by jointly exploiting the task-specific motion modu-

lation and the multi-level temporal fragment alignment. (2)

We design a motion modulator to activate the channels re-

lated to task-specific motion patterns for the frames. Also, a

segment attention layer is proposed to discover the higher-

level segments for multi-level temporal fragment alignment.

To our best knowledge, this is the first work to exploit task-

specific motion modulation for FSAR. (3) Extensive experi-

mental results on four challenging benchmarks demonstrate

that our method performs favorably against the state-of-the-

art FSAR methods.

2. Related Work
In this section, we introduce several lines of research in

few-shot image classification, few-shot action recognition,

and motion modeling in action recognition.

Few-Shot Image Classification. There are two main

streams in the few-shot image classification literature.

(1) Optimization-based methods [2, 9, 17, 22, 27, 34] uti-

lize the meta-learner as the optimizer to adapt model pa-

rameters to new tasks. MAML [9] and many of its vari-

ants [2, 12, 34] attempt to meta-learn a good model initial-

ization to make sure the model can rapidly adapt to un-

seen tasks with limited optimization steps. (2) Metric-

based methods [20,30,32,35,36,41,44,47] learn an embed-

ding space for their chosen distance metrics. Prototypical

Network [32] computes Euclidean distances between mean

class representations (i.e., prototypes), and performs clas-

sification by nearest neighbour searching. Several meth-

ods [14, 29, 35, 46] directly learn a deep distance metric by

using the CNNs or graph neural networks to infer the affini-

ties. Our method falls into the metric-based type. However,

due to the complex temporal structures in videos, directly

extending the above methods into FSAR may be subopti-

mal. Thus, in this paper, we design a motion modulation

module and a temporal fragment alignment module to ef-

fectively exploit the rich temporal cues for FSAR.

Few-Shot Action Recognition. Most of existing FSAR

methods [3, 4, 10, 16, 48, 49] adopt the metric learning

paradigm, and focus on exploring good metrics to compute

the distances between the query and support videos for clas-

sification. Some of them [5, 16, 50] directly aggregate the

frame features to obtain a single video representation for

distance computation. However, these aggregation-based

methods ignore the temporal relations that are essential for

video classification. To utilize the temporal information,
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another line of researches [3, 4, 25] focuses on temporal

alignment between videos. OTAM [4] performs the explicit

temporal alignment by the DTW algorithm [24], and mea-

sures the video distance as the alignment cost. Some meth-

ods [3,25] achieve temporal alignment by using an attention

mechanism between the segment embeddings of the videos.

Their segments are sampled from videos and thus suffer

from a certain randomness. In a word, the above tempo-

ral alignment methods consider the frame-level alignment

or the segment-level alignment solely, but ignore the frame-

to-segment alignment that is also common in realistic video

matching. Differently, our method automatically explores

the higher-level segments for multi-level temporal fragment

alignment, which includes the frame-to-frame, segment-to-

segment, and frame-to-segment alignments.

Motion Modeling in Action Recognition. Motion mod-

eling has been proved essential for action recognition [19].

Recent action recognition methods [7, 26, 37, 38, 45], in-

cluding several FSAR methods [3,16,48], utilize 3D CNNs

to model appearance and motion features simultaneously.

However, the methods based on 3D CNNs have tremendous

parameters to be optimized and thus may not be suitable

for the few-shot setting. Another line of works is based on

two-stream networks [31,43] with an optical flow stream to

incorporate the motion features. However, the computation

of optical flow is also expensive. To avoid high computa-

tional cost, some recent methods [13, 19, 42] design tempo-

ral difference modules that can be inserted into 2D CNNs

for motion extraction. In these methods, the temporal dif-

ferences can be seen as an efficient substitute for optical

flow as motion representation. Still, the above methods are

not designed for FSAR, where the test tasks contain novel

classes that are unseen in training. Therefore, they may not

generalize to the unseen tasks well. Differently, in this pa-

per, we design a task-specific motion modulation module,

which can learn the task-related motion patterns and adapt

the model to arbitrary tasks.

