This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Cross-modal Background Suppression for Audio-Visual Event Localization

Yan Xia
Zhejiang University

xiayan.zjulgmail.com

Abstract

Audiovisual Event (AVE) localization requires the model
to jointly localize an event by observing audio and visual
information. However, in unconstrained videos, both in-
formation types may be inconsistent or suffer from severe
background noise. Hence this paper proposes a novel cross-
modal background suppression network for AVE task, op-
erating at the time- and event-level, aiming to improve lo-
calization performance through suppressing asynchronous
audiovisual background frames from the examined events
and reducing redundant noise. Specifically, the time-level
background suppression scheme forces the audio and visual
modality to focus on the related information in the temporal
dimension that the opposite modality considers essential,
and reduces attention to the segments that the other modal
considers as background. The event-level background sup-
pression scheme uses the class activation sequences pre-
dicted by audio and visual modalities to control the fi-
nal event category prediction, which can effectively sup-
press noise events occurring accidentally in a single modal-
ity. Furthermore, we introduce a cross-modal gated atten-
tion scheme to extract relevant visual regions from complex
scenes exploiting both global visual and audio signals. Ex-
tensive experiments show our method outperforms the state-
of-the-art methods by a large margin in both supervised and
weakly supervised AVE settings. '

1. Introduction

Event location and action recognition [3, 10, 30] have
become increasingly important in understanding and ana-
lyzing video content, with most methods relying on optical
flow and RGB features processing. However, audio can also
provide valuable clues for understanding holistic video con-
tent [11,22,37]. To comprehensively realize how to com-
bine audio and visual modalities and understand the video
contents, Tian et al. [32] introduce the audio-visual event
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Figure 1. An illustration example of AVE task. An audio-visual
event will be identified when it is both audible and visible. In this
example, only when we see the car and hear the engine sound at
the same time (the 2nd and 3rd segments) can we determine an
audio-visual event "running car” happened.

(AVE) localization task, where the model determines the
presence of an event and localizes its boundary in the tem-
poral dimension when the event is both audible and visible
at the same time. Figure 1 demonstrates that this way of
judging an audio-visual event is necessary, as only simul-
taneously observing the car and hearing the engine sound
indicates that the car is running. Compared with the tradi-
tional video event localization, the challenges of the AVE
task mainly exist in the following aspects [, 21, 38]: 1).
Merging the complementary audio and visual features while
preserving the simultaneously modal-specific information
is not trivial. ii). Sudden noise and complex background
existing in the unconstrained videos will hinder the predic-
tions of the event categories. iii). AVE requires the event
to be audible and visible, while unsynchronized audio and
visual information mislead the event boundary prediction.

Early models mainly focused on solving the first chal-
lenge by simply fusing the information of the two modali-
ties after processing each modality independently [14,32] or
aligning audio and visual information and then fusing them
by cross attention [4, 34, 36]. However, problems such as
event category detection errors caused by the sudden noise
existing in single mode or inaccurate temporal event local-
ization caused by unsynchronized audio and visual infor-
mation are still an open research case.

Unlike previous methods, we consider the problem of
audio-visual event localization from the viewpoint of cross-
modal background suppression, which can effectively al-
leviate challenges (ii) and (iii). Background suppression
methods have been successfully used in the previous weakly
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supervised temporal action localization [13,23,25], by de-
signing a background-aware attention module to distinguish
the foreground from background in the visual modality.
However, the above methods can only determine whether
a video segment belongs to background or not in single
modality (i.e, audio or vision). While in AVE task, a video
segment may be regarded as foreground by these methods
in one mode, but in fact it may be background because rel-
evant information is missing in the other modality [14,34].
Additionally, several ambiguous and sustained audio or vi-
sual noises exist in unconstrained videos [35, 36], which
can not be distinguished well by the traditional background
suppression methods employing a single modality [13,20].
Thus, it is necessary to develop a new cross-modal back-
ground suppression model to alleviate the existing problems
in multi-modal tasks.

