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Abstract

The increasing abuse of image editing softwares, such
as Photoshop and Meitu, causes the authenticity of digi-
tal images questionable. Meanwhile, the widespread avail-
ability of online social networks (OSNs) makes them the
dominant channels for transmitting forged images to re-
port fake news, propagate rumors, etc. Unfortunately,
various lossy operations adopted by OSNs, e.g., compres-
sion and resizing, impose great challenges for implement-
ing the robust image forgery detection. To fight against the
OSN-shared forgeries, in this work, a novel robust train-
ing scheme is proposed. We first conduct a thorough anal-
ysis of the noise introduced by OSNs, and decouple it into
two parts, i.e., predictable noise and unseen noise, which
are modelled separately. The former simulates the noise
introduced by the disclosed (known) operations of OSNs,
while the latter is designed to not only complete the pre-
vious one, but also take into account the defects of the
detector itself. We then incorporate the modelled noise
into a robust training framework, significantly improving
the robustness of the image forgery detector. Extensive ex-
perimental results are presented to validate the superior-
ity of the proposed scheme compared with several state-
of-the-art competitors. Finally, to promote the future de-
velopment of the image forgery detection, we build a pub-
lic forgeries dataset based on four existing datasets and
three most popular OSNs. The designed detector recently
won the top ranking in a certificate forgery detection com-
petition1. The source code and dataset are available at
https://github.com/HighwayWu/ImageForensicsOSN.

1. Introduction

The ever-increasing popularity of powerful image edit-
ing softwares has made the manipulation of images an ex-
tremely easy task. The manipulated or forged images are
becoming increasingly dangerous in various fields such as

1https://tianchi.aliyun.com/competition/entrance/531812/introduction

Figure 1. The detection results of DFCN [42] and ours by using
an original forgery and the one transmitted through an OSN. The
left girl is spliced (forged).

removing copyright watermarks, producing fake news, and
being forged evidence in court. Meanwhile, with the vig-
orous development of the Internet, online social networks
(OSNs) have become dominant platforms for information
transmission, where images occupy a large portion. Many
forged images are transmitted over various OSNs, influ-
encing people’s opinion towards e.g., important documents
(certificates), commercial products, political issues, etc.

A large number of methods [4, 5, 8, 11, 12, 18, 20–23, 26,
27, 36, 37, 39, 42] have been proposed to detect and local-
ize image forgery. Some of them are designed to detect
specific forms of tampering, such as splicing [18,26], copy-
move [23, 39] and inpainting [21, 22, 36], while the others
aim to identify more complex or compound forgeries. How-
ever, few research has been done to explicitly address the
design of the robust forgery detection against the lossy op-
erations in the ubiquitous OSN platforms. Such a topic is
very important because these lossy operations can severely
degrade the detection performance. As shown in Fig. 1,
the state-of-the-art algorithm [42] can accurately detect the
forged regions from the original forgery; but the detection
performance would be severely degraded when handling the
forgery transmitted through Facebook.

For mitigating the negative impacts of OSNs, the first
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critical issue is to analyze and model the noise introduced
by the OSN lossy channels. However, this is a rather diffi-
cult problem mainly because current platforms do not dis-
close the process for manipulating the transmitted images.
Although some works [33, 34] revealed part of the opera-
tions adopted by OSNs, there are still many unknown ones,
e.g., the enhancement filtering in Facebook. More impor-
tantly, OSNs often adjust their image processing pipelines,
making the modeling even more challenging.

To deal with the aforementioned challenges, in this pa-
per, we aim to design a robust image forgery detection
method to defeat the lossy operations in OSNs. Specifically,
for dealing with the OSN degradations, we propose a noise
modeling scheme and integrate the mimetic noises into a ro-
bust training framework. We decouple the OSN noises into
two components: 1) predictable noise and 2) unseen noise.
The former is designed to simulate the predictable loss
brought by known operations, (e.g., JPEG compression),
whose modeling relies on a deep neural network (DNN)
with the residual learning and an embedded differentiable
JPEG layer. While the latter is mainly in response to the
unknowable actions conducted by OSNs and/or the discrep-
ancy between the training and testing of various OSNs. Ap-
parently, it is unrealistic to build a suitable model for the
unseen noise from the perspective of the signal itself. To
address this difficulty, we transfer our observations from the
noise perspective to the forgery detector, only focusing on
the noise that may cause deterioration of the detection per-
formance. Such a strategy naturally incubates a new algo-
rithm to model the unseen noise by utilizing the core idea
of adversarial noise [35], which is essentially impercepti-
ble perturbation that can severely degrade the model perfor-
mance. It is shown that our robust image forgery detection
method demonstrates superior robustness and outperforms
several state-of-the-art algorithms. An example of the de-
tection result of our scheme is shown in Fig. 1. Finally, we
build a public forgeries dataset with more than 5000 items
based on four existing datasets [1, 6, 14, 17] and three OSN
platforms (Facebook, Weibo, and Wechat). Our major con-
tributions can be summarized as follows:

• We propose a novel training scheme for robust image
forgery detection against transmission over OSNs. The
training scheme not only models the predictable noise
introduced by OSNs, but also incorporates the unseen
noise to further promote the robustness.

• Our model achieves better detection performance in
comparison with several state-of-the-art methods [12,
27,37,42], especially in the scenario of fighting against
the transmission over OSNs.

• We build a public forgeries dataset based on four ex-
isting datasets [1, 6, 14, 17] and three platforms (Face-
book, Weibo, and Wechat).

The rest of this paper is organized as follows. Sec. 2
reviews the related works. Sec. 3 presents the details on the
robust image forgery detection through the proposed robust
training strategy. Experimental results are given in Sec. 4
and Sec. 5 concludes.

2. Related works
2.1. Image forgery detection

Many forensics methods (e.g., [2, 3, 5, 7, 8, 18–23, 26,
36, 39, 40]) have been proposed to verify the authenticity
of digital images. These methods detect the forged re-
gions through specific artifacts left by, e.g., splicing [18,26],
copy-move [23, 39], median filtering [8, 20], inpainting
[21, 22, 36], etc. To better fit the practical requirements,
more and more methods have been developed to address
the problem of detecting general (compound) types of forg-
eries [4,5,11,12,27,37,41,42], among which deep learning
based methods are the most successful. Along this line, Wu
et al. [37] proposed the MT-Net, a general forgery detection
network, which first extracts image manipulation features
and then identifies anomalous regions. Mayer and Stamm
recently [27] introduced the forensic similarity to determine
whether two image patches contain the same forensic traces.
From the perspective of the camera fingerprint, Cozzolino
and Verdoliva [12] designed a method for extracting a cam-
era model fingerprint, called noiseprint, so as to disclose the
forged regions. For learning the traces of generic forgeries,
Zhuang et al. [42] utilized a training data generation strat-
egy by using the Photoshop scripting.

2.2. Online Social Network (OSN)

The popularity of various OSN platforms, e.g., Face-
book, Wechat, Weibo, etc, significantly simplifies the dis-
semination and sharing of images. However, as indicated
by many existing works [33, 34], almost all OSNs manip-
ulate the uploaded images in a lossy fashion. The noise
introduced by these lossy operations could severely affect
the effectiveness of forensic methods. Taking Facebook as
an example, as discovered in [32–34], these manipulations
mainly consist of three stages: resizing, enhancement filter-
ing, and JPEG compression. Specifically, resizing would
be applied if the resolution of the image is above 2048
pixels. After that, some selected blocks in the image un-
dergo highly adaptive and complex enhancement filtering.
As mentioned in [33, 34], it is very challenging to precisely
know these enhancement filtering operations due to their
adaptiveness. Finally, the image is subject to a round of
JPEG compression with a quality factor (QF) adaptively de-
termined according to the image content. Through the anal-
ysis of the dataset provided in [33], the QF values used by
Facebook range from 71 to 95. Although the image manip-
ulations on different OSN platforms are different, the op-
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erations conducted by mainstream OSNs still share many
similarities (e.g., ubiquitous JPEG compression) [33].

Some existing forensics [9, 24, 38] are designed to iden-
tify the involved transmission operations. Liao et al. [9, 24]
first raised a feature decoupling method for the identifica-
tion of two manipulations based on blind signal separation.
To further reveal a long chain, You et al. [38] presented a so-
lution by innovatively representing the manipulation chain
detection as a machine translation problem.