3. Our Method
In this section, we first formulate the task of few-shot

action recognition. Then we describe each component of

the proposed Motion-modulated Temporal Fragment Align-

ment Network (MTFAN) in detail. As shown in Figure 2,

our MTFAN consists of two modules. (1) The task-specific

motion modulation module aims at enhancing the frame

features based on the task-specific motion pattern, which

involves a channel-wise modulation mechanism. (2) The

multi-level temporal alignment module is responsible for

automatically discovering higher-level segments that can be

combined with frames for temporal fragment alignment.

3.1. Problem Definition

The few-shot action recognition is conducted on a set of

tasks T (also called episodes) during testing. The training

set Dtrain is segmented into a set of tasks Ttrain to mimic

the test setting, in the hope of acquiring the generalization

ability across tasks. The testing set Dtest comprises testing

tasks Ttest that contain action classes disjoint from the train-

ing set Dtrain. Each few-shot task T consists of a support

set S and a query set Q. Specifically, the N -way K-shot

task means that the task is composed of N classes with K

support samples per class. i.e., S = {(V s
i , y

s
i )}NK

i=1 , where

ysi ∈ {1, 2, · · · , N}. The query set is composed of M sam-

ples per class, i.e., Q = {(V q
i , y

q
i )}MN

i=1 . The ultimate goal

is to classify a query video V
q
i ∈ Q into one of the N sup-

port classes given a few labeled videos from S .

3.2. Task-specific Motion Modulation Module

To extract motion features, some FSAR methods [3, 16,

48] adopt the off-the-shelf 3D CNNs [37]. However, they

have high computational costs and do not make modifica-

tions for few-shot settings. Here, we propose an efficient

motion modeling strategy by introducing the task-specific

motion modulation, which can be readily embedded into 2D

CNNs.

Motion Encoder. To exploit the task-specific motion

patterns, a motion encoder E is proposed to transform the

temporal differences into the motion features. The tempo-

ral differences between adjacent frames are related to the

optical flow and can be stacked to approximate the mo-

tion features [42]. In specific, we first randomly sample T

frames that expand the whole video length for each video V

as in [43]. These frames are separately fed into a ResNet-

based feature extractor Ψf to obtain features: I = {It}Tt=1,

where It ∈ R
H×W×C is the feature of the t-th frame. Then

a motion encoder E is proposed to extract the task-specific

motion embedding MT by gathering the motion features of

all the support videos {V s
1 , V

s
2 , · · · , V s

NK} in the current

task T :

MT = E(V s
1 , V

s
2 , · · · , V s

NK). (1)

We first explain how to extract the motion feature for each

video in E. Concretely, we compute the forward difference

feature Df,t and backward difference feature Db,t between

It and its adjacent frames It+1 and It−1 by

Df,t = It+1 − φsmt(It),

Db,t = It−1 − φsmt(It),
(2)

where t = 1, · · · , T , and φsmt is a convolution layer

for spatially smoothing, which can alleviate the spa-

tial misalignment. Then, for forward difference features

{Df,t}Tt=1, another convolution layer φmot is applied to

transform them into the compact motion features. The final

forward motion feature Mf ∈ R
C is derived by compress-

ing the temporal dimension. Formally,

Mf =
1

T

T∑

t=1

GAP (φmot(Df,t)), t = 1, 2, · · · , T, (3)
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Figure 2. The architecture of our method (illustrated in the 1-shot setting): (1) In the task-specific motion modulation module, given

the query and support videos V q and V s, we first obtain the task-specific motion embedding MT by a motion encoder E, then use it to

modulate the frame features (i.e., Iq and I
s) of query and support videos by the motion modulator Ψm. (2) In the multi-level temporal

fragment alignment module, we generate segment prototypes Pq,Ps from the contextual frame embeddings for V q and V s. The prototypes

and the modulated frame embeddings {fq
t }

T
t=1, {f

s
t }

T
t=1 are sent into the Segment Attention Layer to discover higher-level segments (i.e.,

s
q

1
, s

q

2
, ss1, s

s
2), which are then combined with the frame embeddings for the multi-level temporal fragment alignment.