In this paper, we first define the “background” category
from two aspects: 1) If the audio and visual information in
the small video segment do not represent the same event,
then the video segment will be labeled as background. 2)
If an event only occurs in one modality but has a low prob-
ability in another, then this event category will be labeled
as background in this video, i.e., offscreen voice. Hence,
this paper proposes a novel cross-modal background sup-
pression method considering two aspects: time-level and
event-level, which allow the audio and visual modalities to
serve as the supervisory signals complementing each other
to solve the aforementioned AVE task problems. The time-
level background suppression can convert the audio and
visual features to temporal dimension gates and make the
model reduce its attention to the ambiguous video segments
that only one modal information is meaningful. As for chal-
lenge ii), we design an event-level background suppression
method, which considers that a low probability event in
just one modality should not appear in the another modal-
ity. In this way, even if noise appears in the audio or vi-
sion but is absent in another mode, the final recognition re-
sult can effectively suppress these noises. Furthermore, to
avoid the interference of some unimportant background ob-
jects in the video, we propose a novel cross-modal gated
attention (CMGA) module, which can use audio and vi-
sual global information to do cross-modal gating to jointly
control the feature extraction of useful visual regions. We
integrate these modules and propose a Cross-Modal Back-
ground Suppression model, which outperforms the current
state-of-the-arts methods by a large margin in both super-
vised and weakly supervised AVE settings.

2. Related Work
2.1. Audio-Visual Representation Learning

In recent years, many works have been explored to learn
audio-visual representation learning, which can be divided

into two main classes according to the supervision method.
Some methods focused on learning the fusion of audio
and visual information with the supervised signals, like
[7,11,16,18,19,24]. Kazakos et al. [11] proved that us-
ing a late-fusion of audio and visual modalities will achieve
better performance than fusion before temporal aggrega-
tion. Nawaz et al. [24] used a single stream network to
jointly embedding the audio and visual features to a shared
latent space without pairwise or triplet information. Long et
al. [16] designed four different multi-modal fusion methods
to find which is better for discerning interactions between
modalities, such as future fusion, LSTM fusion, attention
fusion and probability fusion.

Many other works focused on how to investigate the
cross modal representation with unsupervised or contrastive
learning methods [17, 21, 21]. Early works like [2] and
[26] learned such a representation used a neural network
to predict whether video frames and audio are temporally
aligned. Hu et al. [8] proposed a Deep Multi-modal Clus-
tering (DMC) network to perform elaborate correspondence
learning among audio and visual components. Alwassel et
al. [1] proposed a Cross-Modal Deep Clustering (XDC) to
leverage unsupervised clustering in one modality (e.g., au-
dio) as a supervisory signal for the other modality (e.g.,
video), which can utilize the semantic correlation and the
differences between the two modalities. The same idea like
Zhang et al. [37] used the knowledge shared between audio
and visual modality serves as a supervisory signal.

2.2. Audio-Visual Event Localization

Tian et al. [32] first brought up an audio-visual event
localization dataset and treated the AVE problem as a se-
quence labeling problem. They proposed a dual multi-
model residual network to fuse information over the two
modalities. AVSDN [14] utilized both audio and visual data
at each time segment as inputs and exploited global and lo-
cal event information in a seq2seq manner. These meth-
ods directly contacted the two features at the segment level,
which can cause the content of the two modalities to be
misaligned temporally, thus Wu et al. [34] proposed a dual
attention matching module which first captured the global
event-level information for each modality and then checked
segment-level local temporal information by a global cross-
check mechanism. Duan et al. [4] first applied the co-
attention mechanism in AVE task. Xuan et al [36] de-
signed a cross model attention network to extract “where”,
“when” and in “which” sensor the most related event infor-
mation between audio and video. Lin et al. [15] proposed
an audiovisual transformer network which can jointly en-
code intra-frame and inter-frame visual features by observ-
ing audio features. Xu et al. [35] proposed an audio-guided
spatial-channel attention which can guide the model to fo-
cus on event-relevant visual regions. To ignore the interfer-
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Figure 2. The proposed cross-modal background suppression network. (a) The main pipeline of our model. (b) We utilize a time-level
background suppression to suppress the unimportant information in the other modality according to the importance of each modality
content. (d) We leverage audio and visual information and apply an event-level background suppression scheme to suppress the events

occurring with low probability in a single modality.

