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Abstract

Undoubtedly, high-fidelity 3D hair plays an indispens-
able role in digital humans. However, existing monocular
hair modeling methods are either tricky to deploy in digital
systems (e.g., due to their dependence on complex user in-
teractions or large databases) or can produce only a coarse
geometry. In this paper, we introduce NeuralHDHair, a flex-
ible, fully automatic system for modeling high-fidelity hair
from a single image. The key enablers of our system are
two carefully designed neural networks: an IRHairNet (Im-
plicit representation for hair using neural network) for in-
ferring high-fidelity 3D hair geometric features (3D orien-
tation field and 3D occupancy field) hierarchically and a
GrowingNet (Growing hair strands using neural network)
to efficiently generate 3D hair strands in parallel. Specif-
ically, we perform a coarse-to-fine manner and propose a
novel voxel-aligned implicit function (VIFu) to represent the
global hair feature, which is further enhanced by the local
details extracted from a hair luminance map. To improve
the efficiency of a traditional hair growth algorithm, we
adopt a local neural implicit function to grow strands based
on the estimated 3D hair geometric features. Extensive ex-
periments show that our method is capable of construct-
ing a high-fidelity 3D hair model from a single image, both
efficiently and effectively, and achieves the-state-of-the-art
performance.

1. Introduction

As one of the most distinctive human characteristics, hair
plays an indispensable role in digital humans [4, 10, 12, 15,
17]. Undoubtedly, a high-fidelity 3D hair model can sig-
nificantly improve the realism of a virtual human. How-
ever, the existing single-view-based hair modeling meth-
ods [6, 11, 28, 36, 40] cannot sufficiently satisfy the require-
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Figure 1. Given a single image, our NeuralHDHair reconstructs a
high-fidelity 3D hair model.

ments of human digitalization in terms of flexibility, sim-
plicity, and realism. On the one hand, data-driven methods
[6, 11] could achieve high-fidelity results, but are complex
and not very robust, e.g., entailing a sophisticated search-
ing and matching process based on a large hair dataset. On
the other hand, deep-learning based methods [28,36,40] are
lightweight and flexible to deploy but could only achieve
coarse results. Thus, in this work, we consider the problem
of automatic high-fidelity 3D hair modeling from a single
image utilizing a learning-based method.

Unlike other parts of the human body, the hair structure
is more challenging to describe and extract due to remark-
ably intricate structures of interweaving strands, leading to
extreme difficulty in reconstructing a high-fidelity 3D hair
model only from a single view. Generally, almost all the
existing methods tackle this problem in two steps: first es-
timating a 3D orientation field based on a 2D orientation
map extracted from an input image and then synthesizing
hair strands from the 3D orientation field. However, there
are some problems with such a two-step mechanism. First,
since an 2D orientation map is only a filtered version of
the input hair growing information [24], using the 2D ori-
entation map alone to bridge the domain gap between real
and synthetic data would unavoidably lose hair details (e.g.,
the relationship of occlusive strands [33]). Second, the ex-
isting methods for inferring 3D orientation fields are either
time-consuming due to the use of a complex searching and
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matching process based on a large hair dataset [6, 11], or
liable to over-smoothness due to the use of deep networks
to directly achieve image-to-voxel inference [36]. Third,
the conventional hair growth algorithm [31, 39] to extract
strands from the estimated 3D orientation field are ineffi-
cient and not conducive to one-shot hair modeling. Al-
though Zhou et al. [40] have attempted to ignore the hair
growth procedure by directly regressing 3D hair strands,
their reconstruction results are generally unsatisfactory (see
Sec. 4.2). Based on the above observations, we seek to build
a fully automatic and efficient hair modeling method that
can reconstruct a 3D hair model from a single image with
fine-grained features (Fig. 1) while exhibiting high flexibil-
ity, e.g., reconstructing the hair model only needs one for-
ward pass of the networks.

We found that implicit functions have excellent perfor-
mance and great potential in representing [25] and inferring
[23] 3D shapes. For example, Saito et al. [29] introduced
PIFu to reconstruct a whole human body from a single im-
age, including hair. However, the quality of their hair recon-
struction results is less satisfactory. We observe that unlike
human body modeling, which cares only the surface geom-
etry of a human body, 3D hair modeling needs to consider
both exterior shape and interior features, which are difficult
to represent by a pixel-aligned implicit function [30]. To
address this issue, we propose IRHairNet, which imposes a
coarse-to-fine strategy to produce a high-fidelity 3D orien-
tation field. Specifically, we introduce a novel voxel-aligned
implicit function (VIFu) to extract global information from
a 2D orientation map in the coarse module. Meanwhile, to
supplement the lost local details in the 2D orientation map,
we exploit a high-resolution luminance map to extract lo-
cal feature and combine it with the gloabl feature in the fine
module for high-fidelity hair modeling.

