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Abstract

Heatmap regression methods have dominated face align-
ment area in recent years while they ignore the inherent re-
lation between different landmarks. In this paper, we pro-
pose a Sparse Local Patch Transformer (SLPT) for learn-
ing the inherent relation. The SLPT generates the repre-
sentation of each single landmark from a local patch and
aggregates them by an adaptive inherent relation based on
the attention mechanism. The subpixel coordinate of each
landmark is predicted independently based on the aggre-
gated feature. Moreover, a coarse-to-fine framework is fur-
ther introduced to incorporate with the SLPT, which enables
the initial landmarks to gradually converge to the target
facial landmarks using fine-grained features from dynam-
ically resized local patches. Extensive experiments carried
out on three popular benchmarks, including WFLW, 300W
and COFW, demonstrate that the proposed method works
at the state-of-the-art level with much less computational
complexity by learning the inherent relation between facial
landmarks. The code is available at the project website1.

1. Introduction
Face alignment is aimed at locating a group of pre-

defined facial landmarks from images. Robust face align-
ment based on deep learning technology has attracted in-
creasing attention in recent years and it is the fundamen-
tal algorithm in many face-related applications such as face
reenactment [40], face swapping [21] and driver fatigue de-
tection [1]. Despite recent progress, it still remains a chal-
lenging problem, especially for images with heavy occlu-
sion, profile view and illumination variation.

The inherent relation between facial landmarks play an
important role in face alignment since human face has a
regular structure. Although heatmap regression methods
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Figure 1. The proposed coarse-to-fine framework leverages the
sparse local patches for robust face alignment. The sparse lo-
cal patches are cropped according to the landmarks in the previ-
ous stage and fed into the same SLPT to predict the facial land-
marks. Moreover, the patch size narrows down with the increasing
of stages to enable the local features to evolve into a pyramidal
form.

achieve impressive performance [7, 18, 33–35] in recent
years, they still ignore the inherent relation because convo-
lutional neural network (CNN) kernels focus locally, thus
failed to capture the relations of landmarks farther away in
a global manner. In particular, they consider the pixel co-
ordinate with highest intensity of the output heatmap as the
optimal landmark, which inevitably introduces a quantiza-
tion error, especially for common downsampled heatmap.
Coordinate regression methods [9,10,12,24,36,37,42] have
an innate potential to learn the relation since it regresses the
coordinates from global feature directly via fully-connected
layers (FC). Nevertheless, a coherent relation should be
learned together with local appearance while coordinate re-
gression methods lose the local feature by projecting the
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global feature into FC layers.
To address the aforementioned problems, we propose a

Sparse Local Patch Transformer (SLPT). Instead of predict-
ing the coordinates from the full feature map like DETR
[5], the SLPT firstly generates the representation for each
landmark from a local patch. Then, a series of learnable
queries, which are called landmark queries, are used to ag-
gregate the representations. Based on the cross-attention
mechanism of transformer, the SPLT learns an adaptive ad-
jacency matrix in each layer. Finally, the subpixel coordi-
nate of each landmark in their corresponding patch is pre-
dicted independently by a MLP. Due to the use of sparse
local patches, the number of the input token decreases sig-
nificantly compared to other vision transformer [5, 11].

To further improve the performance, a coarse-to-fine
framework is introduced to incorporate with the SLPT,
as shown in Fig.1. Similar to cascaded shape regression
method [13, 17, 44], the proposed framework optimizes a
group of initial landmarks to the target landmarks by sev-
eral stages. The local patches in each stage are cropped
based on the initial landmarks or the landmarks predicted in
the former stage, and the patch size for a specific stage is
1/2 of its former stage. As a result, the local patches evolve
in a pyramidal form and get closer to the target landmarks
for the fine-grained local feature.

To verify the effectiveness of the SLPT and the pro-
posed framework, we carry out experiments on three popu-
lar benchmarks, WFLW [36], 300W [28] and COFW [4].
The results show the proposed method significantly out-
performs other state-of-the-art methods in terms of diverse
metrics with much lower computational complexity. More-
over, we also visualize the attention map of SLPT and the
inner product matrix of landmark queries to demonstrate the
SLPT can learn the inherent relation of facial landmarks.