where GAP denotes the Global Average Pooling to aggre-

gate the spatial information. The backward motion features

Mb can be acquired in a similar way by Equation (3). For

every support video V s
i , we can extract such bi-directional

motion features M i
f ,M

i
b , where i = 1, 2, · · · , NK. Sub-

sequently, the task-specific motion embedding MT is ob-

tained by aggregating the support motions:

MT =
1

NK

NK∑

i=1

1

2
(M i

f +M i
b). (4)

In this way, MT is aware of the contextualized global mo-

tion knowledge, thus can reveal the useful patterns that

could be essential to distinguish different novel categories

in the task T .

Motion Modulator. To effectively utilize the task-

specific motion embedding, we propose a motion modula-

tor Ψm to inject the global motion patterns contained in

MT into the individual videos. The motion modulator Ψm

is composed of several modulation layers, with each layer

employing an affine transformation to adapt the frame fea-

tures in the corresponding layer of the backbone Ψf . For

brevity of description, we use Ψm to generally demonstrate

the modulation process for every layer. Specifically, given

the frame features I = {It}Tt=1 for video V , we obtain the

adapted frame embedding ft by the motion modulation:

Ψm(It) = γT It + βT , t = 1, 2, · · · , T, (5)

where γT ∈ R
C and βT ∈ R

C are the task-shared channel-

wise modulation parameters, which are produced by the pa-

rameter generators gγ and gβ conditioned on MT :

γT = gγ(MT ), βT = gβ(MT ), (6)

where each parameter generator consists of two linear lay-

ers, with the first one followed by a ReLU activation func-

tion. Under the guidance of the task-specific motion em-

bedding, γT and βT can strengthen the distinctive channels

that are sensitive to the task-shared motion patterns, which

helps to find the co-occurrences in the temporal structures

for the query and support videos in the same task.

3.3. Multi-level Temporal Alignment Module

To accommodate the videos with large speed variations,

we design a Segment Attention Layer to discover higher-

level segments, which can be combined with the frame se-

quences to achieve the multi-level temporal alignment.

Segment Attention Layer. Inspired by the suc-

cess of Transformer architecture in discovering local re-

gions [6,18], we extend the cross-attention module in Trans-

former [39] to the FSAR for segment generation. Con-

cretely, given the modulated features of the final layer of

Ψf : {ft}Tt=1, ft ∈ R
C for video V , we introduce a set of

learnable segment prototypes P = {pj}Jj=1, pj ∈ R
C to

serve as queries Q for gathering the related frames. We de-

sign several prototype generators gp = {gjp}Jj=1 to produce

segment prototypes from the context of frame sequence:

pj = gjp(
1

T

T∑

t=1

ft), j = 1, 2, · · · , J, (7)

where each prototype generator gjp consists of a linear layer.

Then, we take {ft}Tt=1 as keys K and values V. Following
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Transformers, the {Q,K,V} triplets are generated by the

independent linear projection layers:

Qj = pjWq,Kt = ftWk,Vt = ftWv, (8)

where t = 1, 2, · · · , T and j = 1, 2, · · · , J , and Wq ∈
R

C×dq ,Wk ∈ R
C×dk ,Wv ∈ R

C×dv are linear projection

layers. Then, we can obtain attention scores ãjt between

keys and queries by:

ãjt =
exp(ajt)∑T

t′=1 exp(ajt′)
, ajt =

QjK
T
t√

dk
, (9)

where
√
dk is a scaling factor. The attention scores ãjt can

be regarded as the soft correspondences between segment

prototypes and frames, which can be used to select and

aggregate arbitrary number of semantically-related frames

into higher-level segments. Concretely, the segment sj is

defined as the weighted sum over all values:

sj =

T∑

t=1

ãjtVt, j = 1, 2, · · · , J. (10)

Temporal Fragment Alignment. We combine the

frame features and segments as the temporal frag-

ment representation h for the given video V : h =
{f1, · · · , fT , s1, · · · , sJ}. In order to achieve the multi-

level alignment between the temporal fragments, we formu-

late the video matching task as an Optimal Transport (OT)

problem [21,23]. OT aims at finding the optimal transporta-

tion with the minimal cost transportation plan between two

discrete distributions µ, ν ∈ R
d. The optimal transportation

plan P∗ is obtained by minimizing the transportation cost:

P∗ = argmin
P∈

∏
(µ,ν)

〈P,C〉 ,

s.t. P1 = µ,PT1 = ν,

(11)

where
∏
(µ, ν) is the joint distribution with marginals µ and

ν, 〈·, ·〉 denotes the cosine similarity, and C ∈ R
d×d repre-

sents the cost matrix of transporting µ to ν. The problem

in Equation (11) can be efficiently solved by the Sinkhorn

algorithm [8]. To apply OT into the video matching task,

we assume the compared query and support videos are the

uniform distributions over the temporal fragments. The cost

matrix C is defined by the distances between the temporal

fragments, i.e. C ∈ R
(T+J)×(T+J). By solving (11), we

can obtain P∗ to serve as the alignment matrix, and then

define the final similarities between the query video V q and

support video V s as:

φsim(V q, V s) =

T+J∑

m=1,n=1

〈hq
m,hs

n〉P∗
mn, (12)

where φsim(·, ·) denotes the similarity function, and hq,hs

denotes the temporal fragments of query and support video

V q and V s. In Equation (12), the alignment scores in P∗

can measure how the similarities between different tem-

poral fragments contribute to the video-level similarities.

Notably, for many-shot settings, we can average the tem-

poral fragment representations of the support instances in

the same class as the category representation, and then use

Equation (12) to compute the similarity between the V q and

the category c as φsim(V q, c).
Based on the video similarities, the probabilities over

class c ∈ {1, 2 · · · , N} for each query video V q in the

current task can be inferred by a Softmax function: p(y =

c|V q) = exp(φsim(V q,c))
∑

N

c′=1
exp(φsim(V q,c′))

. Then the classification loss

Lc can be defined as the negative log-probability:

Lc = − 1

|Q|
∑

(V q,yq)∈Q

log p(y = yq|V q). (13)

4. Experiments
In this section, we first introduce datasets and implemen-

tation details. Then, we show experimental results and some

visualizations.

4.1. Dataset Descriptions

We evaluate our model on four challenging datasets

including Something-Something V2 (SSv2) [11], Kinet-

ics [7], UCF101 [33], and HMDB51 [15]. For SSv2 and

Kinetics, we follow the same splits as in [4] and [49], which

both randomly select 100 classes from the whole dataset

with 64, 12, 24 classes used for train/val/test. UCF101 and

HMDB51 contain 101 and 51 action classes, respectively.

We use the few-shot splits following the practice in [48] for

both datasets. The classes in UCF101 are split into 70, 10,

21 classes for train/val/test, respectively. In HMDB51, the

51 classes are split into 31 training classes, 10 validation

classes, 10 testing classes.

4.2. Implementation Details

For each video, we sparsely and uniformly sample T = 8
frames and resize these frames to 256× 256 as in [43]. We

utilize TSN [43] to extract the 2D features for video frames.

For a fair comparison with previous works [4, 25, 49], we

choose ResNet-50 as the backbone for TSN. During train-

ing, the video clips are augmented with random horizon-

tal flipping and are then randomly cropped to the size of

224× 224. For testing, we use only the center crop to aug-

ment the video. Before the meta-training, we apply a pre-

training strategy on the training set for the ResNet back-

bone to accelerate the training process following the prac-

tice in [28, 47]. Then the model is trained in an episodic

way, with each episode comprised of the N -way K-shot

task. We mainly experiment with 5-way 1-shot and 5-way

5-shot settings. We use the SGD optimizer with a learning
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Table 1. Comparisons of our method with the state-of-the-art methods on Kinetics, SSv2, UCF101 and HMDB51. The red font and blue

font indicate the highest and the second highest results. The results from our re-implemented version are marked with †.