ence caused by irrelevant audio-visual segment pairs, Zhou
et al. [38] proposed a positive sample propagation (PSP)
module which is able to select positive connections of two
modalities and ignore the negative connections. Tian et
al. [31] developed a hybrid attention network to better ex-
tract temporal contexts simultaneously from unimodal and
cross-modal, then use an attentive MMIL pooling method
to adaptively explore useful audio and visual content from
two modalities.

The above methods focused on how to better integrate
the audio and visual information together, while ignoring
the potential supervisory information of the audio and vi-
sual modality for each other. Different from these mod-
els, in this paper, we propose cross-modal time-level back-
ground suppression to force audio and visual modalities to
pay more attention to the segments that both modalities con-
sider important. Also we bring up a cross-modal event-level
background suppression which can force the model to ig-
nore the occurrence of noise in single modal and predict
event categories more accurately.

3. Methods
3.1. Problem Setting

First we present some notations used in the subsequent
illustrations and then introduce the problem of audio-visual
event localization from the viewpoint of cross-modal back-
ground suppression. In general, the AVE task is defined
as follows: given a video sequence with T non-overlapping
segments S = (A, Vi)I_;, where each segment is one sec-

ond, the model is required to predict the event label (in-
cluding background) of each segment as y; = {yF|yf €
{0,1},k = 1,...,C, chzl yF = 1} during the inference
phase; where A, € R% and V;, € R"*Wxdv denote the
corresponding audio and visual features extracted by the
pre-trained models of the t-th segment, d, and d,, are the
audio and visual dimensions, H and W are the height and
width of the visual feature map, and C is the number of
the categories (including the background). y¥ = 1 refers
to t-th video segment, where the k-th event is both audible
and visible. Otherwise, it will be zero. This paper mainly
studies the AVE task in two different settings, which are di-
vergent for given ground truth labels. In fully-supervised
Setting, the segment-labels Y/ € RT*C are available dur-
ing the training phase, indicating whether the video segment
contains an event and its category type. While in weakly-
supervised Setting, only the video-labels Y € R'*® are
available during the training phase, which are the average
pooling of the full ground truth labels.

3.2. Overall Pipeline

Figure 2 illustrates the architecture of the proposed
method. First, in unconstrained videos, many complex and
redundant visual backgrounds may occur that are irrelevant
to the task, i.e., the smoke and trees as shown in Figure 1.
To bridge this gap, we propose a cross-modal gated atten-
tion module which guides the audio and global visual sig-
nals to select the informative visual regions and reduce the
irrelevant background interference from both channels.

Next, we devise a cross-modal time-level background
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suppression module to determine the video segments on
which audio and visual modalities should focus. Subse-
quently, we use cross-modal attention and a residual layer to
integrate relevant information in the audio and video modal-
ities. Finally, we utilize the audio-video interaction module
proposed in [35] and a classification layer to predict the fi-
nal event labels. At the same time, we use event-level back-
ground suppression as two gates to control the event pre-
dictions. These modules will be introduced in detail in the
following sections.

3.3. Cross-Modal Gated Attention

Previous works like AGVA [32] and AGSCA [35] uti-
lized audio signals to guide the visual features extraction,
which are effective for most situations. However, harsh
noise embedded in the audio signal greatly hinders the ex-
traction of essential vision information. Inspired by the
great success of non-local block [33] and SENet [9] for vi-
sual tasks, this paper utilizes both global visual signals and
audio signals to develop a cross-modal gated attention mod-
ule that robustly extracts the event-relevant visual regions.