The main contributions of this work can be summarized
as:

• We introduce a novel transformer, Sparse Local Patch
Transformer, to explore the inherent relation between
facial landmarks based on the attention mechanism.
The adaptive inherent relation learned by SLPT en-
ables the model to achieve SOTA performance with
much less computational complexity.

• We introduce a coarse-to-fine framework to incorpo-
rate with the SLPT, which enables the local patch to
evolve in a pyramidal form and get closer to the target
landmark for the fine-grained feature.

• Extensive experiments are conducted on three popu-
lar benchmarks, WFLW, 300W and COFW. The result
illustrates the proposed method learns the inherent re-
lation of facial landmarks by the attention mechanism
and works at the SOTA level.

2. Related Work
In the early stage of face alignment, the mainstream

methods [4, 6, 13, 24, 27, 31, 39, 44] regress facial land-
marks directly from the local feature with classical machine
learning algorithms like random forest. With the develop-
ment of CNN, the CNN-based face alignment methods have
achieved impressive performance. They can be roughly di-
vided into two categories: heatmap regression method and
coordinate regression method.

2.1. Coordinate Regression Method

Coordinate regression methods [12,37,41,42] regress the
coordinates of landmarks from feature map directly via FC
layers. To further improve the robustness, diverse cascaded
networks [17, 30] and recurrent networks [38] are proposed
to achieve face alignment with multi stages. Despite coor-
dinate regression methods have an innate potential to learn
the inherent relation, it commonly requires a huge number
of samples for training. To address the problem, Qian et
al. [26] and Dong et al. [9] expand the number of training
samples by style transfer; Browatzki et al. [3] and Dong et
al. [10] leverage the unlabeled dataset to train the model.
In recent years, state-of-the-art works employ the structure
information of face as the prior knowledge for better perfor-
mance. Lin et al. [24] and Li et al. [22] model the interac-
tion between landmarks by a graph convolutional network
(GCN). However, the adjacency matrix of GCN is fixed dur-
ing inference and cannot adjust case by case. Learning an
adaptive inherent relation is crucial for robust face align-
ment. Unfortunately, there is no work yet on this topic, and
we propose a method to fill this gap.

2.2. Heatmap Regression Method

Heatmap regression methods [7, 25, 29, 34] output an
intermediate heatmap for each landmark and consider the
pixel with highest intensity as the optimal output. There-
fore, it leads to quantization errors since the heatmap is
commonly much smaller than the input image. To eliminate
the error, Kumar et al. [18] estimate the uncertainty of pre-
dicted landmark locations; Lan et al [19] adopt an additional
decimal heatmap for subpixel estimation; Huang et al. [15]
further regress the coordinate from an anisotropic attention
mask generated from heatmaps. Moreover, heatmap regres-
sion methods also ignore the relation between landmarks.
To construct the relation between neighboring points, Wu et
al. [36] and Wang et al. [35] take advantage of facial bound-
aries as the prior knowledge; Zou et al. [47] cluster land-
marks with a graph model to provide structural constraints.
However, they still cannot explicitly model an inherent re-
lation between the landmarks with long distance.

The vision transformer [11] proposed recently enables
the model to attend the area with a long distance. Be-
sides, the attention mechanism in transformer can generate
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Figure 2. An overview of the SLPT. The SLPT crops local patches from the feature map according to the facial landmarks in the previous
stage. Each patch is then embedded into a vector that can be viewed as the representation of the corresponding landmark. Subsequently,
they are supplemented with the structure encoding to obtain the relative position in a regular face. A fixed number of landmark queries are
then input into the decoder, attending the vectors to learn the inherent relation between landmarks. Finally, the outputs are fed into a shared
MLP to estimate the position of each facial landmark independently. The rightmost images demonstrate the adaptive inherent relation of
different samples. We connect each point to the point with highest cross-attention weight in the first inherent relation layer.

an adaptive global attention for different tasks, such as ob-
ject detection [5,46] and human pose estimation [23], and in
principle, we envision that it can also learn an adaptive in-
herent relation for face alignment. In this paper, we demon-
strate the capability of SLPT for learning the relation.