3. Robust image forgery detection against
transmission over OSNs

In this section, we present the details on the robust im-
age forgery detection scheme against the transmission over
OSNs. The key technique leading to the success is to appro-
priately model the degradations incurred by OSNs, and inte-
grate such knowledge into a robust training framework. Re-
call from Sec. 2.2 that the image processing operations in an
OSN are rather complicated; some of them can be precisely
known, while some others can only be partially known or
even completely unknown. Therefore, we propose to divide
the OSN noise into two types: 1) predictable noise and 2)
unseen noise. The former type corresponds to the case that
the degradation source is clearly identified. While the latter
type is a combination of various noise uncertainties, includ-
ing the unknown modeling/parameters, the discrepancy be-
tween the training and testing OSNs, and even some totally
unseen degradation sources. By adding the modelled OSN
noise in the training phase, the detector is expected to learn
more generalized features that could survive the OSN trans-
mission, making the overall forgery detection performance
significantly improved.

In Fig. 2, we illustrate the framework of our robust train-
ing scheme for the forgery detection, which consists of four
stages. Roughly speaking, Stage 1 and Stage 2 are devoted
to simulate the predictable noise via a differentiable net-
work. Stage 3 deals with the modeling of the unseen noise
through an adversarial noise generation strategy. Eventu-
ally, Stage 4 handles the actual robust training of the image
forgery detector fθ. Note that our robust training scheme
can be incorporated with any deep learning based image
forgery detectors. As the focus of this work is more on the
robust training, we in the following restrict our attention to
the Stages 1-3, while leaving the details of fθ in Sec. 4.1.

Formally, let τ and ξ denote the predictable noise and
unseen noise, respectively, and hence the compound noise
considered in the robust training stage becomes

δ = τ + ξ. (1)

For each training iteration, we first sample two pristine 3-
channel (RGB) color images {p1,p2} ∈ RH×W×3, and
one binary mask y ∈ {0, 1}H×W×1, where 1’s are assigned

to the forged regions and 0’s elsewhere. Then a forged im-
age x can be synthesized as

x = p1 � (1− y) + p2 � y, (2)

where � denotes the element-wise multiplication. Upon
having the pairs of forged image and the correspond-
ing ground-truth mask, we can create a dataset D =
{(xi,yi)}Ni=1 for the training, where i is the index for the
training sample. The robust training of the image forgery
detector fθ under the compound noise δ can then be formu-
lated as:

argmin
θ

1

N

N∑
i=1

EP (δ)

{
Lb(fθ(xi + δ),yi)

}
, (3)

where P (δ) denotes the distribution of the compound noise
δ, N is the number of training samples, and Lb is the binary
cross-entropy (BCE) loss.

In our noise model, we consider a rather general setting
that the two noise components τ and ξ are dependent. Then,
the robust training scheme Eq. (3) can be further written as

argmin
θ

1

N

N∑
i=1

EP (τ )

{
EP (ξ|τ ){Lb(fθ(xi+τ+ξ),yi)}

}
,

(4)
where P (τ ) is the marginal distribution of τ , and P (ξ|τ )
is the conditional distribution of ξ given τ . From the im-
plementation perspective, such expected values could be ef-
ficiently and accurately computed upon having a sufficient
number of noise samples. To conduct the robust training
given in Eq. (4), a crucial task is to model the marginal dis-
tribution P (τ ) and the conditional distribution P (ξ|τ ).

3.1. Modeling the distribution P (τ )

We now model the distribution P (τ ), where the degra-
dation is caused by the lossy operations of OSN platforms.
From Sec. 2.2, we know that the dominating degradation
source of τ is the applied JPEG compression, and the post-
processing (e.g., enhancement filtering) also partially con-
tributes to τ . For an image xi and a fixed OSN platform,
the incurred noise can be easily calculated by

τ i = OSN(xi)− xi, (5)

where the function OSN(·) reflects all the operations con-
ducted by the given OSN platform. Note that τ i depends
on xi, namely, the noise is signal dependent. Seemingly,
in this way, we can generate a lot of noise samples, which
can be used to model the distribution of P (τ ). However,
in practice, such a naive modeling scheme is quite prob-
lematic. The processed image OSN(xi) has to be obtained
by uploading xi to the specific OSN platform, and then
downloading it. Such procedure, on one hand, is time-
consuming; on the other hand, many OSNs do not allow
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Figure 2. The overview of our proposed training scheme and the corresponding testing phase.

too many times of the uploading/downloading operations.
For instance, Weibo even bans the account if too many up-
loading operations are observed in a short period of time.
This seriously limits the number of obtained noise samples,
making such a naive scheme highly ineffective in practice.