We first perform channel-level attention on visual fea-
tures with both audio signals a; and global visual signals
vf as described in [9]. After obtaining the channel-level at-
tention features vy, and vg, € RUW)xdv ' we then perform
spatial-level attention to extract the important visual spatial
information from vg, and vg,. The spatial level attention
scores for v and a; are represented as Ag, and Ag,. For
example, the details for calculating A, can be formulated
as follows:

uy = 6(Waat),u;t = d(Wyug,),
Ay, = softmazx(6(Wi(uf ©ug,))), (1)

where W, W, and Wy are three learning parameters, © is
the Hadamard product and J is the Relu activation function.
Then, we multiply A7, and A7, with vy, and v, respec-
tively, to obtain the spatial-level attention visual features as
vy, and vy, € R® . Finally, we design a cross-gated mech-
anism to select the important visual regions of t-th segment
with two residual gates o, and o, produced from Ay, and

AL
1, . 1, ¢
Vi = g(vgt + B1 x 0avg,) + i(vat + B2 ogvgy), (D)

where 31 and (3 are hyperparameters. o, and o, can select
the event-relevant regions considered by audio signals and
global visual signals to supplement spatial-level attention
visual features. The final visual feature vector V € RT*dv
obtained contains the channel-spatial attentive information
from both the audio and global visual memory features,
which can reduce the irrelevant background features and
improve the quality of the visual representations.

3.4. Time-level Background Suppression

This section describes the details on the cross-modal
time-level background suppression. Previous works [13,23,

] proved that background suppression is helpful in only
one modality, while in this paper, after obtaining the fea-
tures of audio and visual modalities, we leverage the infor-
mation from both modalities as supervised signals to dis-
tinguish and suppress the ambiguous backgrounds for each
other. To be specific, we first apply a self-attention mech-
anism on these two modalities in the time dimension and
obtain V;, A, € RT*%  where dj, is the hidden dimension.
Each segment of V; and A contains audio or visual related
information of the entire video, helping to understand the
overall content in the time level. To determine the important
segments for each modality, we add two gates for V; and
A, respectively: gft* = o(W7-V;) and giP* = o(W - A,),
where W, W € R >1 The values in both gates repre-
sent how important each segment is considered by the au-
dio and visual modality. For example, if the visual modality
considers a certain segment containing the main event, the
value of the corresponding position of g’ will be larger.
Then we multiply the visual gate g** with the audio fea-
tures A, and the audio gate gflbs with the visual features V
to select the fragments that these two gates consider impor-
tant from the opposite modalities. Finally, we exploit the
residual connection idea that multiplies two modality fea-
tures by a coefficient and obtain the time-level suppressed
visual and audio features V!** and A**, respectively. The
latter features are formulated as follows:

VIS = (1—a)Ve+ax (g - Vi), 3)
AP = (1 — a)As + ax* (g8 - Ay), 4)

where the « is a hyperparameter. By enhancing the infor-
mation of the important parts of the video fragment, the in-
formation of the background parts will be indirectly sup-
pressed. Here we only weaken the attention to the back-
ground information, but we do not completely erase these
information because it also plays a great role in understand-
ing the content of the entire video. In the following ablation
studies, we also prove through experiments that appropri-
ately weakening these background information can improve
the model’s ability to locate the event, while excessive sup-
pression is harmful.

3.5. Event-level Background Suppression

After suppressing background at the temporal level, we
obtain the time-level suppressed audio and visual features.
Nevertheless, some mixed sounds in audio or complex
scenes in vision can not be distinguished well when em-
ploying a single modality, impacting the model’s prediction
for event categories. To alleviate this problem, we propose
a cross-modal event-level background suppression scheme
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that exploits both audio and visual information and sup-
presses noise events with low probability for each other.
Specifically, we first load the time-level suppressed visual
and audio features V!** and A%"* into the temporal 1D con-
volutional layers and predict the segment-level classifica-
tion scores Sy and S4 using Class Activation Sequences
(CAS).