3. Method
3.1. Sparse Local Patch Transformer

As shown in Fig.2, Sparse Local Patch Transformer
(SLPT) consists of three parts, the patch embedding &
structure encoding, inherent relation layers and prediction
heads.

Patch embedding & structure encoding: ViT [11] di-
vides an image or a feature map I ∈ RHI×WI×C into a grid
of HI

Ph
×WI

Pw
with each patch of size Ph×Pw and maps it into

a d-dimension vector as the input. Different from ViT, for
each landmark, the SLPT crops a local patch with the fixed
size (Ph, Pw) from the feature map as its supporting patch,
whose center is located at the landmark. Then, the patches
are resized to K × K by linear interpolation and mapped
into a series of vectors by a CNN layer. Hence, each vector
can be viewed as the representation of the corresponding
landmark. Besides, to retain the relative position of land-
marks in a regular face shape (structure information), we
supplement the representations with a series of learnable
parameters called structure encoding. As shown in Fig.3,
the SLPT learns to encode the distance between landmarks
within the regular facial structure in the similarity of encod-

ings. Each encoding has high similarity with the encoding
of neighboring landmark (eg. left eye and right eye).

Inherent relation layer: Inspired by Transformer [32],
we propose inherent relation layers to model the relation
between landmarks. Each layer consists of three blocks,
multi-head self-attention (MSA) block, multi-head cross-
attention (MCA) block, and multilayer perceptron (MLP)
block, and an additional Layernorm (LN) is applied be-
fore every block. Based on the self-attention mechanism in
MSA block, the information of queries interact adaptively
for learning a query − query inherent relation. Suppos-
ing the l-th MSA block obtains H heads, the input T l and
landmark queries Q with CI -dimension are divided into H
sequences equally (T l is a zero matrix in 1st layer). The
self-attention weight of the h-th head Ah is calculated by:

Ah = softmax

((
T l
h +Qh

)
W q

h

((
T l
h +Qh

)
W k

h

)T
√
Ch

)
,

(1)
where W q

h and W k
h ∈ RCh×Ch are the learnable parame-

ters of two linear layers. T l
h ∈ RN×Ch and Qh ∈ RN×Ch

are the input and landmark queries respectively of the h-th
head with the dimension Ch = CI/H . Then, MSA block
can be formulated as:

MSA
(
T l
)
=
[
A1T

l
1W

v
1 ; ...;AHT l

HW v
H

]
WP , (2)

where W v
h ∈ RCh×Ch and WP ∈ RCI×CI are also the

learnable parameters of linear layers.

4054



Structure Encoding Similarity

C
o

sin
e S

im
ilarity

Figure 3. Cosine similarity for structure encodings of SLPT
learned from a dataset with 98 landmark annotations. High co-
sine similarities are observed for the corresponding points which
are close in the regular face structure.

The MCA block aggregates the representations of fa-
cial landmarks based on the cross-attention mechanism for
learning an adaptive representation− query relation. As
shown in the rightmost images of Fig.2, by taking advantage
of the cross attention, each landmark can employ neigh-
boring landmarks for coherent prediction and the occluded
landmark can be predicted according to the representations
of visible landmarks. Similar to MSA, MCA also has H
heads and the attention weight in the h-th head A′

h can be
calculated by:

A′
h = softmax

((
T ′l
h +Qh

)
W ′q

h

(
(Rh + Ph)W

′k
h

)T
√
Ch

)
.

(3)
Where W ′q

h and W ′k
h ∈ RCh×Ch are learnable parameters

of two linear layers in the h-th head. T ′l
h ∈ RN×Ch is the

input l-th MCA block; Ph ∈ RN×Ch is the structure encod-
ings; Rh ∈ RN×Ch is the landmark representations. MCA
block can be formulated as:

MCA
(
T ′l) = [A′

1T
′l
1 W

′v
1 ; ...;A′

HT ′l
HW ′v

H

]
W ′

P , (4)

where W ′v
h ∈ RCh×Ch and W ′

P ∈ RCI×CI are also the
learnable parameters of linear layers in MCA block.

