
Scene Consistency Representation Learning for Video Scene Segmentation

Haoqian Wu1,2,3,4∗, Keyu Chen2∗, Yanan Luo2, Ruizhi Qiao2, Bo Ren2,
Haozhe Liu1,3,4,5, Weicheng Xie1,3,4†, Linlin Shen1,3,4

1 Computer Vision Institute, Shenzhen University 2 Tencent YouTu Lab
3 Shenzhen Institute of Artificial Intelligence and Robotics for Society

4 Guangdong Key Laboratory of Intelligent Information Processing 5 KAUST
wuhaoqian2019@email.szu.edu.cn {yolochen, ruizhiqiao, timren}@tencent.com
luoyanan93@gmail.com haozhe.liu@kaust.edu.sa {wcxie, llshen}@szu.edu.cn

Scene D

(b) Scene Perspective Clip

Scene A Scene B Scene C Scene E

(a) Shot Perspective Clip 

Ground Truth Scene Boundary

…

Scene Consistency Selection
(c) Scene 

Consistency

Shot
Consistencyt

NN Selection NN Selection

Figure 1. An illustration of representation learning methods from the shot-to-scene perspective. Several continuous shots are shown
in Fig. (a), where existing SSL approaches obtain positive pairs from the adjacent shots (e.g., by performing Nearest Neighbor (NN)
Selection [1]). While we propose to look further for scenes that are often crossed over, as Scene A/C and Scene B/E shown in Fig. (b),
where positive samples are explored in a broader region and the shots are clustered to the same scene in the feature representation space,
i.e., Fig. (c). Best viewed in color.

Abstract

A long-term video, such as a movie or TV show, is com-
posed of various scenes, each of which represents a series
of shots sharing the same semantic story. Spotting the cor-
rect scene boundary from the long-term video is a challeng-
ing task, since a model must understand the storyline of
the video to figure out where a scene starts and ends. To
this end, we propose an effective Self-Supervised Learning
(SSL) framework to learn better shot representations from
unlabeled long-term videos. More specifically, we present
an SSL scheme to achieve scene consistency, while explor-
ing considerable data augmentation and shuffling meth-
ods to boost the model generalizability. Instead of explic-
itly learning the scene boundary features as in the previ-
ous methods, we introduce a vanilla temporal model with
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less inductive bias to verify the quality of the shot features.
Our method achieves the state-of-the-art performance on
the task of Video Scene Segmentation. Additionally, we sug-
gest a more fair and reasonable benchmark to evaluate the
performance of Video Scene Segmentation methods. The
code is made available.1

1. Introduction
In the process of video creation, to make the story more

compelling, the editor will use various editing techniques,
such as montage, one shot to the end, etc. Quickly switch-
ing between stories and scenes makes the movie plot tighter,
e.g. inserting outdoor battle scenes into indoor dialogue
scenes, as shown in Fig. 1 (b), making the scene tran-

1https://github.com/TencentYoutuResearch/Scen
eSegmentation-SCRL
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sition more intriguing and unpredictable, thus the task of
Video Scene Segmentation turns out to be rather challeng-
ing. Hence, it is essential to understand the high-level se-
mantic information of each scene in the long-term video.

There has been extensive studies dealing with video un-
derstanding tasks on datasets where the individual video
clip is typically short, while requiring a lot of labor to
segment uncurated videos into short videos by category.
Although some studies focus on splitting the long video
into smaller segments, e.g., the methods of Action Spot-
ting [2–5] aim to locate the positions of the beginning and
ending of the action, however, they are the category-aware
approaches. By contrast, Video Scene Segmentation is a
category-agnostic task that only the scene boundary label
is available, and it’s very confusing to classify a scene frag-
ment taxonomically.

Since a long-term video is inherently structured in a spe-
cific way, a sequence of frames can be divided into shots
or scenes in terms of the granularity of semantics [6] [7].
More specifically, a shot contains only continuous frames
taken by the camera without interruption, and a scene is
composed of successive shots and describes the same short
story. For detecting shot boundaries, [8] [7] split a video
into many separate shots using lower-level visual context.
Based on this, many mainstream approaches of Video Scene
Segmentation [9] [10] [6] [1] determine scene boundaries by
exploring semantic correlations among the adjacent shots.