To resolve this challenge, we resort to another strategy
of modeling P (τ ) in an inexplicit manner. We propose to
use a substitute deep network for mimicking the OSN op-
erations, so as to conveniently produce a large number of
noise samples τ i. Specifically, to be consistent with the
image processing pipeline in the OSN platform, we train a
DNN model, which explicitly embeds a differentiable layer
to describe the JPEG compression. For an input image xi,
we aim to learn a mapping gφ : Rd → Rd, where gφ is
a network with trainable parameters φ, predicting the OSN
output. We employ a U-Net architecture [28] for gφ, as
it is essentially an image-to-image mapping. The training
procedure is illustrated in Stage 1 of Fig. 2, and then the
well-trained gφ∗ is employed in the Stage 2 for modeling
P (τ ). At the training stage, we collect pairs of input image
xi ∈ Rd and the OSN transmitted version OSN(xi) ∈ Rd

in an offline manner. The objective function for training gφ
can be formulated as

min
φ

{
Lr(gφ(xi),OSN(xi))

}
, (6)

where Lr(x,y) = ‖x− y‖2.
As we are more interested in learning the noise incurred

by the OSN transmission rather than the image content it-
self, we adopt a residual learning structure [16] when de-
signing gφ. Bearing this in mind, we change the objective
function into

min
φ

{
Lr(xi + gφ(xi),OSN(xi))

}
. (7)

The residual learning is beneficial for the model optimiza-
tion, significantly boosting the modeling performance.

Furthermore, we explicitly integrate a special JPEG layer
into the model for better generating the structural, JPEG-
like artifacts, which reflects the true situation in various
OSN platforms. To enable the end-to-end optimization of
the objective function in Eq. (7), we need to ensure that ev-
ery step of the JPEG compression remains differentiable.
It is easy to find that the quantization is the only non-
differentiable step, mainly because the employed rounding
function b·e has 0 derivative everywhere. To deal with it,
we approximate the rounding function with a differentiable
version [31]:

bxea = bxe+ (x− bxe)3. (8)

Upon having a differentiable JPEG layer, the objective func-
tion for training gφ becomes

min
φ
Lr(Jq(xi + gφ(xi)),OSN(xi)), (9)

where Jq represents the differentiable JPEG layer with a
given QF q. In our training, q is uniformly sampled in the
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range [71, 95] as adopted by Facebook. It is then straight-
forward to derive the noise τ i as

τ i(q) = Jq(xi + gφ∗(xi))− xi, (10)

where φ∗ is obtained by solving the optimization problem
Eq. (9) and q is the QF associated with the JPEG compres-
sion. Monte Carlo (MC) sampling scheme can then be im-
plemented to generate a large number of noise samples for
modeling the distribution P (τ ).

3.2. Modeling the conditional distribution P (ξ|τ )

We then tackle the issue of modeling the conditional dis-
tribution P (ξ|τ ) so that we can solve the optimization prob-
lem in Eq. (4). The reason why we incorporate the noise
term ξ is that the predictable noise τ cannot fully capture
the noise behavior encountered in practice. For instance,
different OSNs may adopt distinct procedures, e.g., adjust-
ing the QF dynamically, performing resizing adaptively, or
even introducing completely unknown operations.

A critical problem now is how to build a proper model
for the unseen noise ξ. Obviously, it is unrealistic to model
ξ from the characteristic of the signal itself, as we do in
Sec. 3.1. To resolve this challenge, we shift our position
from the noise aspect to the detector fθ, by studying the
noise effect on the detection performance. Among the var-
ious underlying unseen noise ξ, we actually only need to
pay attention to the ones that degrade the detection perfor-
mance, while neglecting those that have little effect to the
detection. This motivates us to employ a type of adver-
sarial noise [35] when modeling P (ξ|τ ). Essentially, ad-
versarial noises are generally imperceptible to the human
senses while being able to cause severe model output er-
rors. Meanwhile, the unseen noise ξ that we focus on is the
one capable of fooling the detector and is also usually small
(a highly distorted image would deviate from the purpose
of making a forgery). Such a similarity in terms of the ef-
fect to the detector fθ makes the adversarial noise a suitable
candidate for modeling ξ.