Supposing predicting N pre-defined landmarks, the
computational complexity of the MCA that employ sparse
local patches Ω(S) and full feature map Ω(F ) is:

Ω(S) = 4HNC2
h + 2HN2Ch, (5)

Ω(F ) =

(
2N + 2

WIHI

PwPh

)
HC2

h + 2NH
WIHI

PwPh
Ch. (6)

Algorithm 1 Training pipeline of the coarse-to-fine frame-
work
Require: Training image I , initial landmarks S0, back-

bone network B, SLPT T , loss function L, ground truth
Sgt, Stage number Nstage

1: while the training epoch is less than a specific number
do

2: Forward B for feature map by F = B (I);
3: Initialize the local patch size (Pw, Ph)←

(
W
4 , H

4

)
4: for i← 1 to Nstage do
5: Crop local pactes P from F according to former

landmarks Si−1;
6: Resize patches from (Pw, Ph) to K ×K;
7: Forward T for landmarks by Si = T (P );
8: Reduce the patch size (Pw, Ph) by half;
9: end for

10: Minimize L
(
Sgt,S1,S2, · · · ,SNstage

)
11: end while

Compared to using the full feature map, the number of
representations decreases from HI

Ph
× WI

Pw
to N (with the

same input size, HI

Ph
× WI

Pw
is 16 × 16 in the related frame-

work [5]), which decreases the computational complexity
significantly. For a 29 landmark dataset [4], Ω(S) is only
1/5 of Ω(F ) (H = 8 and Ch = 32 in the experiment).

Prediction head: the prediction head consists of a lay-
ernorm to normalize the input and a MLP layer to predict
the result. The output of the inherent relation layer is the
local position of the landmark with respect to its supporting
patch. Based on the local position on the i-th patch

(
tix, t

i
y

)
,

the global coordinate of the i-th landmark
(
xi, yi

)
can be

calculated by:
xi = xi

lt + witix,

yi = yilt + hitiy,
(7)

where (wi, hi) is the size of the supporting patch.

3.2. Coarse-to-fine locating

To further improve the performance and robustness of
SLPT, we introduce a coarse-to-fine framework trained in
an end-to-end method to incorporate with the SLPT. The
pseudo-code in Algorithm 1 shows the training pipeline of
the framework. It enables a group of initial facial landmarks
S0 calculated from the mean face in the training set to con-
verge to the target facial landmarks gradually with several
stages. Each stage takes the previous landmarks as center to
crop a series of patches. Then, the patches are resized into a
fixed size K ×K and fed into the SLPT to predict the local
point on the supporting patches. Large patch size in the ini-
tial stage enables the SLPT to obtain a large receptive filed
that prevents the patch from deviating from the target land-
mark. Then, the patch size in the following stages is 1/2 of

4055



Method NME(%)↓ FR0.1(%)↓ AUC0.1↑
LAB [36] 5.27 7.56 0.532
SAN [9] 5.22 6.32 0.535

Coord⋆ [34] 4.76 5.04 0.549
DETR† [5] 4.71 5.00 0.552

Heatmap⋆ [34] 4.60 4.64 0.524
AVS+SAN [26] 4.39 4.08 0.591

LUVLi [18] 4.37 3.12 0.557
AWing [35] 4.36 2.84 0.572
SDFL⋆ [24] 4.35 2.72 0.576
SDL⋆ [22] 4.21 3.04 0.589
HIH [19] 4.18 2.84 0.597

ADNet [15] 4.14 2.72 0.602
SLPT‡ 4.20 3.04 0.588
SLPT† 4.14 2.76 0.595

Table 1. Performance comparison of the SLPT and the state-
of-the-art methods on WFLW. The normalization factor is inter-
ocular and the threshold for FR is set to 0.1. Key: [Best, Second
Best, ⋆=HRNetW18C, †=HRNetW18C-lite, ‡=ResNet34]

its former stage, which enables the local patches to extract
fine-grained features and evolve into a pyramidal form. By
taking advantage of the pyramidal form, we can observe a
significant improvement for SLPT. (see Section 4.5).