While computer vision tasks suffer from the high cost of
manual annotation, Self-Supervised Learning (SSL) based
methods [11–18] are proposed to train a general feature ex-
tractor using unlabeled data. By leveraging a small amount
of annotated data for training, these SSL methods can
achieve appealing feature representation to even rival some
supervised learning methods. For Video Scene Segmenta-
tion, [1] proposes to narrow the feature representation dis-
tance of the most similar shot pair in a local region, it sig-
nificantly surpasses the supervised learning method [6] by
employing a mere MLP classifier. However, in current SSL
methods on the task of Video Scene Segmentation, the strat-
egy of positive sample selection, pretraining protocol, eval-
uation metric and downstream model are not well discussed
or addressed.

To achieve this goal, we propose a self-supervised learn-
ing scheme to learn better representations, as well as the
evaluation metric for the task of Video Scene Segmentation.
The contributions of this paper are summarized as follows:

• A representation learning scheme based on Scene Con-
sistency is proposed to obtain better shot representa-
tions on the unlabeled long-term video.

• A simple yet effective temporal model with less induc-
tive bias is proposed to assess the quality of the shot
representation for the downstream Video Scene Seg-

mentation task.

• A benchmark that is more fair and reasonable is intro-
duced for both pretraining and evaluation. More im-
portantly, the proposed method outperforms the state-
of-the-art methods under all the protocols, and can sig-
nificantly improve the performance of existing super-
vised methods without bells and whistles.

2. Related Work
Self-Supervised Learning in Images and Videos. To

address the problems of the insufficient and expensive
manual annotation, many approaches explore the inherent
knowledge in unlabeled data by designing a lot of pretext
tasks, including predicting the transformations of images,
e.g., image rotation [20], inpainting [21], colorizing [22],
jigsaw [23], etc. In short, these Self-Supervised Learning
(SSL) methods use the information explored from the data
themselves for the supervision. Recently, [11–18] introduce
the contrastive similarity metrics to learn invariant feature
representation of various views augmented from the orig-
inal image, where strong data augmentations [13] are fre-
quently used in image-level SSL methods to improve the
robustness of the learned representations. From another as-
pect, by finetuning the model with a small amount of la-
beled data, SSL methods can achieve competitive perfor-
mance compared with supervised learning methods, further-
more, the pretrained model can be used in specific down-
stream tasks. For video-oriented SSL methods, [24–30]
show the appealing performance and potential on the task of
video classification, while their positive pairs are selected
from the adjacent clips within a same video. Meanwhile,
most of studies are based on short videos and the quality of
learned features is assessed based on video classification.
Hence, it is meaningful to explore a suitable SSL scheme
for tasks with long-term videos.

Video Shot Boundary Detection and Scene Segmen-
tation. For Video Scene Segmentation, shot boundary de-
tection is often conducted in advance, which is specified as
a task of locating the transition positions in videos based
on the similarity of the frames. 3D convolutional networks
and color histogram differencing [8] are used to identify the
transition boundaries. Based on the shot boundaries, [6]
learns the local and global shot representations and utilizes
them to split the continuous shots into scenes according
to the transition of the story. More specifically, identifica-
tion of each shot’s segmentation point is treated as a binary
classification, which is free to the location of the shot. [1]
leverages unlabeled video data to obtain shot representa-
tions, which outperforms many supervised learning meth-
ods on the downstream task of Video Scene Segmentation.
However, this method is pretrained on the entire video data
of MovieNet [31] that include the testing videos, i.e. the
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Figure 2. The pipeline of the proposed method. (a) Unsupervised Representation Learning Stage for learning shot representations, where
Map(i) is the mapping function for selecting positive samples. (b) Supervised Video Scene Segmentation Stage, where the quality of the
shot representations is evaluated under the protocols of the non-temporal (MLP) and temporal (Bi-LSTM [19]) models.

training protocol is inconsistent with that of conventional
Self-Supervised Learning methods [24] [25]. For evaluat-
ing Video Scene Segmentation approaches, the datasets of
OVSD [32], BBC planet earth [10], MovieNet [31] and Ad-
Cuepoints [1] are frequently employed.