From the adversarial point of view, there are various
ways of defining the noise ξ, as long as the adversarial ex-
ample, created by adding the noise ξ to the original nor-
mal example, goes across the decision boundary. Noticing
the fact that the noise ξ is typically of small amplitude, we
propose to set the direction of ξ along the gradient of the
cost function with respect to the input, so as to minimize
the noise energy. Therefore, for a given input xi, the pre-
dictable noise τ i, and the target output yi, the unseen noise
ξi is formulated as

ξi = S(∇xiLb(fθ(xi + τ i),yi)), (11)

where S returns the sign of the gradient. By adding such ad-
versarial noises during the training, it is expected to make

Figure 3. Visualization of 1000 ξ samples by using t-SNE [13].

the learned model robust against not only the specific ad-
versarial noise but also more general unseen noise.

However, the noise calculated by Eq. (11) depends on
the specific input xi, rather than a general one applicable to
all the examples in the training set and unknown examples.
For comprehensively enhancing the generalization ability of
the detector, we propose to adjust the direction of the adver-
sarial noise to a global gradient direction. To this end, we
adopt a strategy similar to the Stochastic Gradient Descend
(SGD) [30], by a stochastic approximation approach from
randomly selected subsets of the training dataset. More
specifically, for the (t + 1)-th input xt+1, the ξt+1 (condi-
tioning on τ ) could be set as the average gradient calculated
from the first t inputs, namely,

ξt+1 =
1

t

t∑
i=0

S(∇xi
Lb(fθ(xi + τ i + ξi),yi)), (12)

where ξ0 is initialized as 0. Although Eq. (12) can be used
to estimate the average gradients, it only reflects the gra-
dients of specific known data (the training data). To alle-
viate the aforementioned problem and further improve the
robustness, we propose to perturb the ξt+1 in a small range.
Here, it would be more ideal to use a parametric model to
characterize the average gradients. To find an appropriate
model for the average gradient, we first take a data-driven
approach, analyzing the statistics of 1000 samples of ξ that
are randomly selected from the training process. In Fig. 3,
we visualize these 1000 random samples in a 2D space
by using the t-SNE [13]. It can be seen that the sample
points are concentrated around a certain center, and grad-
ually vanish when they move away from the center. This
phenomenon suggests us to use a Gaussian distribution for
modeling the average gradient, i.e.,

ξt+1|τ ∼ N (ut+1, σ
2I), (13)

where σ is an empirically set parameter for controlling the
variance,

ut+1 = ε · 1
t

t∑
i=0

S(∇xi
Lb(fθ(xi + τ i + ξi),yi)), (14)

and ε is a parameter used for constraining the magnitude of
the perturbations to avoid unnecessary model degradation.

Upon having the parametric model in Eq. (13), we can
easily generate noise samples for modeling the conditional
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Algorithm 1: The training algorithm
Input: Training datasets D1 and D2; training epochs N1

and N2; learning rates lφ and lθ .
Output: Trained detector fθ∗

1 Randomly initialize φ and θ
2 for epoch = 1 to N1 do
3 for minibatch (xi,yi) ⊂ D2 do
4 gφ = ∇φ[Lr(Jq(xi + gφ(xi)),yi)] . Eq. (9)
5 φ = φ− lφ · gφ . Update gφ
6 end
7 end
8 Temporary output gφ∗ = gφ
9 Initialize u0 = 0

10 for epoch = 1 to N2 do
11 for minibatch (xi,yi) ⊂ D2 do
12 Initialize L0 = 0
13 for j = 1 to m do
14 qj ∼ Uniform(71, 95) . Sample QF
15 τ j = Jqj (xi + gφ∗(xi))− xi . Model τ
16 {ξ1, · · · , ξh} ∼ N (ui−1, σ

2I) . Model ξ
17 Lj = Lj−1 +

∑h
k=1 Lb(fθ(xi + τ j + ξk),yi)

. Eq. (15)
18 end
19 gθ = ∇θLm, gxi = ∇xiLm

20 θ = θ − lθ · gθ . Update fθ
21 ui = ui−1 + ε · S(gxi ) . Eq. (14)
22 end
23 end
24 Final output fθ∗ = fθ

distribution P (ξ|τ ). Thereupon, Eq. (4) can be expanded
as

min
θ

N∑
i=1

m∑
j=1

h∑
k=1

Lb(fθ(xi + τ j + ξk),yi), (15)

where the expectations with respect to τ and ξ are approx-
imated with m and h MC samples, respectively. With this
computable loss function, we are able to perform the robust
training, as summarized in Algorithm 1.