To efficiently synthesize a hair-strand model from the
3D orientation field, we introduce GrowingNet, a deep
learning-based hair growth method by leveraging a local
implicit grid representation [13]. This is based on a key
observation that although hair geometric shapes and grow-
ing directions vary globally, they share similar features at a
specific local scale. Thus, we can extract a high-level latent
code for each local 3D orientation patch, and then train a
neural implicit function (a decoder) to grow strands inside
it based on this latent code. After each growing step, new
local patches centered at the ends of the strands will be used
to proceed with the growing. After training, it is applicable
to 3D orientation fields of arbitrary resolution.

IRHairNet and GrowingNet form the core of NeuralHD-
Hair, a novel automatic monocular hair modeling method.
We conduct extensive experiments, including comparison
experiments and ablation study, and the results show that
NeuralHDHair outperforms all existing monocular hair re-
construction methods [36, 40].

In summary, the main contributions of our work include:

• We introduce a novel fully-automatic monocular hair
modeling framework, significantly outperforming the
state-of-the-art methods.

• We introduce a coarse-to-fine hair modeling neural
network (IRHairNet), where we use a novel voxel-
aligned implicit function and a luminance map to en-
rich local details for high-quality hair modeling.

• We propose a novel hair growing network (Grow-
ingNet) based on a local implicit function to efficiently
generate strand models with arbitrary resolution, and is
an order of magnitude faster than prior methods.

2. Related Work
Hair Modeling from Single Images. With the de-

velopment of image sensing and computer graphics, 3D
hair modeling [6, 8, 11, 16, 18, 24, 28, 39] has been exten-
sively explored. Compared with multi-view-based tech-
niques [16,39], which are typically limited to carefully reg-
ulated environments and complex hardware setups, single-
view hair modeling methods show their significant strength
in feasibility, generality, and efficiency. The pioneering
single-view-based methods rely on different kinds of priors
such as layer boundary [7, 8] or shading cues [5] to recon-
struct a hair model from a single image. They often require
additional user interaction and cannot reasonably generate
invisible regions. Subsequently, [6,11] build a synthetic 3D
hair database and produce impressive results from a single
image based on data-driven methods. However, their recon-
struction results depend highly on the quality and diversity
of the database, and a large database will cause deployment
difficulties. To this end, [28, 36, 40] introduce a lightweight
technique for monocular hair modeling without the require-
ment of a pre-built database or complex hardware setups
and a controlled environment. However, their methods fo-
cus on producing globally plausible models but ignore lo-
cal details. In contrast, our end-to-end approach can fully
automatically generate high-fidelity hair models with fine-
grained features.

Implicit Neural Representations. Most recently, exten-
sive studies [3,20,25,26] have been conducted for represent-
ing 3D geometry in an implicit manner due to its simplicity
and effectiveness. For example, Park et al. [25] represent
3D shapes by mapping the 3D coordinates to signed dis-
tance functions with MLPs. Mescheder et al. [19] introduce
a new network to implicitly represent continuous surfaces
as 3D occupancy fields for generating high-quality results at
infinite resolution. However, these methods simply employ
a global latent code to represent the total 3D shape, thus re-
stricting to simple geometry and sacrificing robustness. To
address these issues, several research studies [9, 21, 27, 29]
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focus on combining local features to represent the corre-
sponding 3D geometry instead of directly encoding an en-
tire shape into a global latent code. PIFu proposed by Saito
et al. [29] learns a per-pixel implicit representation from the
pixel-aligned feature with the global context, and could pre-
serve local details while producing high-fidelity reconstruc-
tion. Similarly, Jiang et al. [13] introduce a local implicit
grid representation for arbitrary objects or scenes, and this
representation greatly enhances their network’s generaliza-
tion ability. In this work, we introduce a more expressive
VIFu to represent intricate hair geometry and formulate the
hair growth problem as an implicit function to improve the
hair growth efficiency and achieve one-shot hair modeling.