In this work, we propose an unsupervised representation
learning method based on scene consistency and a reason-
able evaluation scheme for Video Scene Segmentation task.

3. Methodology
As shown in Fig. 2, we aim to obtain scene consistency

representations on unlabeled long-term videos and design a
more reasonable benchmark to verify the quality of the ex-
tracted features on the task of Video Scene Segmentation. To
this end, we (i) propose a Self-Supervised Learning scheme
based on a novel non-temporal selection strategy to achieve
scene consistency from various shots, and (ii) introduce a
vanilla temporal model with less inductive bias as well as
the corresponding benchmark for this segmentation task.

3.1. Consistency based Representation Learning

Approaches of Self-Supervised Learning (SSL) aim to
model representation consistency to enhance network ro-
bustness against various variations, e.g. spatial or temporal
transformations. In this work, we use an SSL framework of
Siamese network to achieve the representation consistency.

More precisely, for a given query shot, the objective is
to (i) maximize the similarity between the representations
of query shot and positive samples, i.e., key shots; (ii) mini-
mize the similarity of the negative sample pairs if they exist.
As shown in Fig. 2 (a), the input samples X are first aug-
mented, i.e., Q = AugQ(X),K = AugK(X), and the i-th
positive pair {q, k+} is formulated as follows:

{q, k+} = {f (Q[i] | θQ) , f (K[MAP (i)] | θK)
+} (1)

where [·] stands for the indexing operation, f (· | θQ) and
f (· | θK) are the encoders with parameters θQ and θK , re-
spectively, MAP (i) is the mapping function for selecting
positive samples.

For the selection of positive samples in SSL methods
based on video data, three selection strategies are fre-
quently employed, i.e., Self-Augmented [14], Random [27]
and Nearest Neighbor (NN) [1] selections. For clarity, the
three conventional selection strategies for positive samples
are represented in Fig. 3 (a)-(c).

(a) Self-Augmented (b) Random （c）NN

(d) Scene Consistency (SC)

Query

NN

SC (Center) 

Soft-SC A Cluster

Figure 3. The illustration of four different selection strategies for
positive pairs. Best viewed in color.

3.1.1 Conventional Positive Sample Selections

Self-Augmented Selection. As image-level SSL ap-
proaches, the augmented view of one shot is frequently used
as its positive sample, as shown in Fig. 3 (a), the mapping
function, i.e. the identity mapping, is employed as follows:

MAPSA(i) = i (2)

Random Selection. As some SSL methods [27] [24]
for video classification, we select two adjacent shots of the
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same video as the positive pair, as shown in Fig. 3 (b), and
the mapping function can be formulated as follows:

MAPRS(i) = max(i+ j, 0) (3)

where j ∈ {−n,−n + 1, ... , n − 1, n} and n denotes the
size of the search region around the i-th shot.

Nearest Neighborhood (NN) Selection. As shown in
Fig. 3 (c), [1] proposed to select the positive shot with the
closest representation distance to the query shot within a
fixed range, and the mapping function is as follows:

MAPNN (i) = arg max
j∈IM

f (Q[i] | θQ) · f (Q[max(j, 0)] | θQ)
(4)

where IM = {i−m, ... , i−1, i+1, ... , i+m}, IM stands
for the indices of candidate samples for NN selection, m is
the search region size of a given shot, and 2m + 1 is the
length of the sliding window.

3.1.2 Scene Consistency Selection

In this work, we propose the Scene Consistency Selection,
while exploring considerable data augmentation and shuf-
fling methods for the task of Video Scene Segmentation.

Positive Sample Selection with Scene Consistency. As
shown in Fig. 1, for the video with non-linear narrative, pre-
vious selection methods may not work in the case that the
most matching shots are far away. Therefore, we propose to
select positive shot pair based on scene consistency, while
the main advantage over Random/NN Selection is that our
method is non-temporal, which is free to the shots order.