3.3. Loss Function

We employ the normalized L2 loss to provide the super-
vision for stages of the coarse-to-fine framework. More-
over, similar to other works [25, 29], providing additional
supervision for the intermediate output during the training
is also helpful. Therefore, we feed the intermediate output
of each inherent relation layer into a shared prediction head.
The loss function is written as:

L =
1

SDN

S∑
i=1

D∑
j=1

N∑
k=1

∥∥(xk
gt, y

k
gt

)
−
(
xijk, yijk

)∥∥
2

d
,

(8)
where S and D indicate the number of coarse-to-fine stage
and inherent relation layer respectively.

(
xk
gt, y

k
gt

)
is the la-

beled coordinate of the k-th point.
(
xijk, yijk

)
is the coor-

dinate of k-th point predicted by j-th inherent relation layer
in i-th stage. d is the distance between outer eye corners
that acts as a normalization factor.

4. Experiment
4.1. Datasets

Experiments are conducted on three popular bench-
marks, including WFLW [36], 300W [28] and COFW [4].

WFLW dataset is a very challenging dataset that con-
sists of 10,000 images, 7,500 for training and 2,500 for test-
ing. It provides 98 manually annotated landmarks and rich

Method Inter-Ocular NME (%) ↓
Common Challenging Fullset

SAN [9] 3.34 6.60 3.98
Coord⋆ [34] 3.05 5.39 3.51
LAB [36] 2.98 5.19 3.49

DeCaFA [7] 2.93 5.26 3.39
HIH [19] 2.93 5.00 3.33

Heatmap⋆ [34] 2.87 5.15 3.32
SDFL⋆ [24] 2.88 4.93 3.28

HG-HSLE [47] 2.85 5.03 3.28
LUVLi [18] 2.76 5.16 3.23
AWing [35] 2.72 4.53 3.07
SDL⋆ [22] 2.62 4.77 3.04

ADNet [15] 2.53 4.58 2.93
SLPT‡ 2.78 4.93 3.20
SLPT† 2.75 4.90 3.17

Table 2. Performance comparison for SLPT and the state-
of-the-art methods on 300W common subset, challenging sub-
set and fullset. Key: [Best, Second Best, ⋆=HRNetW18C,
†=HRNetW18C-lite, ‡=ResNet34]

attribute labels, such as profile face, heavy occlusion, make-
up and illumination.

300W is the most commonly used dataset that includes
3,148 images for training and 689 images for testing. The
training set consists of the fullset of AFW [45], the training
subset of HELEN [20] and LFPW [2]. The test set is further
divided into a challenging subset that includes 135 images
(IBUG fullset [28]) and a common subset that consists of
554 images (test subset of HELEN and LFPW). Each image
in 300W is annotated with 68 facial landmarks.

COFW mainly consists of the samples with heavy oc-
clusion and profile face. The training set includes 1,345
images and each image is provided with 29 annotated land-
marks. The test set has two variants. One variant presents
29 landmarks annotation per face image (COFW), The other
is provided with 68 annotated landmarks per face image
(COFW68 [14]). Both contains 507 images. We employ
the COFW68 set for cross-dataset validation.

4.2. Evaluation Metrics

Referring to other related work [18, 24, 35], we evalu-
ate the proposed methods with standard metrics, Normal-
ized Mean Error (NME), Failure Rate (FR) and Area Under
Curve (AUC). NME is defined as:

NME (S,Sgt) =
1

N

N∑
i=1

∥∥pi − pi
gt

∥∥
2

d
× 100%, (9)

where S and Sgt denote the predicted and annotated coordi-
nates of landmarks respectively. pi and pi

gt indicate the co-
ordinate of i-th landmark in S and Sgt. N is the number of
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Figure 4. Visualization of the ground truth and face alignment
result of SLPT, heatmap regression (HRNetW18C) and coordinate
regression (HRNetW18C) method on the faces with blur, heavy
occlusion and profile face.

landmarks, d is the reference distance to normalize the error.
d could be the distance between outer eye corners (inter-
ocular) or the distance between pupil centers (inter-pupils).
FR indicates the percentage of images in the test set whose
NME is higher than a certain threshold. AUC is calculated
based on Cumulative Error Distribution (CED) curve. It in-
dicates the fraction of test images whose NME(%) is less or
equal to the value on the horizontal axis. AUC is the area
under CED curve, from zero to the threshold for FR.