High-Resolution 3D Reconstruction. Several recent
research focus on the reconstruction of high-quality 3D
texture or geometry based on the 2D cues. For exam-
ple, [14, 32, 35] estimate geometric or color details using
a texture map representation. [1,37] explore the unwrapped
UV space by regressing displacements to improve the re-
construction quality, and [2] deforms the high-fidelity mod-
els of humans based on a data-driven method to hallucinate
plausible details. However, both approaches could not pro-
duce vivid details that match well with the truth. On the
other hand, [30, 34] build two branches, the coarse one and
the fine one, to fuse the global and local features. Their
approach produces more detailed results while rarely im-
posing extra memory burden. We adopt a similar coarse-
to-fine strategy to reconstruct a high-resolution hair model.
However, unlike their task, where paired training data could
be easy to obtain, we lack photo-realistic hair images paired
with 3D hair models. Directly using rendered images would
have a large domain gap with real images (e.g., due to the
differences in color, illumination, texture, material, etc.).
We thus utilize a 2D orientation map as the input to our
coarse branch while a luminance map to our fine branch.
The two maps could make up for most of the domain gap,
and mutually contribute to each other.

3. Method
Fig. 2 shows the pipeline of NeuralHDHair. For a por-

trait image, we first calculate its 2D orientation map [24],
and extract its luminance map [38]. Further, we automat-
ically align them to the same reference bust model to get
a bust depth map [36]. Then, these three maps are sub-
sequently fed into our proposed IRHairNet. Specifically, it
adopts a coarse-to-fine strategy and exploits a voxel-aligned
implicit function (VIFu) to predict the initial 3D hair geo-
metric features (3D orientation and 3D occupancy), which
will be further enriched by the local features extracted from
the hair luminance map (Sec. 3.1). Then, the enriched 3D
orientation field is divided into many patches and fed into
our GrowingNet (Sec. 3.2) to efficiently grow a complete
hair-strand model in parallel.

3.1. IRHairNet

Our IRHairNet is designed to generate high-resolution
3D hair geometric features from a single image. The input
to this network is comprised of a 2D orientation map, a lu-
minance map and a fitted bust depth map, which are derived
from the input portrait image. The output is a 3D orienta-
tion field, where each voxel inside contains a local growing
direction, and a 3D occupancy field, where each voxel indi-
cates whether there is any hair strand passing through (1) or
not (0).

Voxel-aligned Implicit Function. Since the implicit
function has shown impressive results in 3D shape repre-
sentation, we consider defining an implicit function to rep-
resent 3D hair geometry. As discussed in Sec. 1, a pixel-
wise implicit representation is not sufficient for represent-
ing complex 3D hair internal geometry and tends to pro-
duce over-smoothed results, directly ignoring the hair’s lo-
cal details and spatial hierarchy (see Sec. 4). To this end,
we propose an expressive voxel-aligned implicit function
(VIFu) that targets each voxel instead of each pixel to rep-
resent the intricate 3D geometry of hair. Specifically, given
a spatial point p, we can obtain the local orientation value
Oori

p and the occupancy value Oocc
p with two implicit func-

tions fc and fr as follows: fr(F (vp), p) = Oori ∈ R3, and
fc(F (vp), p) = Oocc ∈ R1 , where F (vp) outputs the la-
tent code of the voxel v that p locates. Since F (vp) can vary
within the entire volume, it is more reasonable to represent
the interior features of complex hair than PIFu [29]. Fur-
thermore, during testing, we can obtain the orientation and
occupancy fields of higher resolution than during training
by sampling more points inside each voxel when evaluat-
ing f . Importantly, F (·) itself can be an implicit function,
which maps the coordinate of the voxel v to the correspond-
ing latent code.

Implicit toVoxel Module with VIFu. Inspired by [36],
we use a variant U-Net architecture to achieve image-to-
voxel task. The key idea is to build the skip connections
between 2D and 3D features with a bridge module. Instead
of simply increasing the number of 2D feature channels as
in [36], where the depth information is not explicitly mod-
eled, we propose an implicit toVoxel module to achieve this
task, which employs the idea of our VIFu. Specifically, this
module can be formulated as:

F (v) = θ(I(x), Z(v)), (1)

where for each voxel v, x = π(v) is its 2D projection coor-
dinate, I(x) is the 2D image feature locating at x, and Z(v)
is the normalized depth value. This means each voxel’s la-
tent code F (v) can be refined using its corresponding 2D
feature I(x) and the normalized depth Z(v) through the
MLP θ. In practice, we first duplicate the 2D features along
the depth dimension of the 3D features, then apply the MLP
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Figure 2. The pipeline of NeuralHDHair. Given a single image, our IRHairNet employs a voxel-aligned implicit function to predict 3D
hair geometric features based on a 2D orientation map and a high-resolution luminance map derived from the input image. Specifically,
the coarse module produces a voxel-wise latent code with global context. The fine module extracts local details from the luminance map.
We then use an MLP to decode the 3D hair geometric features from the voxel-wise 3D feature embeddings and local details. Afterwards,
our GrowingNet divides the 3D orientation field into multiple patches and grows hair strands in individual patches in parallel. Finally, we
remove the out-of-boundary hair strands using the 3D occupancy field to produce the final hair-strand model.

θ based on Z(v) and I(x), as illustrated in Fig. 2. It has the
following two advantages. First, it can refine a pixel-wise
latent code to a voxel-wise latent code taking the depth into
consideration, which is very important for inferring hair ge-
ometry. Second, this module can be inserted into every skip
connection, thus suitable for progressive learning induced
by the U-Net, e.g., the resolution of the 3D features will
gradually increase (from 6×8×8 to 96×128×128) in the
decoding process, which helps fuse multi-level features to
learn the overall shape as well as the local details.

After the U-Net, we can obtain the latent code F (vp) at
any point p in the volume. Hence, the 3D hair geometric
feature Op can be decoded from F (vp) as:

Op = f(F (vp), Z(p)), (2)

where Op represents an orientation or occupancy value at
point p and f is an MLP representing fc or fr for simplicity.

Coarse-to-fine Hair Modeling. Although the proposed
U-Net architecture combined with VIFu is able to achieve
decent performance (see Sec. 4.1), plenty of hair details
present in the image still cannot be captured. We thus utilize
a coarse-to-fine strategy for high-quality reconstruction, as
discussed in Sec. 2. For this, we design a coarse module
and a fine module. The coarse module has the architecture
of the proposed U-Net, which takes a 2D orientation map
and a bust depth map as input, and outputs initial coarse 3D
hair geometric features. The fine module is a Hourglass [22]
network, extracting the local features from a high-resolution
luminance map. The local features will be fused into the
initial hair features to achieve high-resolution modeling ul-

timately, as follows:

OH
p = fH(Ω(p), IH(π(p)), Z(p)), (3)

where Ω(p) comes from the above coarse module (the sec-
ond layer output off ), IH(π(p)) is the 2D fine-grained lo-
cal feature extracted from the luminance map, and fH is an
MLP.

Note that we convert the input image from the RGB
space to the LAB space for obtaining a luminance map (L
channel). The luminance map, highly disentangled with
chrominance in the LAB space, makes it possible to de-
scribe the sophisticated hair structure. In addition, com-
pared with the orientation map, which only contains the
growth direction of the hair, the luminance map can cap-
ture more local details, such as illumination and depth in-
formation, making significant improvement in realism and
high-fidelity.

Loss Function. The design of the loss function has a sig-
nificant effect on the robustness of the trained model. Con-
sidering that forcing the network to fit occluded hair (espe-
cially the hair behind the head) might weaken the learning
ability of the network, we assign small weights to invisi-
ble points. Similar to the previous work [36], we use the
Binary Cross Entropy (BCE) loss for the occupancy field
and the L1 loss for the orientation field. Thus, the final loss
function is given by:

Wp =

{
1 ,Z(p)−D(p) >= τ

10 ,Z(p)−D(p) < τ
(4)

LOri =
∑

Wp · ‖Oori
p − Ôori

p ‖1, (5)
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LOcc =
∑

Wp · (λ · Ôocc
p log(Oocc

p )

+ (1− λ)(1− Ôocc
p ) log(1− (Oocc

p ))),
(6)

where D(p) and Z(p) represent the corresponding depth
value at the projected location π(p) on the depth image D
and its actual z-coordinate, respectively. We regard that the
points within τ (τ = 5) voxels under the surface of the hair
are visible since the hair is not flaky. Therefore, our model
can perform reasonable reconstruction for invisible hair.