We argue that scene consistency is critical for the train-
ing on the unlabeled long-term videos due to the three rea-
sons: (i) the similar shots in the same scene may be far
away; (ii) the greater feature spacing between scenes is ben-
eficial to the downstream task of Video Scene Segmentation,
and it can be achieved by maximizing inter-scene distance
and minimizing intra-scene distance; (iii) while the NN se-
lection may result in a trivial objective, due to the maxi-
mization of the similarity of the sample pairs that maybe
already the closest, the scene consistency enables the selec-
tion to achieve a more non-trivial objective.

For the proposed scene consistency-based selection, we
perform online clustering of samples in a batch, and use the
cluster center sample as the positive sample with respect
to the query shot, as shown in Fig. 3 (d). The specified
mapping function is formulated as follows:

MAPSC(i) = arg min
j∈IC

∥f(Q[i] | θQ)− f(Q[j] | θQ)∥2
(5)

where IC = {ic1, ic2, ... , ic#class} stands for the indices
of cluster centers, #class is the number of cluster centers.

While center sample reflects the cluster-specified com-
mon information, we additionally use the query-specific in-
dividual information to generate the positive sample. Un-
like the conventional multiple-instance learning [29], which

treats center and query samples as multiple positive sam-
ples, we propose to construct the soft positive sample,
namely Soft-Scene Consistency (SC) sample as follows:

kSoft−SC = γkSA + (1− γ)kSC (6)

where γ is a trade-off parameter, kSA and kSC are the
key (positive) samples selected by Self-Augmented Selec-
tion and Scene Consistency Selection.

Scene Consistency Data Augmentation. Since the
early stage of training is not stable, too much color aug-
mentations, e.g. grayscale transformations, color jitter, etc.,
misguide the selection of positive samples, namely as Se-
lection Shift. In this case, the model focuses more on non-
semantic information. To solve this problem, some stud-
ies [33] directly omit color augmentations for better per-
formance. By contrast, we propose Asymmetric Augmen-
tation to alleviate the influence of Selection Shift and use
color augmentation to further improve the performance.
More specifically, augmentations without the color trans-
formation are used in AugQ to get more accurate and scene
consistent positive samples, while the color data augmenta-
tion operations are performed in AugK .

Scene Agnostic Clip-Shuffling. For fully leveraging the
limited video data, we propose to construct more pseudo
scene cues. In this work, the data augmentation is based on
the basic unit of clip, i.e. ρ continuous shots, the generated
clips are then randomly spliced disorderly for the training.

The process of Scene Agnostic Clip Generation and
Shuffling is shown in Fig. 4.

Video A Video B Video C

Batch i - 1 Batch i Batch i + 1

t

Figure 4. The illustration of Scene Agnostic Clip-Shuffling.
Clips are spliced disorderly for training and each clip contains ρ
continuous shots.

3.1.3 Negative Sample Selections

The way to choose negative samples varies according to the
specific SSL frameworks. For SimCLR [12], the set of all
non-positive samples within a batch is used as the negative
samples, and MoCo [14] leverages a negative sample queue,
which is a memory bank of previous samples output from
the key encoder. However, BYOL [17] and SimSiam [16]
do not use negative samples and instead resort to exploring
more non-trivial solutions of SSL.
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3.1.4 Objective Function

With Negative Samples. By defining sim(·, ·) as the co-
sine similarity, the contrastive loss function, i.e., InfoNCE
[11] is employed and formulated as follows:

Lcon = − log

∑
k∈{k+} e

(sim(q,k)/τ)∑
k∈{k+,k−} e

(sim(q,k)/τ)
(7)

where k+ and k− stand for the positive and negative sam-
ples for the query q, and the τ is the temperature term [34].

Without Negative Samples. By maximizing the sim-
ilarity between the query and positive samples, the con-
trastive loss without negative samples is formulated as fol-
lows:

Lcon = −2
∑

k∈{k+}

(sim(Pθ(q), kSG) + sim(Pθ(k), qSG))

(8)
where Pθ is the predictor P with parameters θ [16,17], kSG

and qSG are the samples with stop-gradient (SG) [16, 17].

3.2. Video Scene Segmentation

After the unsupervised pretraining, two downstream
models are used to evaluate the quality of the extracted fea-
tures with the frozen query encoder.