For fully-supervised and weakly-supervised tasks, we
have different dimensions for Sy and S4: for fully-
supervised settings, Sy, S4 € RT*C, while for weakly-
supervised settings, Sy ,S4 € RT*(C+1) and C is the
event category number. The reason for the different dimen-
sionality will be described in detail later. Next, we aggre-
gate the segment-level event scores using class-wise top-K
mean technique [27] to get §V and S, A

- 1
Sm K Sn; cesnl [‘/7 Z S (5)

Vs€Esn;e

where m € {A,V}, sy, is a subset containing the top-
K event scores for the c-th class and K is a hyperparameter
controlling the number of the selected segments in a video,
commonly set to 4. Finally we apply the sigmoid activation
function on §V and S 4 to obtain the visual and audio event-
level gates: g** = o(Sy) and g = 0(S4). The g
and g¢** contain the probability of each event occurring in
the audio and visual modalities and will be multiplied with
the final prediction result in the subsequent process. The
primary function of these two gates is to suppress events
that occur in only one modality but have a low probability
in another modality, which can decouple the mixed noise
that cannot be distinguished in a single mode and improve
the robustness of the final predictions.

3.6. Classification and Objective Function

Before fusing audio and vision information, we employ
cross-modal attention to afford each modality exploiting
relevant information from the other modality. Previous
works [35] have proved that connecting the audio and vi-
sual features as key and value matrices is useful. Adopting
this approach, we use the multi-head attention, and resid-
ual connection mechanism to fuse the valuable information
for time-level suppressed audio and visual features. In this
scheme, the query features Q € RT* %= are audio or visual
matrices, while the key and value feature K,V € R?*T*xdm
are the concatenation of audio and visual matrices in the
time dimension. This process provides the visual and au-
dio modality matrices denoted as V,, and A,, respectively.
After that, we use the audio-visual interaction module pro-
posed in [35] to obtain a comprehensive fusion of audio and
visual information as F,, for the following classifier.

Fully-supervised AVE task: Following [34], we decou-
ple the supervised audio-visual event localization task into

two subtasks: one involves predicting an event category la-
bel as §j. € R® and the other to predict an event-relevant
score 4j; € RT that judges whether the audio and visual
events in t-th video segment are consistent. We also apply
the audio and visual event-level background gates g¢** and
g%* to suppress the noisy events existing in ¢j.. Specifically,
the g. and 9; can be calculated as:

¢ = softmax(Wy Fy,), (6)
gc = WocFoa (7)
Je = (1= + 7% (95 ©95") % gy (8)

where W,, € R%»*! W,. € R™*¢ F, is the max-
pooling result from F},, and -y is a hyperparameter. It should
be noted that we determine whether t-th video segment be-
longs to event or background, according to the value of ;.
Thus we only need to predict the event category number as
C and not C+1. This explains why we predict the dimen-
sion of CAS scores S, and S, for fully-supervised settings
as RT*Y. Additionally, to optimize the time-level back-
ground gates accordingly, we multiply the audio gate g**
with the visual gate g!* to obtain the audio-visual gate g%%*,
which is optimized by calculating loss based on the ground
truth (GT) event relevance label. During training, we obtain
both the corresponding GT event category and the relevance
label in fully-supervised settings. Thus the overall objective
function is:

N
Lyury = L+ Z (Ly + LY), 9)

2 \

where L€ is the cross-entropy loss of the event category be-
tween prediction y. and GT label, L} refers to the binary
cross entropy loss of the event relevance between the pre-
diction 4j; and t-th segment GT label, and L{ denotes the
binary cross entropy loss between gate g%°* and the t-th seg-
ment GT event relevance label. More detailed discussion
on the LY function is provided in the ablation study section.
During the inference phase, if 3, > 0.5 then the t-th video
segment is predicted as g class. Otherwise the t-th video
segment is classified as background.