Data. Similar to the previous research [6, 31, 36], we
collected 653 3D hair-strand models and aligned them to
the same bust model within a boundary box. In addition,
we also augment the data by horizontally flipping, scaling,
and rotating. Then we voxelize the boundary box to prepare
the training data, including 3D strand points, 3D orientation
maps, and 2D orientation maps together with the luminance
map. Note that we generate a luminance map from the ren-
dered image of a 3D hair strand model at the training phase
but produce it directly from an input portrait image at the
testing phase. To train our IRHairNet, we randomly sam-
ple in the boundary box and sample points farther from the
strands with Gaussian-decaying probabilities [25]. Finally,
we perform trilinear interpolation to fill the discontinuous
holes in the 3D orientation map for more robust training.

3.2. GrowingNet

Our GrowingNet is designed to efficiently generate a
complete hair-strand model from the 3D orientation field
and 3D occupancy field estimated by our IRHairNet, where
the 3D occupancy field is used to limit the growth region of
hair.

Problem Formulation. We regard the each hair strand
as a continuous function in a high-dimensional space simi-
lar to the spatial surface. The derivative of the spatial point
on the curve represents the local growing direction. If we set
a fixed step size s, we can start from an arbitrary 3D point
xn and iteratively solve the next point xn+1 by comput-
ing the corresponding derivative to grow a complete strand.
Specifically, our hair growth algorithm can be formulated
as: xn+1 = xn + s · fg(z, xn), where z = E(Oori) repre-
sents the latent code encoded from the whole 3D orientation
field using the encoder E. We attempt to apply an implicit
function fg to regress the derivative of arbitrary point x in
the space. Then, we can produce a complete hair model by
iteratively solving the next point in parallel. In fact, since s
is a constant, we force the network to learn the above for-
mula and directly output the coordinates of the next point
xn+1 = G(z, xn), where G is an MLP. Note that the tradi-
tion hair growing algorithm entails s is less than the voxel’s
width while in our formulation, we can change s to sat-
isfy different resolution requirements by training different
MLPs.

Local Implicit Hair Growing. Since learning a global

implicit function is challenging, especially for complex
structures, we consider learning a local implicit function (a
decoder) to grow hair strands. Specifically, we divide the
3D orientation field into lots of independent patches, which
share the same decoder to grow hair strands. Based on the
above considerations, we first randomly sample a 3D point
in the hair volume and query its corresponding patch in the
world coordinate system. Then we decode the next point
according to the following formula:

xn+1 = G(zi,
2

d
(xn − xi)), (7)

where zi and xi are the latent code and the center of the
corresponding local patch i respectively, and d is the patch
scale. It means that we unify all the local patches by con-
verting the world coordinates to the local coordinate sys-
tems and normalizing the range to [−1, 1] before decoding.

Hair Growth with Overlapping Latent Code. Al-
though our local implicit hair growing method has an excel-
lent performance in capturing local details, we found that it
would produce visible artifacts in the boundary of patches
(see Sec. 4.1). To address this issue, we employ the over-
lapping latent patch scheme for any two adjacent patches
overlapped by half of the patch scale. Specifically, given
an arbitrary point xn of a hair strand, we compute the next
point xn+1 by applying trilinear interpolation to the implicit
function values of all patches overlapped at the position of
xn:

xn+1 = T (zN , G, xn)

=
∑
j∈N

Wj ·G(zj ,
2

d
(xn − xj)), (8)

where N is the set of all overlapping patches at point xn,
and Wj is the trilinear interpolation weight corresponding
to the local patch j. Finally, we generate a complete and
smooth strand model by growing hair independently in each
patch in parallel (e.g., growing 10,000 strands at the same
time).

Loss Function. We train our GrowingNet by minimiz-
ing the following loss function:

L =‖T (zN , G, xn)− x̂n+1‖1

+‖T (zN , GInv, xn)− x̂n−1‖1,
(9)

where GInv represents the decoder with the same architec-
ture as G, but its output is the previous point xn−1. This
is because we bi-directionally grow a hair-strand from the
sampled point in the local region to avoid the loss of entan-
gled hair strands. Thus, x̂n−1 and x̂n+1 are the actual posi-
tions of the previous and next points of xn, respectively.

Data. Similarly, we use the strand model as mentioned
above to train our GrowingNet. The difference is that we
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Figure 3. Qualitative evaluation of each key component of our
IRHairNet. VIFu helps us represent complex hair structures, while
the fine module contributes to supplement local details.

control the distance between two adjacent 3D points on one
strand to be approximately equal (to achieve the same step
size) using B-spline interpolation for more robust training.