Method Backbone
Kinetics SSv2 UCF101 HMDB51

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoGAN [16] C3D - - - - 57.8 80.2 34.7 54.0

TARN [3] C3D 66.6 80.7 - - - - - -

ARN [48] C3D 63.7 82.4 - - 62.1 84.8 44.6 59.1

Matching Net [49] ResNet-50 53.3 74.6 - - - - - -

MAML [49] ResNet-50 54.2 75.3 - - - - - -

CMN [49] ResNet-50 60.5 78.9 - - - - - -

TARN [3] ResNet-50 64.8 78.5 - - - - - -

OTAM [4] ResNet-50 73.0 85.8 42.8 52.3 - - - -

TRX [25] ResNet-50 63.6 85.9 42.0 64.6 78.8† 96.1 52.2† 75.6

MTFAN (ours) ResNet-50 74.6 87.4 45.7 60.4 84.8 95.1 59.0 74.6

Table 2. Ablation results on SSv2 and UCF101 in 5-way 1-shot

and 5-way 5-shot settings.

Method
SSv2 UCF101

1-shot 5-shot 1-shot 5-shot

Baseline 37.4 49.5 78.6 92.4

Baseline+OT 39.2 52.7 81.6 93.0

Baseline+OT+segment 41.6 53.9 82.3 93.1

Baseline+OT+TMM 42.4 55.5 83.3 94.4

Baseline+OT+TFA 43.3 57.5 83.8 94.2

MTFAN 45.7 60.4 84.8 95.1

rate of 0.0001. The number of the learned segments is set

as 4 for SSv2 and 2 for other datasets, which are selected by

the episodic cross-validation. During the testing stage, we

report the average classification accuracy in 1000 randomly

sampled tasks. The training requires one Tesla V100 GPU.

4.3. Comparisons with Other Methods

We compare our MTFAN with various state-of-the-art

methods on different datasets and few-shot settings. As

shown in Table 1, our MTFAN sets the new state-of-the-

art results on all datasets in the 5-way 1-shot setting, which

strongly proves the effectiveness of our method. In the 5-

way 5-shot setting, our method also performs comparably

with the state-of-the-art methods. Based on the results, we

have the following observations. (1) Compared with the

best C3D-based methods (i.e., ARN [48]), our method

achieves a large improvement of 22.7% and 10.3% in 1-

shot and 5-shot settings on UCF101. The 3D CNNs intro-

duce a large number of optimization parameters, which may

cause the over-fitting problem, especially in the few-shot

learning. Also, directly using the general motion extrac-

tor may not accommodate the needs of different few-shot

tasks. Differently, we utilize the temporal differences to ex-

tract task-specific motion patterns to augment the represen-

tation of each video in the task. (2) Compared with the

ResNet-based methods, our method outperforms the state-

of-the-art performance by a significant margin of 6.0%

and 6.8% on UCF101 and HMDB51 in the 1-shot setting,

which proves that our network enables effective adaptation

to the novel task when the data is extremely scarce. The

task-specific mechanism in the motion modulation helps

our model to extract the helpful motion representations for

each specific task, which further boosts the generalization

ability. (3) Compared with the methods based on tempo-

ral alignment (i.e., TARN [3], OTAM [4], and TRX [25]),

our method acquires better performances in the majority of

the results, which proves the superiority of our proposed

multi-level alignment. We conduct more diverse and flex-

ible alignments between the frames and the automatically-

learned segments, which is more robust to the videos with

different speeds. Notably, MTFAN performs slightly lower

than TRX [25] in 5-shot setting. This is because we aver-

age the support features for each class before the compar-

ison. While in TRX, all support features are compared to

the query video by an attention mechanism, which causes

higher computation cost and does not work for the 1-shot

setting (with accuracy lower than MTFAN by 11% on Ki-

netics). In the future, we will try to improve 5-shot results

by considering the importance of different support videos.

4.4. Ablation Study

In this section, we perform detailed ablation studies to

demonstrate the effectiveness of our selections of the pro-

posed method.

Baseline. We begin with the introduction of our base-

line method, which is extended from the classical few-shot

learning method ProtoNet [32]. The same pre-trained back-

bone as MTFAN is utilized. Specifically, we average the

frame features in the temporal dimension to get a video-

level representation. We take the mean representations of

the support samples in the same class as the class proto-

types. Then we calculate the distances between the given

query and prototypes, and classify the query as the category

of the nearest class prototype.