Weakly-supervised AVE task: For an AVE task, we
adopt [32] and formulate the weakly supervised problem
as multiple-instance learning (MIL) problem. Since only
the event category label is available during training, we do
not predict the event-relevant score y;. Furthermore, since
we cannot utilize the GT time-level event relevance label to
optimize our predicted time-level audio-visual gate, we du-
plicate the AV gate g% for C+1 times and g, for T times
and use element-wise multiplication to fuse them. Then we
exploit [32] and utilize MIL pooling to aggregate the results
and obtain the video-level event predictions. This process is
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formulated as follows:

gc = WocFm (10)
Je=(1=7)ge + 7% (62 © 5" % gy (1D)
Yo = max—pooling(gfﬁf © Ye)s (12)

where W,, € R%>*(C+1) In weakly supervised settings,
we need to predict the event category label and the back-
ground simultaneously. Therefore, the event category num-
ber is C+1. The objective function is the a softmax function
and multi-class cross-entropy loss, while the loss function
indirectly optimizes the time-level audio-visual gate.

4. Experiments

This section presents the experimental setup details and
then challenges our methods against state-of-the-art meth-
ods on the AVE dataset under two settings. We also discuss
the model’s performance and specify the effectiveness of
each sub-module in our model through ablation studies and
qualitative results.

4.1. Experiment Setup

AVE Dataset: Tian et al. [32] created the AVE dataset
originating from the AudioSet [5], which contains 4,143
videos covering 28 event categories. The AVE dataset in-
volves a large variety of videos, such as church bell, race
car, women or men speaking, and dog barking. Each video
lasts 10 seconds and contains an event. The audio-visual
event categories are labeled for each video on a segment
level.

Evaluation Metrics: For the AVE task, the event cat-
egory label of each video segment is required to be pre-
dicted in both supervised and weakly supervised settings.
We adopt [32, 36] and exploit the overall accuracy of the
predicted event category as the evaluation metric.

Implementation Details: Regarding the AVE dataset,
we exploit the pre-trained on ImageNet [12] VGG-19 and
ResNet-151 models to extract visual features of size 7 X 7 x
512 and 7 x 7 x 2048, respectively, per video segment. We
utilize a VGG-like network [0] pre-trained on AudioSet to
extract 128-dimensional audio features per audio segment.
We use a batch size of 64, and the optimizer is Adam. The
learning rate is 7 x 10~* and gradually decays to 0.5 at
epochs 10, 20, 30 [35].

4.2. Comparisons with State-of-the art Methods

We challenge our method against current fully-
supervised and weakly-supervised methods on AVE tasks.
For a fair comparison, we choose the same audio and vi-
sual features as the current methods. Specifically, since cur-
rent techniques utilize two different visual features of VGG-
19 and Res-151 in the AVE task, we also apply these two

Table 1. Comparisons with state-of-the-art methods in a super-
vised manner on the AVE dataset

Models Feature Accuracy(%)
Audio VGG-like 59.5
Visual VGG-19 66.1
AV [32] VGG-like, VGG-19 71.4
AVSDN [14] VGG-like, VGG-19 72.6
CMAN [36] VGG-like, VGG-19 73.3
DAM [34] VGG-like, VGG-19 74.5
AVRB [29] VGG-like, VGG-19 74.8
AVIN [28] VGG-like, VGG-19 75.2
AVT [15] VGG-like, VGG-19 76.8
CMRAN [35] VGG-like, VGG-19 77.4
PSP [38] VGG-like, VGG-19 77.8
Ours VGG-like, VGG-19 79.3
Visual [32] Res-151 65.0
AV [32] VGG-like, Res-151 74.0
AVSDN [14] VGG-like, Res-151 754
CMRAN [35] VGG-like, Res-151 78.3
Ours VGG-like, Res-151 79.7

Table 2. Comparisons with state-of-the-art methods in a weakly
supervised manner on the AVE dataset