Figure 4. Qualitative evaluation of GrowingNet. Our Grow-
ingNet can efficiently achieve visually similar results to traditional
methods. The employment of overlapping latent patch scheme
helps produce smoother results across patches.

4. Experiments
In this section, we evaluate the effectiveness and neces-

sity of each algorithmic component through ablation studies
(Sec. 4.1). followed by comparing our approach with state-
of-the-art methods [6, 28, 30, 36, 40] (Sec. 4.2). Besides,
implementation details and more experimental results can
be found in our supplementary materials.

4.1. Ablation Studies

Evaluation of IRHairNet. To evaluate the effectiveness
and necessity of each key component of our IRHairNet in
terms of geometric fidelity and realism, we compare our

Method Traditional Ours w/o Overlap
Time(s) 10.57 1.21 0.25

Table 1. Our GrowingNet is more efficient than a traditional
method. Sacrificing some precision (w/o Overlap) can save a lot
of time.

Local size 4 8 16 32
Time(s) 5.75 1.21 1.13 1.04

Table 2. Comparison of time consumption under different local
sizes.

full method with two simplified settings. One simplifica-
tion removes the fine module to evaluate the effect of re-
finement (w/o Fine) while the other removes the implicit
toVoxel module to evaluate the significance of VIFu (w/o
VIFu).

The visual comparison results are shown in Fig. 3. When
removing the overall implicit toVoxel module, our system
severely suffers from the problem of over-smoothing: the
results without VIFu only contain either a plausible shape
with approximate growth direction or even an incorrect
structure (second row in Fig. 3). This is because the repre-
sentation ability of the network without VIFu would signif-
icantly deteriorate, making it difficult to describe intricate
hair geometry. On the other hand, without the fine module,
some local details are unavoidably lost, though the gener-
ated results still maintain most of the correct growth di-
rections, especially for complex hairstyles. Employing the
fine module can dramatically enhance the local details (e.g.,
strands’ hierarchical structure) by extracting fine-grained
features from the high-resolution hair luminance map while
increasing the resolution of 3D hair geometric features also
improve the quality of the 3D hair model (3-th and 4-th
columns of Fig. 3). The above experiments proves that
the proposed VIFu has a strong representation ability for
sophisticated hair geometry and such a coarse-to-fine ap-
proach can capture more local details while increasing the
3D hair model resolution.

Figure 5. Performance comparison of GrowingNet under differ-
ent local sizes with different resolutions. The first row represents
the low-resolution results (96 × 128 × 128) and the second row
represents the high-resolution one (384× 512× 512)
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Figure 6. Compared to HairNet [40], our method leads to signifi-
cantly better results in terms of shape and structure

Evaluation of GrowingNet. We also qualitatively and
quantitatively evaluate the effectiveness of GrowingNet in
terms of fidelity and efficiency. We first conduct three sets
of experiments on synthetic data: i) traditional hair-growth
algorithm [31], ii) GrowingNet without the overlapping la-
tent patch scheme, iii) our full model. Fig. 4 and Tab. 1
show our GrowingNet has obvious advantages over tradi-
tional hair growth algorithm in time consumption, while
maintaining the same growth performance in terms of vi-
sual quality. In addition, by comparing the third and fourth
columns of Fig. 4, we can see that without the overlapping
latent patch scheme, the hair strands at the patch boundary
may be discontinuous and this issue is more serious where
the hair strands’ growth directions change sharply. How-
ever, it is worth noting that this scheme greatly improves
the efficiency at the cost of slightly reduced precision. Still,
the improved efficiency is significant for the convenient and
efficient application to human digitization.

We also evaluate the reconstruction performance of
GrowingNet on different local sizes in different resolutions
(96 × 128 × 128 and 384 × 512 × 512). As shown in
Fig. 5, as the input resolution increases, the quality of the
result is higher. On the other hand, at the same resolution,
the performance of modeling rises simultaneously with a
smaller patch size, producing more accurate details, since
decoding a small patch is much more simplified than a
large one. It seems that we can reconstruct a high-fidelity
model by simply reducing the local patch size. However, as
shown in Tab. 2, when the local patch size is reduced to less
than 8, the reconstruction time increases significantly with
only a tiny improvement on the modeling quality, due to its
time-consuming query process similar to the traditional hair
growth algorithm. Therefore, we choose a local patch size
of 8× 8× 8 to balance performance and efficiency.