4.3. Implementation Details

Each input image is cropped and resized to 256 × 256.
We train the proposed framework with Adam [8], setting the
initial learning rate to 1× 10−3. Without specifications, the
size of the resized patch is set to 7 × 7 and the framework
has 6 inherent relation layers and 3 coarse-to-fine stages.
Besides, we augment the training set with random hori-
zontal flipping (50%), gray (20%), occlusion (33%), scal-
ing (±5%), rotation (±30◦), translation (±10px). We im-
plement our method with two different backbone: a light
HRNetW18C [34] (the modularized block number in each
stage is set to 1) and Resnet34 [16]. For the HRNetW18C-
lite, the resolution of feature map is 64 × 64, and for the
Resnet34, we extract representations from the output fea-
ture maps of stages C2 through C5. (see Appendix A.1).

Method Inter-Ocular Inter-Pupil
NME(%)↓FR(%)↓ NME(%)↓FR(%)↓

DAC-CSR [13] 6.03 4.73 - -
LAB [36] 3.92 0.39 - -

Coord⋆ [34] 3.73 0.39 - -
SDFL⋆ [24] 3.63 0.00 - -

Heatmap⋆ [34] 3.45 0.20 - -
Human [4] - - 5.60 -

TCDCN [42] - - 8.05 -
Wing [12] - - 5.44 3.75
DCFE [31] - - 5.27 7.29
AWing [35] - - 4.94 0.99
ADNet [15] - - 4.68 0.59

SLPT‡ 3.36 0.59 4.85 1.18
SLPT† 3.32 0.00 4.79 1.18

Table 3. NME and FR0.1 comparisons under Inter-Ocular nor-
malization and Inter-Pupil normalization on within-dataset vali-
dation. The threshold for failure rate (FR) is set to 0.1. Key: [Best,
Second Best, ⋆=HRNetW18C, †=HRNetW18C-lite, ‡=ResNet34]

Method Inter-Pupil
NME(%)↓ FR0.1(%)↓

TCDCN [42] 7.66 16.17
CFSS [44] 6.28 9.07
ODN [43] 5.30 -

AVS+SAN [26] 4.43 2.82
LAB [36] 4.62 2.17
SDL⋆ [22] 4.22 0.39

SDFL⋆ [24] 4.18 0.00
SLPT‡ 4.11 0.59
SLPT† 4.10 0.59

Table 4. Inter-ocular NME and FR0.1 comparisons on 300W-
COFW68 cross-dataset evaluation. Key: [Best, Second Best,
⋆=HRNetW18C, †=HRNetW18C-lite, ‡=ResNet34]

4.4. Comparison with State-of-the-Art Method

WFLW: as tabulated in Table 1 (more detailed results
on the subset of WFLW are in Appendix A.2), SLPT
demonstrates impressive performance. With the increasing
of inherent layers, the performance of SLPT can be fur-
ther improved and outperforms the ADNet (see Appendix
A.5). Referring to DETR, we also implement a Transformer
based method that employs the full feature map for face
alignment. The number of the input tokens is 16×16. With
the same backbone (HRNetW18C-lite), we observe an im-
provement of 12.10% in NME, and the number of training
epoch is 8× less than the DETR (see Appendix A.3). More-
over, the SLPT also outperforms the coordinate regreesion
and heatmap regression methods significantly. Some qual-
itative results are shown in Fig. 4. It is evident that our
method could localize the landmarks accurately, in partic-

4057



Model
Intermediate Stage

1st stage 2rd stage 3rd stage 4th stage
NME FR AUC NME FR AUC NME FR AUC NME FR AUC