Problem Definition. For the Video Scene Segmentation,
[6] [1] convert the task into a binary classification task of
shot semantics by modeling the temporal relationship of ad-
jacent shot features. In this way, we can determine whether
the end of a shot is the end of a scene story.

… …
M

LP / Bi-LSTM

（a）Boundary based model （b） Boundary free model

Shot
Features

Inductive
Bias with

Sliding Window 

0/1

0/1

… Bi-LSTM

Shot
Features

0/1

0/1

Figure 5. The illustration of boundary based model (a) and bound-
ary free model (b) for Video Scene Segmentation.

Boundary free model. While the previous downstream
task of Video Scene Segmentation is concluded to a shot
boundary modeling based approach, as shown in Fig. 5
(a), we introduce a vanilla boundary-free model. As shown
in Fig. 5 (b), the proposed model covers the long-term

dependence of shot representations based on sequence-to-
sequence learning. Compared with boundary based model
in Fig. 5 (a) that introduces inductive bias for the shot
boundary modeling with the sliding windows, the suggested
model (b) takes the shot features as the basic temporal input
unit, enabling the model to explore both local and global
semantic relations.

4. Experiments

4.1. Experimental Setup

Dataset. MovieNet [31] consists of 1,100 movies with
a large amount of multi-modal data and annotations, and
the total duration of all movies is about 3000 hours, it is
the largest dataset for movie understanding analysis by far.
Besides, MovieNet [31] is split into a training set with 660
movies, a validation set with 220 movies and a testing set
with 220 movies. Currently, for the task of Video Scene
Segmentation, 190, 64 and 64 videos are labeled with scene
boundaries for the training, validation and test sets, respec-
tively. More importantly, movies in the MovieScene [6] are
all included in MovieNet [31].

It is worth noting that there are two versions of annota-
tion about Video Scene Segmentation task associated with
MovieNet, one with only 150 annotations (called Movi-
eScenes in [1, 6], used in earlier methods [6] but it is no
longer available), and one with a total of 318 annotations
(abbreviated as MovieScenes-318 in this work). Since the
small scale of of BBC [10] and OVSD [32] datasets and
unavailability of AdCuepoints [1] dataset, we instead adopt
MovieNet [31] dataset to evaluate the related approaches,
more details are in the Supplementary Materials.

Representation Learning Stage. For visual modality,
each shot consists of 3 keyframes and ResNet50 [38] is cho-
sen as the default backbone to learn the shot representations.
The audio backbone used in [6] is applied for audio modal-
ity, more details about the backbone encoders can be found
in Supplementary Materials.

For pretraining data, (i) training set (660 movies) in
MovieNet [31] is used to learn the shot representations,
while we also conduct experiments with (ii) all data (1,100
movies) [1] for a fair comparison. In particular, although
test data without the scene boundary labels are used for rep-
resentation learning in setting (ii), it is not recommended
to use all the data for pretraining because we usually have
no prior access to test data in real scenarios. Moreover, for
the most of Self-Supervised benchmarks [11–18], represen-
tation learning is performed only on the training set, rather
than all of the data.

Video Scene Segmentation Stage. For existing Self-
Supervised methods on images and videos, a simple down-
stream model is frequently used to evaluate the representa-
tion quality of the frozen encoders. For instance, a linear
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Table 1. Results of supervised methods w/o SSL for
the task of Video Scene Segmentation on MovieNet.

Methods Dataset AP F1
SCSA [9] M.S. 14.7 -
Story Graph [35] M.S. 25.1 -
Siamese [10] M.S. 28.1 -
ImageNet [36] M.S. 41.26 -
Places [37] M.S. 43.23 -
LGSS [6] M.S. 47.1 -
LGSS w/o DP [6] M.S. 44.9 -

LGSS w/o DP [6] * M.S-318 44.9 38.52
* Our implementations based on official public codebase,2

while DP (Dynamic Programming) isn’t public available.

Table 2. Results of methods w/ SSL for the task of Video Scene Segmenta-
tion on MovieNet.