4.2. Comparisons

To evaluate the effectiveness of our NeuralHDHair, we
conduct several comparisons with the state-of-the-art meth-
ods [6,28,30,36,40], where Autohair [6] performs hair syn-

Figure 7. Comparison with Autohair [6] and Saito et al [28]. Their
results are not consistent with the input image in shape or structure.

thesis based on a data-driven approach, and HairNet [40] ig-
nores the hair growth procedure to achieve end-to-end hair
modeling. In contrast, [28, 36] perform a two-step strategy
that first estimates a 3D orientation field and then synthe-
sizes hair strands from it. PIFuHD [30] is a state-of-the-art
monocular high-resolution 3D modeling method based on
the coarse-to-fine strategy, which can be reformulated for
3D hair modeling.

As shown in Fig. 6, it is evident that the result by Hair-
Net looks plausible but the local details and even the overall
shape are inconsistent with the hair in the input image. This
is because they perform hair synthesis in a simple and crude
manner by directly regressing the unordered hair strands
from a single image. We also compared the reconstruc-
tion results with [6, 28]. As shown in Fig. 7, although Au-
tohair can synthesize realistic results, its structure cannot
match the input image well since the database contains lim-
ited hairstyles. On the other hand, the results of [28] lack
local details, and the shape cannot be consistent with the
input image. In contrast, our results better maintains the
global structure and local details of the hair, while ensuring
the consistency of the hair shape.

Similar to our task, PIFuHD [30] and Dynamic Hair [36]
are committed to estimating high-fidelity 3D hair geomet-
ric features to produce realistic hair-strands models. Fig. 8
shows two representative comparison results. It can be seen
that a pixel-wise implicit function adopted in PIFuHD can-
not sufficiently describe the intricate hair, resulting in over-
smooth results, without local details or even bad global
structure. Although they attempt to supplement the local de-
tails to the coarse global features in their fine module, their
generated results are still unsatisfactory due to the incorrect
global structure. While [36] can produce more reasonable
results with few details and the overall hair growth trend
in their results can match the input image well, many local
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Figure 8. Comparison with PIFuHD [30] and Dynamic Hair [36].
Compared to our method, the two existing methods cannot suf-
ficiently describe 3D hair geometry and generally produce over-
smooth results, especially for complicated hair structure.

structural details (e.g., hierarchy) cannot be captured, espe-
cially for complex hairstlyes. In contrast, with the coarse-
to-fine strategy and the expressive implicit representation
(VIFu), our method can adapt to diverse hairstyles, even
extreme complex structures, and fully leverage the global
features and local details to generate high-fidelity, high-
resolution 3D hair models with more details.

5. Conclusion and Future Work

In this paper, we introduced an automatic learning-based
monocular hair modeling system NeuralHDHair to produce
a high-fidelity hair-strand model as shown in Fig. 9 (Please
refer to the supplemental video1 for more results). It con-
sists of two carefully designed deep leaning networks based
on implicit functions: IRHairNet to provide high-resolution
3D hair geometric features. based on the proposed VIFu
and high-resolution luminance map, and GrowingNet clev-
erly applies the local parallel growth strategy to provide an
efficient hair synthesis procedure, which also supports us in
producing a complete hair-strand model that only needs one
forward pass of the networks. We also evaluate the effec-
tiveness and necessity of each key component of our system
through ablation studies and demonstrate that our approach
achieves state-of-the-art performance among the monocular
hair modeling methods.

As far as we know, all existing hair modeling methods
are limited to the quality of the 2D orientation map. Al-
though we attempt to use the luminance map to supplement
local details, we found that it must be complementary with
the 2D orientation map. Utilizing only a luminance map
as input suffers from the problem of overfitting due to the
insufficient diversity of our 3D hair models. Thus, enrich-
ing the 3D hair dataset or adopting more realistic rendering

1https://www.youtube.com/watch?v=g0wGRp_zKcI

Figure 9. Fully automatic hair modeling results for various
hairstyles. Our NeuralHDHair can produce realistic, high-
resolution 3D hair models with local details.

methods is essential to reconstructing a 3D hair model di-
rectly from a single image (or a luminance map) instead of
an orientation map. In addition, for diversified portrait in-
put, we employ landmark to automatically align it with a
fixed bust model, which may cause the hair not to fit well
with the head due to the different identities of the head.
In the future, to significantly improve the visual quality of
hair reconstruction, we may attempt to estimate the head
pose and reconstruct the corresponding 3D face while re-
constructing a 3D hair model.
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