Analysis of Model Components. We perform a detailed

analysis of model components of MTFAN on SSv2 and

UCF101 (see Table 2). We denote the Task-specific Motion

Modulation module as TMM, and the multi-level Tempo-

ral Fragment Alignment module as TFA. We also evaluate
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Figure 3. The effect of the number of discovered segments on (a)

SSv2 and (b) UCF101 in the 5-way 1-shot setting.
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Figure 4. Comparisons of MTFAN with the baseline under differ-

ent N way 1 shot tasks on SSv2 in the 5-way 1-shot setting, where

N denotes the number of classes and varies in [5, 7, 10, 12, 15].

the performance of performing the frame-to-frame align-

ment solely (denoted as “Baseline + OT”) or the segment-

to-segment alignment solely (denoted as “Baseline + OT

+ segment”) by use of the Optimal Transport algorithm.

The results are analyzed as follows: (1) Compared to the

baseline, the utilization of OT for the frame-level alignment

brings obvious improvements (e.g., 3.2% in 5-shot setting

on SSv2). Performing the segment-level alignment solely

also substantially boosts the performance, which proves the

efficacy of automatic segment generation by adaptively col-

lecting several semantically-related frames. (2) With the

utilization of TMM, a clear performance boost can be ob-

served. The TMM can enhance the motion patterns for

every sample by use of channel modulation based on the

task-specific motion embeddings. In this way, the global

task-shared information can further benefit the subsequent

alignment within the task. (3) The introduction of TFA

achieves remarkable accuracy gains compared with solely

using the frame-level alignment or the segment-level align-

ment. The improvements can be mainly ascribed to the

multi-level temporal fragment alignment that discovers di-

verse matching relations between any pair of frames and

segments.

Analysis of the Number of Segments. We study the im-

pact of the number of discovered segments (denoted as J)

on SSv2 and UCF101 (see Figure 3). On SSv2, even using

one segment brings a certain improvement compared to the

baseline. With the growth of J , the accuracy presents an ob-

vious ascending trend, as more segments can expand the di-

versity of the temporal fragment alignment and contribute to

the more accurate video matching. However, the accuracy

Table 3. Comparisons of our generated segments with the sampled

segments on SSv2 and UCF101 in the 5-way 1-shot setting.

Method SSv2 UCF101

Sampled Segments

Triplets 37.3 81.8

Pairs & Triplets 37.8 82.0

2 Segments in 8 Frames 40.3 81.5

4 Segments in 8 Frames 39.3 81.6

4 Segments in 12 Frames 41.1 82.2

Our Generated Segments 42.6 82.6

Table 4. Comparisons of different modulation strategies on SSv2

in 5-way 1-shot and 5-way 5-shot settings.

Method 1-shot 5-shot

Modulating with appearances 39.3 52.6

Modulating with motions 42.4 55.5

reaches the peak value at J = 4, and then falls when intro-

ducing more segments. The reason may be that increasing

J brings more parameters and may aggravate the risk of

over-fitting. On UCF101, we can observe the same accu-

racy variation trend, but the best performance is achieved

when using 2 segments. Overall speaking, the performance

changes relatively smoothly under different J , which indi-

cates the robustness of the proposed segment attention layer.

Different number of classes N . We test the model

performance in more challenging few-shot scenarios by in-

creasing the number of classes in the task (denoted as N ).

From Figure 4 we can see that the accuracies of MTFAN

and the baseline decrease when increasing N . This is not

surprising as more involved novel classes make the few-

shot classification more difficult. Notably, even in the ex-

tremely challenging few-shot setting (e.g., N = 15), MT-

FAN still surpasses the baseline by a significant margin of

5.5%, which demonstrates the generalization ability of our

method in handling the scarce data.

Comparisons of the generated and sampled segments.