Methods Pretrain Data Eval. Protocol AP F1
ShotCoL [1] Train.+Test.+Val. M.S MLP [1] 52.83 -
ShotCoL [1] Train.+Test.+Val. M.S-318 MLP [1] 53.37 -
ShotCoL [1] * Train.+Test.+Val. M.S-318 MLP [1] 52.89 49.17
SCRL (ours) Train.+Test.+Val. M.S-318 MLP [1] 54.82 51.43

ShotCoL [1] * Train. only M.S-318 MLP [1] 46.77 45.78
SCRL (ours) Train. only M.S-318 MLP [1] 53.74 50.40

ShotCoL [1] * Train. only M.S-318 Bi-LSTM 48.21 46.52
SCRL (ours) Train. only M.S-318 Bi-LSTM 54.55 51.39
* Our implementations.

fully-connected layer is widely used for evaluation. How-
ever, for the Video Scene Segmentation task, we cannot de-
termine whether the ending position of a single shot is the
scene boundary or not. Consequently, a boundary-based
non-temporal model (MLP-based protocol, followed by [1])
and a boundary-free temporal model (Bi-LSTM [19]-based
protocol, proposed by us) are employed to evaluate the ca-
pability of the encoder for local-to-global modeling.

Metrics. We use the mean of Average Precision (AP)
[6] [1] specified to ground truth scene boundaries of each
movie, as well as F1-score for the evaluation.

Implementation Details. During the learning stage of
Self-Supervised representation, the batch size is set to 1,024
(shots), initial learning rate is set to 0.03 and the training
epoch is 100. The parameters of the visual and audio en-
coders are randomly initialized. Besides, we perform naive
K-Means algorithm [39, 40] for online clustering and the
cluster number #class is set to 24, while the clip length,
i.e. ρ of Scene Agnostic Clip Shuffling is set to 16. Mo-
Cov2 [14] with the queue size of 65,536, momentum value
of 0.999, temperature of 0.07 and cosine learning rate decay,
are used as our SSL framework setting. For the Video Scene
Segmentation task, num-of -shot [1] is set to 4 and 40 for
the MLP [1] and Bi-LSTM protocols, respectively. Each
pretraining trial is conducted on the server with 8 NVIDIA
V100 GPUs for approximate 24 hours in visual modality
and 10 hours in audio modality. The dimensions of visual
and audio features used for both pretraining and evalua-
tion are 2,048 and 512, respectively. More details, e.g., the
choice of hyperparameter, are presented in Supplementary
Materials.

4.2. Comparison with Existing Methods

Tables 1 and 2 present an overall performance of meth-
ods w/ or w/o SSL for the Video Scene Segmentation task,
where M.S. stands for MovieScenes dataset with 150 anno-
tated movies, and Eval. means the dataset used for super-

2https://github.com/AnyiRao/SceneSeg

vised evaluation stage after the pretraining. Besides, Train.,
Test., and Val. represent training, testing and validation sets
of MovieNet [31].

We have reproduced the performance of ShotCoL [1] on
the entire dataset (1,100 movies) for comparison, although
it is suggested to conduct the pretraining stage only on the
training set. Compared with ShotCoL [1] that has a decline
of 6.12 in terms of AP, our method can achieve competitive
performance with less training data, with only a decline of
1.08 in terms of AP. The proposed method outperforms the
supervised state-of-the-art method, i.e., LGSS [6] by mar-
gins of 9.65 in terms of AP and 12.87 in terms of F1.

4.3. Ablation Study

We perform all the ablation experiments using only the
training data of MovieNet in SSL stage, and evaluate the
performance on downstream task based on MLP protocol
for fairness.

Positive Sample Selection. We first conduct ablation
experiments on the four different selection methods of pos-
itive pairs, i.e., Self-Augmented Selection, Random Selec-
tion, Nearest Neighborhood (NN) Selection and Scene Con-
sistency (SC) Selection. Tab. 3 shows that Scene Consis-
tency Selection method achieves better performance than
the other selection methods, which outperforms the state-
of-the-art algorithm [1] by a margin of 2.95 in terms of
AP. Meanwhile, the loss evolution curves of above meth-
ods are shown in Fig. 6. We can find that Self-Augmented
Selection reaches the lowest loss value, while obtaining the
worst performance on the task of Video Scene Segmenta-
tion. Due to the trivial objective introduced by NN Selec-
tion that is discussed in Section 3.1.2, it achieves the fastest
convergence rate during the early training, while stagnating
to a mediocre performance. By contrast, SC Selection has a
relatively moderate convergence rate, and achieves the best
performance among all the selection strategies.
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Table 3. Ablation results of Positive Sample
Selection.