Model† with 1 stage 4.79% 5.08% 0.583 - - - - - - - - -
Model† with 2 stages 4.52% 4.24% 0.563 4.27% 3.40% 0.585 - - - - - -
Model† with 3 stages 4.38% 3.60% 0.574 4.16% 2.80% 0.594 4.14% 2.76% 0.595 - - -
Model† with 4 stages 4.47% 4.00% 0.567 4.26% 3.40% 0.586 4.24% 3.36% 0.588 4.24% 3.32% 0.587

Table 5. Performance comparison of the SLPT with different number of coarse-to-fine stages on WFLW. The normalization factor for
NME is inter-ocular and the threshold for FR and AUC is set to 0.1. Key: [Best, †=HRNetW18C-lite]

Method MSA MCA NME FR AUC
Model† 1 w/o w/o 4.48% 4.32% 0.566
Model† 2 w/ w/o 4.20% 3.08% 0.590
Model† 3 w/o w/ 4.17% 2.84% 0.593
Model† 4 w/ w/ 4.14% 2.76% 0.595

Table 6. NME(↓), FR0.1(↓) and AUC0.1(↑) with/without Encoder
and Decoder. Key: [Best, †=HRNetW18C-lite]

Method NME FR AUC
w/o structure encoding† 4.16% 2.84% 0.593
w structure encoding† 4.14% 2.76% 0.595

Table 7. NME(↓), FR0.1(↓) and AUC0.1(↑) with/without structure
encoding. Key: [Best, , †=HRNetW18C-lite]

ular for face images with blur (2nd row in Fig.4), profile
view (1st row in Fig.4) and heavy occlusion (3rd and 4th
row in Fig.4).

300W: the comparison result is shown in Table 2. Com-
pared to the coordinate and heatmap regression methods
(HRNetW18C [34]), SLPT still achieves an impressive im-
provement of 9.69% and 4.52% respectively in NME on the
fullset. However, the improvement on 300W is not as sig-
nificant as WFLW since learning an adaptive inherent re-
lation requires a large number of annotated samples. With
limited training samples, the methods with prior knowledge,
such as facial boundaries (Awing and ADNet) and affined
mean shape (SDL), always achieve better performance.

COFW: We conduct two experiments on COFW for
comparsion, the within-dataset validation and cross-dataset
validation. For the within-dataset validation, the model is
trained with 1,345 images and validated with 507 images on
COFW. The inter-ocular and inter-pupil NME of SLPT and
the state-of-the-art methods are reported in Table 3 respec-
tively. In this experiment, the number of training sample is
quite small, which leads to the significant degradation of the
coordinate regression methods, such as SDFL, LAB. Nev-
ertheless, SLPT still maintains excellent performance and
yields the second best performance. It improves the metric
by 3.77% and 11.00% in NME over the heatmap regression

and coordinate regression methods respectively.
For the cross-dataset validation, the training set includes

the complete 300W dataset (3,837 images) and the test set is
COFW68 (507 images with 68 landmark annotation). Most
samples of COFW68 are under heavy occlusion. The inter-
ocular NME and FR of SLPT and the state-of-the-art meth-
ods are reported in Table 4. Compared to the methods based
on GCN (SDL and SDFL), the SLPT (HRNet) achieves im-
pressive result, as low as 4.10% in NME. The result illus-
trates that the adaptive inherent relation of SLPT works bet-
ter than the fixed adjacency matrix of GCN for robust face
alignment, especially for the condition of heavy occlusion.

4.5. Ablation Study

Evaluation on different coarse-to-fine stages: to ex-
plore the contribution of the coarse-to-fine framework, we
train the SLPT with different number of coarse-to-fine
stages on the WFLW dataset. The NME, AUC0.1 and FR0.1

of each intermediate stage and the final stage are shown
in Table 5. Compared to the model with only one stage,
the local patches in multi-stages model evolve into a pyra-
midal form, which improves the performance of interme-
diate stages and final stage significantly. When the stage
increases from 1 to 3, the NME of the first stage decreases
dramatically from 4.79% to 4.38%. When the number of
stages is more than 3, the performance converges and addi-
tional stages cannot bring any improvement to the model.