Models Feature Accuracy(%)
AVEL [32] VGG-like, VGG-19 66.7
AVSDN [14] VGG-like, VGG-19 67.3
CMAN [36] VGG-like, VGG-19 70.4
AVRB [29] VGGe-like, VGG-19 68.9
AVIN [28] VGG-like, VGG-19 69.4
AVT [15] VGG-like, VGG-19 70.2
CMRA [35] VGGe-like, VGG-19 72.9
PSP [38] VGG-like, VGG-19 73.5
Ours VGGe-like, VGG-19 74.2
AVEL [32] VGG-like, Res-151 71.6
AVSDN [14] VGGe-like, Res-151 74.2
CMRAN [35] VGG-like, Res-151 75.3
Ours VGG-like, Res-151 76.0

features to our model and compare them with the previous
methods.

Supervised localization for AVE. Table | demonstrates
our method’s performance against current state-of-the-art
methods on supervised AVE tasks. Most mainstream mod-
els adopt VGG-like audio features and VGG-19 visual fea-
tures as their input. Compared with them, our method
achieves a new state-of-the-art (SOTA) performance. No-
tably, our method significantly outperforms CMRAN [35]
and PSP [38] by a large margin (1.9% and 1.5%, respec-
tively), demonstrating the effectiveness of our proposed
method. Even when we use VGG-19 visual features while
the competitor methods adopt Res-151, our model still out-
performs them. Furthermore, when we utilize Res-151, our
technique surpasses the previous SOTA CMRAN method
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Table 3. Ablation studies of different modules on AVE dataset.

Models Supervised Weakly-supervised
full model 79.30 74.22
w/o CMGA 78.07 71.91
w/o Self-Att 77.62 71.29
w/o TBS 77.93 73.45
w/o Cross-Att 78.10 72.03
w/o EBS 78.30 73.57
[35] by 1.4%.

Weakly-supervised localization for AVE. We compare
our method with existing weakly-supervised AVE local-
ization state-of-the-arts. As presented in Table 2, our
method still achieves the best performance, demonstrating
our model’s effectiveness in both tasks. Specifically, our
model outperforms CMRAN [35] and PSP [38] by 1.3%
and 0.7%, respectively, when using the VGG-19 visual fea-
ture, and outperforms CMRAN [35] by 0.7% when using
the Res-151 visual feature. Moreover, with a much lower
supervision level, our model outperforms some early fully-
supervised methods.

4.3. Ablation Studies

The effectiveness of the different modules in our
model. To verify the effectiveness of the proposed modules,
we remove them from the primary model and re-evaluate
the new model on both two tasks. Table 3 shows that af-
ter removing a single module, the overall model’s perfor-
mance decreases, and different modules have different per-
formance effects. Self-attention and cross-attention inte-
grate the audio and visual inter and intra-modality infor-
mation. Thus the accuracy scores will severely drop when
one of these modules is removed. Our proposed CMGA,
time-level background suppression (TBS), and event-level
background suppression (EBS) also play an essential role
in the event localization accuracy.

Influence of the time-level background suppression
hyper-parameter o. To further explore the effectiveness
of our time-level background suppression (TBS), we assign
different values to « to observe the model’s performance on
the supervised scheme, with the corresponding results pre-
sented in Table 4. Specifically, @ = 0 refers to only adding
an audio-visual gate loss LY to the final objective function
for model training, without suppressing the time-level audio
or visual features. Without TBS means that we also need to
remove the L. Compared to the accuracy of neglecting the
TBS module, the LJ can improve our model’s performance.
When « is small, the model’s performance gradually im-
proves as « becomes larger. However, when o exceeds
0.2, the model’s performance gradually declines, inferring
that excessive suppression of the audio and video features
in specific segments reduces the model’s performance due

Table 4. Ablation study of the time-level background suppression
(TBS) in supervised manner on AVE dataset.

Models Accuracy(%)
with TBS =0 78.37
with TBS oo =0.1 78.79
with TBS e = 0.2 79.30
with TBS o = 0.3 78.45
with TBS aa = 0.4 78.58
w/o TBS 77.93

Table 5. Ablation studies on the effect of event-level background
suppression on AVE dataset.