Methods Selection Strategy AP
MoCo [14] Self-Augmented 42.51
- Random (n = 1) 43.24
ShotCol [1] NN (m = 8) 46.77

SC Scene Consistency 49.71

Table 4. Ablation results of SSL methods
w/ and w/o Scene Agnostic Clip-Shuffling.

Methods w/o w/ AP
NN ✓ × 46.77
NN × ✓ 48.63

SC ✓ × 49.71
SC × ✓ 52.17

Table 5. Ablation results of Multiple Pos-
itive Samples (MPS).

Methods Positive Sample(s) AP
SC Center 52.17
MPS-SC Self and Center 51.20
Soft-SC Eq. 6 (γ = 0.5) 53.74

Figure 6. Loss evolution curves and AP results of the training
with different selection strategies.

Scene Agnostic Clip-Shuffling. The results of ablation
study specific to the Scene Agnostic Clip-Shuffling are pre-
sented in Tab. 4. Tab. 4 shows that the proposed Clip-
Shuffling achieves improvements of 1.85 and 2.46 in terms
of AP for NN and SC methods, respectively. These results
verify the advantage of the proposed positive sample selec-
tion discussed in Section 3.1.2 that SC is free to the shot
order in a video.

Multiple Positive Samples (MPS). Moreover, we study
the performance of multiple positive samples in Tab. 5. As
shown in Tab. 5, Soft-SC achieves the best performance of
53.74 in terms of AP. Although single positive sample is
employed in SC, it still achieves better performance than
MPS-SC that employ multiple positive samples.

4.4. Analysis of the Proposed Method

Generalizability to the large-scale supervised ap-
proach. To study the generalizability of the proposed
method, we equip our trained models with LGSS [6], where
LGSS is a large-scale supervised method and utilizes var-
ious pretrained models with multi-modality. As is Shown
in Tab. 6, our trained model, trained only on the unlabeled
training set, and based on the same backbone, i.e. ResNet-
50 [38], achieves an improvement of 4.0 in terms of AP over
the approach without our trained model.

Table 6. Generalizability to the large-scale supervised approach.

Methods Modalities AP

LGSS [6] w/o SSL
Visual(Place, ResNet50)
+Action+Actor+Audio 44.9

LGSS [6] w/ SSL
Visual(SSL, ResNet50)
+Action+Actor+Audio 48.9

Performance on different Self-Supervised Learning
(SSL) frameworks. Four popular SSL frameworks are
used for evaluating our method, i.e., SimCLR [12], MoCo
[14], BYOL [17] and SimSiam [16]. Tab. 7 shows that
the SSL framework with momentum updates and negative
samples achieves the best performance for the Video Scene
Segmentation task. Due to the momentum update mecha-
nism, the proposed method embedded in the framework of
BYOL [17] achieves an improvement of 10.53 over that in
SimSiam [16], and a similar conclusion is reached in [27].

Table 7. Results of the proposed method based on various Self-
Supervised Frameworks.