Evaluation on MSA and MCA block: To explore
the influence of query-query inter relation (eq.1) and
representation-query inter relation (eq.3) created by MSA
and MCA blocks, we implement four different models
with/without MSA and MCA, ranging from 1 to 4. For
the models without MCA block, we utilize the landmark
representations as the queries input. The performance of
the four models are tabulated in Table 6. Without MSA
and MCA, each landmark is regressed merely based on the
feature of the supporting patches in model 1. Neverthe-
less, it still outperforms other coordinate regression meth-
ods because of the coarse-to-fine framework. When self-
attention or cross-attention is introduced into the model, the
performance is boosted significantly, reaching at 4.20% and
4.17% respectively in terms of NME. Moreover, the self-
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(a) MCA-layer 1 (b) MCA-layer 2 (c) MCA-layer 3 (d) MCA-layer 4 (e) MCA-layer 5 (f) MCA-layer 6

(g) MSA-layer 1 (h) MSA-layer 2 (i) MSA-layer 3 (j) MSA-layer 4 (k) MSA-layer 5 (l) MSA-layer 6

Figure 5. The statistical attention interactions of MCA and MSA in the final stage on the WFLW test set. Each row indicates the attention
weight of the landmark.

Method FLOPs(G) Params(M)
HRNet⋆ [34] 4.75 9.66

LAB [36] 18.85 12.29
AVS + SAN [26] 33.87 35.02

AWing [35] 26.8 24.15
DETR† (98 landmarks) [5] 4.26 11.00
DETR† (68 landmarks) [5] 4.06 11.00
DETR† (29 landmarks) [5] 3.80 10.99

SLPT† (98 landmarks) 6.12 13.19
SLPT† (68 landmarks) 5.17 13.18
SLPT† (29 landmarks) 3.99 13.16

Table 8. Computational complexity and parameters of SLPT and
SOTA methods. Key: [⋆=HRNetW18C, †=HRNetW18C-lite]]

attention and cross-attention can be combined to improve
the performance of model further.

Evaluation on structure encoding: we implement two
models with/without structure encoding to explore the influ-
ence of structural information. With structural information,
the performance of SLPT is improved, as shown in Table 7.

Evaluation on computational complexity: the com-
putational complexity and parameters of SLPT and other
SOTA methods are shown in Table 8. The computational
complexity of SLPT is only 1/8 to 1/5 FLOPs of the previ-
ous SOTA methods (AVS and AWing), demonstrating that
learning inherent relation is more efficient than other meth-
ods. Although SLPT runs three times for coarse-to-fine lo-
calization, patch embedding and linear interpolation proce-
dures, we do not observe a significant increasing of compu-
tational complexity, especially for 29 landmarks, because
the sparse local patches lead to less tokens.

Besides, the influence of patch size and inherent layer

number are shown in the Appendix A.4 and A.5.

4.6. Visualization

We calculate the mean attention weight of each MCA
and MSA block on the WFLW test set, as shown in Fig.5.
We find out that the MCA block tends to aggregate the rep-
resentation of the supporting and neighboring patches to
generate the local feature, while MSA block tends to pay
attention to the landmarks with a long distance to create the
global feature. That is why the MCA block can incorporate
with the MSA block for better performance.

5. Conclusion
In this paper, we find out that the inherent relation be-

tween landmarks is significant to the performance of face
alignment while it is ignored by the most state-of-the-art
methods. To address the problem, we propose a sparse
local patch transformer for learning a query-query and a
representation-query relation. Moreover, a coarse-to-fine
framework that enables the local patches to evolve into
pyramidal former is proposed to further improve the perfor-
mance of SLPT. With the adaptive inherent relation learned
by SLPT, our method achieves robust face alignment, espe-
cially for the faces with blur, heavy occlusion and profile
view, and outperforms the state-of-the-art methods signifi-
cantly with much less computational complexity. Ablation
studies verify the effectiveness of the proposed method. In
future work, the inherent relation learning will be studied
further and extended to other tasks.
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