Models Supervised Weakly-supervised
full model 79.30 74.22
w/o audio EBS 79.05 73.83
w/o visual EBS 78.84 73.40
w/o EBS 78.30 73.57

to information discontinuity. Hence, proper suppression is
mandatory to achieve better performance.

Impact of event-level background suppression. To
verify the effectiveness of the event-level background sup-
pression (EBS), we test the performance relying on a sin-
gle EBS modality and compare the results against the en-
tire model. As illustrated in Table 5, both modalities effec-
tively suppress ambiguous events in the opposing modality,
and removing the visual EBS imposes a minor performance
drop compared with removing the audio EBS. Hence, this
illustrates the importance of using visual information to re-
duce the noise existing in the audio modality.

4.4. Qualitative analysis

Figure 3 and 4 present qualitative examples of the effec-
tiveness of our cross-modal time-level background suppres-
sion. These two examples are very representative. Fig 3
refers to visual information being visible most of the time.
However, the relevant audio event only appears in a part of
the period. Fig 4 refers to audio information being audible
during the entire process while the relevant visual event is
only available in part of the segments. By observing the au-
dio and visual gate values, we can find that the time-level
background suppression scheme suppresses well the atten-
tion to the segments when only single modal information is
available. This allows the model to better judge the event
boundary and confirms that audio can distinguish some am-
biguous visual actions mentioned earlier. For example, in
Fig 3, the dog’s posture hardly changes, except that there
is an inconspicuous mouth opening action in the second
and third segments. It is challenging to perform recognition
solely relying on visual information. However, our model
can quickly know that the second and third segment infor-
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Figure 3. Qualitative results of our model on dog bark event. The red regions stand for the answer we predict.

Audio gate
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Figure 4. Qualitative results of our model on helicopter event. The red regions stand for the answer we predict.

Event Frying Aircraft Banjo Car Violin

Original

Attention
Map

Figure 5.

The qualitative results of our proposed cross-modal
gated attention. The top row shows the event category, while the
middle and bottom rows show the original video frames and visu-
alization of the attention maps, respectively.

mation is of greater interest in the visual modality when au-
dio is added.

We show the visualization results of our cross-modal
gated attention module. From Figure 5 we observe that with
the guidance of the audio signals and global visual informa-
tion, the module can accurately focus on the critical visual
regions in those video frames for different events. For ex-
ample, in the example of the banjo event, 4-5 banjos exist in
the frame, and our model exactly localizes the two sounding
banjos while ignoring the other instruments. Global visual
information also plays a vital role in the extraction of criti-
cal visual features. In the sixth example of the bark event,
the dog is barking very weakly. Thus, only with the guid-
ance of audio the model incorrectly extract the key visual
features. However, with the help of global visual informa-
tion that assists in understanding the holistic content of the
video frames, the model can still focus on the suitable re-
gions.

5. Conclusion

This paper proposes a cross-modal time-level and event-
level background suppression to better solve the problem
of inconsistent audio and visual information within an AVE
task. Our purpose is to exploit the audio and visual informa-
tion as a supervisory signal for the opposite modality, which
can help the model focus on the video segments when the
events are audible and visible. Also, the event-level back-
ground suppression can utilize the CAS scores predicted by
audio and vision to suppress the events with low probabil-
ity in one modality. The experiments demonstrate that EBS
effectively suppresses the noise events that suddenly occur
in a single-mode, improving the model’s robustness. Be-
sides, we also devise a cross-modal gated attention mod-
ule to better extract the key visual region features from the
complicated video frames by exploiting audio and global vi-
sual information guidance. Extensive experiments demon-
strate that our proposed CMBS network outperforms cur-
rent state-of-the-art methods in both fully-supervised and
weakly-supervised AVE tasks. Also, the ablation studies on
these datasets verify the effectiveness of our proposed back-
ground suppression methods and the CMGA module.
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