4. Experimental results
In this section, we present the experimental results to

show the superior performance of our proposed method.
Due to the space limit, more results are given in the sup-
plementary file.

4.1. Experimental setup

Baseline detector. The detector aims to detect the forged
regions at the pixel level accuracy. Specifically, the detec-
tor fθ : RH×W×3 → RH×W×1 takes a color image with
the resolution H ×W as input, and eventually outputs the
binary map for the detection result. In our implementation,

we adopt the U-Net [28] architecture in the baseline detec-
tor. To improve the capability of extracting forgery rele-
vant features, we further augment the architecture by incor-
porating the spatial channel “Squeeze-and-Excitation (SE)”
mechanism [29], resulting a variant called SE-U-Net, rather
than simply using the traditional vanilla U-Net.
Training/Validation datasets. For the training of the OSN
network gφ, we adopt the dataset WEI (denoted as D1)
[33], which contains over 1300 original images and their
processed versions upon the transmission over Facebook. It
should be noted that we only use the data from Facebook
for training gφ. While for the training of fθ, we use the
Dresden [15] dataset as the source of pristine images. We
then generate the forged images by splicing the pristine im-
ages with the objects from the MS-COCO [25] dataset. The
dataset of these forged images is denoted as D2. Also, D1

and D2 are randomly divided into training and validation
sets with the ratio of 9 : 1.
Testing datasets. We create testing datasets by adopting
four widely-used ones (DSO [6], Columbia [17], NIST [1]
and CASIA [14]), and producing their OSN-transmitted
versions. More specifically, we manually upload and down-
load the aforementioned datasets over three most popular
OSNs (Facebook, Wechat and Weibo), resulting in OSN-
transmitted datasets with 5232 forgeries and correspond-
ing masks. These collected datasets are made available
at https://github.com/HighwayWu/ImageForensicsOSN.
We hope that these datasets can serve as useful benchmarks
to our research community for fighting against the forgeries
shared over OSNs.
Competitors. We compare our proposed scheme with four
state-of-the-art methods: MT-Net [37], NoiPri [12], For-
Sim [27], and DFCN [42].

4.2. Quantitative comparisons

The quantitative comparisons in terms of the AUC, F1
and IoU (higher are better) in the pixel domain are pre-
sented in Tab. 1. Here we also report the results of the
baseline detector for demonstrating the improvement of our
robust training scheme in a comparative way. As can be ob-
served, when the forgeries are not transmitted through an
OSN, the detection methods ForSim [27], DFCN [42] and
ours achieve comparable results, while MT-Net [37] and
NoiPri [12] perform slightly worse. It should be noted that,
NoiPri cannot be applied to detect the forgeries in CASIA
due to their small resolutions, while our method has no such
limitation and perform even better than the other competi-
tors on CASIA.

In the scenario that the forgeries are passed through
OSNs, the detection performance of all existing methods
has deteriorated significantly. For instance, after the trans-
mission over Facebook, Weibo and Wechat, the IoU scores
associated with MT-Net drop by 10.1%, 11.1%, and 9.4%,
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Models OSNs
Test Datasets

DSO [6] Columbia [17] NIST [1] CASIA [14] Average
AUC F1 IoU AUC F1 IoU AUC F1 IoU AUC F1 IoU AUC F1 IoU

MT-Net [37] - .795 .344 .253 .747 .357 .258 .634 .088 .054 .776 .130 .086 .738 .230 .163
NoiPri [12] - .902 .339 .253 .840 .362 .260 .672 .119 .078 - - - .804 .273 .197
ForSim [27] - .796 .487 .371 .731 .604 .474 .642 .188 .123 .554 .169 .102 .681 .362 .268
DFCN [42] - .724 .303 .227 .789 .541 .395 .778 .250 .204 .654 .192 .119 .736 .322 .236

Baseline - .761 .312 .194 .763 .616 .501 .682 .221 .139 .774 .402 .342 .745 .388 .294
Ours - .854 .436 .308 .862 .707 .608 .783 .332 .255 .873 .509 .465 .843 .496 .409