To quantitatively analyse the effect of the segment genera-

tion, we make comparisons with other segment sampling

strategies adopted in [3, 25]. Following [25], we sample

eight frames for each video and then exhaustively sample

pairs and triplets of frames as segments. We also uniformly

sample segments from videos with each segment consist-

ing of the fixed length of frames, as in [3]. We experiment

with 4 or 2 segments using 8 frames or 12 frames in total,

and average the frame features to form the segment repre-

sentations. We use the OT to conduct segment-to-segment

alignment for all the methods for a fair comparison. As

we can see from Table 3, our generated segments achieve

the best results. Even compared with the sampled segments

that use much more frames (see the results in the fifth row),

our method can still lead by 1.5% on SSv2. The results

strongly prove the advantage of the automatical segment

generation, where the related frames are selected and ag-

gregated to form more reasonable segments.
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Figure 5. Visualization of the learned multi-level temporal fragment alignment between the query and support videos in category (a)

high jump and (b) long jump on UCF101. We sample eight frames and learn two segments for each video. The colors of connecting edges

indicate the values of alignment scores in the alignment matrix P
∗. (a) (1) and (b) (1) present the Frame-to-Frame Alignment, while

(a) (2) and (b) (2) illustrate the learned segments and the Segment-to-Segment, Segment-to-Frame Alignment. The frames with high

attention scores in the segment attention layer and their corresponding 2 segments are illustrated with boxes in the same colors (red and

green). We can see that the frames and the segments that contain similar sub-actions have high alignment scores.

Comparisons of different modulation strategies. To

evaluate the impact of motion modeling, we replace the

task-specific motion embedding MT with the 2D appear-

ance features in the modulation. Specifically, we average

the frame features of the support samples, and use them to

generate modulation parameters. The comparison results

are shown in Table 4. The replacement of the motion fea-

tures leads to a clear decline in the accuracies in both 1-shot

and 5-shot settings, which reveals the necessity and use-

fulness of the motion modeling for FSAR. The appearance

representations alone may not express the key information

in temporal structures.

4.5. Visualizations

In this section, we present several visualizations to

vividly illustrate the procedure and effectiveness of the

multi-level temporal fragment alignment.

Visualization of Frame-to-Frame Alignment. In Fig-

ure 5 (a) (1) and (b) (1), we display the learned alignment

matrix P∗ in the Frame-to-Frame Alignment between the

query and the support videos of two categories (“high jump”

and “long jump”). As can be observed, a certain number

of frames can be aligned well. However, due to the ran-

domness of the sampling strategy and the noise of the back-

ground regions, some of the isolated frames are semanti-

cally ambiguous when the context frames are not consid-

ered (e.g., the seventh support frame in Figure 5 (b) (1)),

which causes misalignments between frames.

Visualization of Discovered Segments. We visualize

the segments that are automatically generated by the seg-

ment attention layer. For each video, we learn two segments

from the sampled eight frames. As presented in Figure 5

(a) (2) and (b) (2), the frames with high attention scores

and their corresponding two segments are illustrated with

the boxes of the same colors (red and green). We can ob-

serve that the frames that make up the same segments gener-

ally have semantically similar action patterns, such as “run-

ning”, “jumping” and “falling”, which proves the effective-

ness of the segment attention layer in matching the related

frames with the segment prototypes.

Visualization of Segment-to-Segment and Segment-

to-Frame Alignment. As shown in Figure 5 (a) (2) and

(b) (2), the high alignment scores can be observed be-

tween the segments that have large similarities. The seg-

ments also have strong connections with the semantically

related frames. These phenomena justify the reliability of

the multi-level temporal fragment alignment, which consid-

ers more comprehensive ways of alignments and enables

the flexible exploit of the higher-order temporal relations.

Therefore, the learned temporal alignment can contribute to

a more accurate similarity measure for videos.

5. Conclusion

In this paper, we propose a Motion-modulated Temporal

Fragment Alignment Network for FSAR. We design a mo-

tion modulator to enhance the frame features based on the

learned task-specific motion embedding. Also, a segment

attention mechanism is proposed to automatically discover

higher-level segments for the multi-level temporal fragment

alignment. Experiments show the effectiveness.
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