Methods
SSL Fra-
meworks

w/ negative
samples

w/ momen-
tum update AP

SCRL SimSiam [16] × × 39.82
SCRL SimCLR [12] ✓ × 45.32
SCRL BYOL [17] × ✓ 50.35

ShotCoL [1] MoCo [14] ✓ ✓ 46.77
SCRL MoCo [14] ✓ ✓ 53.74

Boundary free model for evaluation. To study the per-
formance of the introduced boundary free model, the pro-
posed method under MLP and Bi-LSTM protocols for the
scene segmentation task is evaluated in Tab. 8. Since Bi-
LSTM protocol has less inductive bias than sliding window
based MLP protocol, it is able to model representations of
longer shot, hence achieves better performance on the task
of Video Scene Segmentation. More specifically, the per-
formance of Bi-LSTM protocol increases as the length of
the shots increases, while the performance of MLP protocol
decreases instead. More details can be found in Supplemen-
tary Materials.
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Figure 7. The visualization results of shot retrieval. Overall, NN tends to select adjacent shots, Self shows less relevance to the query
and ImageNet retrieves many kinds of boats. Compared with the other methods, the results of SC are more consistent in the semantic
information, i.e., there is a man staying in the boat, and SC achieves a larger span (i.e., from 641 to 850) than NN according to shot IDs.
Meanwhile, SC shows better robustness against the interference of pink smoke in the 994-th shot as the results are more pure.

Table 8. Results of Video Scene Segmentation using the proposed
method under MLP and Bi-LSTM protocols.

Protocols Shot-Len AP F1 #Param

MLP [1] 4 53.74 50.40 37.75 M
MLP [1] 10 49.61 ↓ 44.04 ↓ 88.09 M ↑
Bi-LSTM 10 43.94 42.12 15.22 M
Bi-LSTM 40 54.55 ↑ 51.39 ↑ 15.22 M

Visualization of Shot Retrieval. To get more intuition
for the proposed selection, we conduct retrieval experiments
using four selection methods, i.e., SC, NN, Self-Augmented
and ImageNet selections, and present the results in Fig. 7.
More specifically, for a given shot, we calculate the similar-
ities between it and the other shots in the entire movie, then
visualize the TOP-5 most similar shots in Fig. 7.

4.5. Limitations

Multi-modal Pretraining. In order to test the perfor-
mance of the proposed algorithm generalizing to multi-
modal data, we also conduct experiments with audio and
visual modalities in the SSL stage, the joint multi-modal
learning scheme follows [41]. However, we did not achieve
any improvement and were confronted with the same con-
cern that is mentioned in [1], as shown in Table. 9. Possible
reasons are that (i) the publicly available audio data of each
shot are incomplete, (ii) the raw audio data are not available
yet due to copyright restrictions [31] and (iii) LGSS [6] uti-
lizes various pretrained models on the other datasets, while
the methods in the comparison are trained from scratch.
Therefore, it is meaningful to shed light on how to pretrain

better multi-modal representations on the MovieNet [31].

Table 9. AP results of the multi-modal experiment on MovieNet.
Backbones of following methods for each modality are the same.

Methods Visual Audio Visual+Audio

LGSS [6] 39.0 17.5 43.4

ShotCoL [1] 46.77 27.92 44.32
SCRL 53.74 29.39 50.80

5. Conclusion
We present a Self-Supervised Learning (SSL) scheme

based on Scene Consistency to obtain better shot rep-
resentations for the unlabeled long-term videos. The
proposed method achieves the state-of-the-art performance
on the task of Video Scene Segmentation under various
protocols, and significant better generalization performance
when it is equipped with large-scale supervised approach.
Besides, we introduce a fair pretraining protocol and a
more comprehensive evaluation metric for the task of Video
Scene Segmentation, to make the assessment of the SSL
more meaningful in practice.
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Moravec, and Přemysl Čech. A framework for effective
known-item search in video. In Proceedings of the 27th ACM
International Conference on Multimedia, pages 1777–1785,
2019. 2

[9] Vasileios T Chasanis, Aristidis C Likas, and Nikolaos P
Galatsanos. Scene detection in videos using shot clustering
and sequence alignment. IEEE transactions on multimedia,
11(1):89–100, 2008. 2, 6

[10] Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara.
A deep siamese network for scene detection in broadcast
videos. In Proceedings of the 23rd ACM international con-
ference on Multimedia, pages 1199–1202, 2015. 2, 3, 5, 6

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 2, 5

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2, 4, 5, 7

[13] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised mod-
els are strong semi-supervised learners. Advances in Neural
Information Processing Systems, 33:22243–22255, 2020. 2,
5

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 2, 3, 4, 5, 6, 7

[15] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9640–9649, 2021. 2, 5

[16] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 2, 4, 5, 7

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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