MT-Net [37] Facebook .638 .109 .071 .626 .103 .056 .652 .095 .057 .763 .102 .065 .670 .102 .062
NoiPri [12] Facebook .777 .150 .097 .722 .223 .143 .583 .057 .034 - - - .694 .143 .091
ForSim [27] Facebook .689 .356 .238 .607 .450 .304 .580 .140 .085 .537 .157 .094 .603 .276 .180
DFCN [42] Facebook .673 .238 .184 .687 .479 .338 .705 .207 .138 .654 .190 .116 .680 .278 .194

Baseline Facebook .714 .180 .105 .689 .594 .497 .646 .200 .136 .728 .350 .298 .694 .331 .259
Ours Facebook .859 .447 .320 .883 .714 .611 .783 .329 .253 .862 .462 .417 .847 .488 .400

MT-Net [37] Weibo .606 .057 .036 .620 .103 .056 .671 .088 .053 .754 .099 .063 .663 .087 .052
NoiPri [12] Weibo .606 .093 .061 .664 .175 .108 .580 .054 .030 - - - .616 .107 .066
ForSim [27] Weibo .568 .260 .165 .610 .453 .312 .581 .150 .094 .542 .165 .100 .575 .257 .168
DFCN [42] Weibo .639 .227 .140 .676 .458 .319 .706 .192 .125 .653 .191 .117 .668 .267 .175

Baseline Weibo .703 .120 .073 .681 .558 .477 .683 .163 .116 .762 .338 .310 .707 .294 .244
Ours Weibo .808 .370 .253 .883 .724 .626 .780 .294 .219 .858 .466 .421 .832 .463 .380

MT-Net [37] Wechat .582 .076 .045 .613 .199 .125 .654 .095 .057 .724 .080 .048 .643 .113 .069
NoiPri [12] Wechat .618 .098 .062 .639 .202 .124 .575 .041 .026 - - - .610 .114 .070
ForSim [27] Wechat .564 .247 .147 .650 .496 .354 .581 .136 .082 .532 .153 .091 .582 .258 .168
DFCN [42] Wechat .653 .221 .137 .676 .487 .344 .701 .176 .114 .651 .193 .119 .670 .269 .179

Baseline Wechat .668 .076 .051 .655 .535 .431 .626 .170 .128 .670 .182 .152 .655 .241 .191
Ours Wechat .823 .366 .252 .883 .727 .631 .764 .286 .214 .833 .405 .358 .826 .446 .364

Table 1. Quantitative comparisons by using AUC, F1 and IoU as criteria. For each column within the same OSN transmission, the highest
value is bold, and “-” indicates not applicable.

Figure 4. Qualitative comparisons for detecting the OSN-transmitted forgeries. For each row, the images from left to right are forgery
(input), ground-truth, detection result (output) generated by MT-Net [37], NoiPri [12], ForSim [27], DFCN [42] and ours. The forgeries
from top to bottom are the cases without OSN transmission, and with Facebook, Weibo and Wechat transmissions, respectively.

respectively, compared to the scenario without OSN trans-
mission. In contrast, thanks to the appropriate noise mod-
eling of τ and ξ, our proposed method exhibits rather de-
sirable robustness against the OSN transmissions and still
leads to accurate forgery detections. Taking Facebook for
example, the IoU reduction is only 0.9%. It can also be
noticed that the degradations of the forgery detection per-
formance are slightly larger for Weibo and Wechat, with
IoU reductions being 2.0% and 4.5%, respectively. This
is mainly because, compared with Facebook, Weibo and
Wechat adopt more stringent compressions for uploaded

images, causing more evidence loss. In addition, for train-
ing our method, we only use the Facebook data, without any
Weibo or Wechat data at all. From Tab. 1, we can see the
scheme trained by using Facebook data can generalize well
to Weibo and Wechat transmitted forgeries.

4.3. Qualitative comparisons

In addition to the quantitative comparisons, Fig. 4 gives
two representative examples (see the supplementary file for
more results). It can be seen that in the normal case (no
OSN transmission), the existing detection methods perform
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Detector fθ
Test Datasets

Trans. w/o OSN Trans. w/ Facebook
AUC F1 IOU AUC F1 IOU

#1 SE-U-Net (baseline) .745 .388 .294 .694 .331 .259
#2 SE-U-Net + τ .755 (+.010) .400 (+.012) .325 (+.031) .733 (+.039) .377 (+.046) .311 (+.052)
#3 SE-U-Net + ξ .794 (+.049) .471 (+.083) .383 (+.089) .753 (+.059) .417 (+.086) .340 (+.081)
#4 SE-U-Net + τ + ξ .843 (+.098) .496 (+.108) .409 (+.115) .847 (+.153) .488 (+.157) .400 (+.141)
#5 DPN .719 .319 .224 .651 .208 .135
#6 DPN + τ + ξ .778 (+.059) .421 (+.102) .350 (+.126) .776 (+.125) .449 (+.241) .385 (+.250)

Table 2. Ablation studies regarding the modeling of τ and ξ. Values in brackets represent the differences with the baseline detector.

relatively well, e.g., the MT-Net and ForSim in the first
case, and the NoiPri and DFCN in the second case. How-
ever, these methods cannot achieve satisfactory detection
performance in the cases of OSN transmitted versions. Take
NoiPri in the second case for example. For Facebook,
Weibo and Wechat transmitted images, the identified forged
regions spread over several objects, making the forgery de-
tection results much less useful. In contrast, our proposed
method can learn more robust forgery features, and thereby
generate more precise detection results over these challeng-
ing cases, primarily thanks to the robust training scheme
with the compound noise modeling.

4.4. Ablation studies

We now conduct the ablation studies of our proposed
training scheme by analyzing how each modelled noise (i.e.,
the predictable noise τ and the unseen noise ξ) contributes
to the final detection performance. To this end, we first pro-
hibit the use of each noise in the scheme, and then evaluate
the performance of different retrained detectors with appro-
priate settings. The obtained results are given in Tab. 2.

As can be seen, introducing the predictable noise τ in the
training of the detector (#2 row) can slightly improve the de-
tection performance (e.g., 1.2% gains in F1), which is more
obvious in the case of Facebook transmission (e.g., 4.6%
gains in F1). However, since it is incomplete to only adopt
τ , as mentioned in Sec. 3.2, we further involve the designed
unseen noise ξ. The results in #3 row imply that ξ can ef-
fectively enhance the robustness of the detector, bringing a
more significant improvement (e.g., 8.6% gains in F1). Fi-
nally, #4 row demonstrates that when the compound noise
τ and ξ are applied simultaneously, the detector can be
much more robust to the target environment, which is cru-
cial for the forgery detection task over OSN transmission
(e.g., 15.7% gains in F1).

Further, instead of only using the SE-U-Net as the detec-
tor, we adopt another well-known architecture, DPN [10],
to show the versatility of our proposed training scheme. As
shown in rows #5 and #6, the robustness of the DPN can
also be well strengthened by our robust training method.

4.5. Some further robustness evaluations

Although the proposed scheme is mainly designed to
counter the lossy operations conducted by OSNs, we would

Figure 5. Robustness evaluations against cropping, resizing, blur-
ring, noising and JPEG compression.

also like to evaluate its robustness under some more com-
monly used degradation scenarios, such as noise addition,
cropping, resizing, blurring, and standalone JPEG compres-
sion. Such evaluation is very critical in real-world cases
because these types of post-processing operations are often
adopted to erase or conceal the forged artifacts. To this end,
we apply these post-processing operations to the original
test set Columbia and report the quantitative comparisons
in Fig. 5. For the convenience of demonstration, we utilize
a unified parameter p for controlling the magnitudes of dif-
ferent operations. The origin of the horizontal axis (p = 0)
corresponds to the case without any post-processing. As can
be observed, the competitors [12,27,37,42] cannot perform
consistently with the increase of the perturbation intensity,
while our method can generalize well to defeat these post-
processing operations.

5. Conclusions
In this paper, we propose a novel training scheme for

improving the robustness of the image forgery detection
against various OSN-based transmissions. The proposed
scheme is designed with the assistance of the modeling
of a predictable noise τ as well as an intentionally intro-
duced unseen noise ξ. Experimental results are provided to
demonstrate the superiority of our scheme compared with
several state-of-the-art methods. Further, we build an OSN-
transmitted forgery dataset for the future research of the
forensic community.
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