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Abstract

Transformers have recently shown superior perfor-
mances on various vision tasks. The large, sometimes even
global, receptive field endows Transformer models with
higher representation power over their CNN counterparts.
Nevertheless, simply enlarging receptive field also gives
rise to several concerns. On the one hand, using dense
attention e.g., in ViT, leads to excessive memory and com-
putational cost, and features can be influenced by irrele-
vant parts which are beyond the region of interests. On the
other hand, the sparse attention adopted in PVT or Swin
Transformer is data agnostic and may limit the ability to
model long range relations. To mitigate these issues, we
propose a novel deformable self-attention module, where
the positions of key and value pairs in self-attention are
selected in a data-dependent way. This flexible scheme
enables the self-attention module to focus on relevant re-
gions and capture more informative features. On this basis,
we present Deformable Attention Transformer, a general
backbone model with deformable attention for both image
classification and dense prediction tasks. Extensive experi-
ments show that our models achieve consistently improved
results on comprehensive benchmarks. Code is available at
https://github.com/LeapLabTHU/DAT.

1. Introduction
Transformer [29] is originally introduced to solve natu-

ral language processing tasks. It has recently shown great
potential in the field of computer vision [11,23,31]. The pi-
oneer work, Vision Transformer [11] (ViT), stacks multiple
Transformer blocks to process non-overlapping image patch
(i.e. visual token) sequences, leading to a convolution-
free model for image classification. Compared to their
CNN counterparts [17,18], Transformer-based models have
larger receptive fields and excel at modeling long-range de-
pendencies, which are proved to achieve superior perfor-
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Figure 1. Comparison of DAT with other Vision Transformer mod-
els and DCN in CNN model. The red star and the blue star de-
note the different queries, and masks with solid line boundaries
denote the regions to which the queries attend. In a data-agnostic
way: (a) ViT [11] adopts full attention for all queries. (b) Swin
Transformer [23] uses partitioned window attention. In a data-
dependent way: (c) DCN [8] learns different deformed points for
each query. (d) DAT learns shared deformed points for all queries.

mance in the regime of a large amount of training data and
model parameters. However, the superfluous attention in vi-
sual recognition is a double-edged sword, and has multiple
drawbacks. Specifically, the excessive number of keys to
attend per query patch yields high computational cost and
slow convergence, and increases the risk of overfitting.

In order to avoid excessive attention computation, ex-
isting works [6, 10, 23, 31, 37, 40] have leveraged carefully
designed efficient attention patterns to reduce the computa-
tion complexity. As two representative approaches among

4794



them, Swin Transformer [23] adopts window-based local
attention to restrict attention in local windows, while Pyra-
mid Vision Transformer (PVT) [31] downsamples the key
and value feature maps to save computation. Though ef-
fective, the hand-crafted attention patterns are data-agnostic
and may not be optimal. It is likely that relevant keys/values
are dropped, while less important ones are still kept.

Ideally, one would expect that the candidate key/value
set for a given query is flexible and has the ability to adapt
to each individual input, such that the issues in hand-crafted
sparse attention patterns can be alleviated. In fact, in the
literature of CNNs, learning a deformable receptive field
for the convolution filters has been shown effective in se-
lectively attending to more informative regions on a data-
dependent basis [8]. The most notable work, Deformable
Convolution Networks [8], has yielded impressive results
on many challenging vision tasks. This motivates us to ex-
plore a deformable attention pattern in Vision Transform-
ers. However, a naive implementation of this idea leads to
an unreasonably high memory/computation complexity: the
overhead introduced by the deformable offsets is quadratic
w.r.t the number of patches. As a consequence, although
some recent work [7, 39, 44] have investigated the idea of
deformable mechanism in Transformers , none of them have
treated it as a basic building block for constructing a pow-
erful backbone network like the DCN, due to the high com-
putational cost. Instead, their deformable mechanism is ei-
ther adopted in the detection head [44], or used as a pre-
processing layer to sample patches for the subsequent back-
bone network [7].

In this paper, we present a simple and efficient de-
formable self-attention module. Equipped with it we design
a powerful backbone named Deformable Attention Trans-
former (DAT) for various vision tasks. Different from DCN
that learns different offsets for different pixels in the whole
feature map, we propose to learn a few groups of sampling
offsets shared by all queries to shift keys and values to im-
portant regions (as illustrated in Figure 1(d)), based on the
observation in [3, 42] that global attention usually results
in the almost same attention patterns for different queries.
This design both holds a linear space complexity and intro-
duces a deformable attention pattern to Transformer back-
bones. Specifically, for each attention module, reference
points are first generated as uniform grids, which are the
same across the input data. Then, an offset network takes
as input all query features and generates the corresponding
offsets for all reference points. In this way, the candidate
keys/values are shifted towards important regions, thus aug-
menting the original self-attention module with higher flex-
ibility and efficiency to capture more informative features.

To summarize, our contributions are as follows: we pro-
pose the first deformable self-attention backbone for visual
recognition, where the data-dependent attention pattern en-

dows higher flexibility and efficiency. Extensive experi-
ments on ImageNet [9], ADE20K [41] and COCO [22]
demonstrate that our model outperforms competitive base-
lines including Swin Transformer consistently, by a margin
of 0.7 on the top-1 accuracy of image classification, 1.2 on
the mIoU of semantic segmentation, 1.1 on object detection
for both box AP and mask AP. The advantages on small and
large objects are more distinct with a margin of 2.1.

2. Related Work
Transformer vision backbone. Since the introduction

of ViT [11], improvements [6, 10, 23, 24, 31, 37, 40] have
focused on learning multi-scale features for dense predic-
tion tasks and efficient attention mechanisms. These at-
tention mechanisms include windowed attention [10, 23],
global tokens [6, 19, 27], focal attention [37] and dynamic
token sizes [32]. More recently, convolution-based ap-
proaches have been introduced into Vision Transformer
models, among which exist researches focusing on com-
plementing transformer models with convolution operations
to introduce additional inductive biases. CvT [34] adopts
convolution in the tokenization process and utilizes stride
convolution to reduce the computation complexity of self-
attention. ViT with convolutional stem [36] proposes to
add convolutions at the early stage to achieve stabler train-
ing. CSwin Transformer [10] adopts a convolution-based
positional encoding technique and shows improvements on
downstream tasks. Many of these convolution-based tech-
niques can potentially be applied on top of DAT for further
performance improvements.

Deformable CNN and attention. Deformable convolu-
tion [8, 43] is a powerful mechanism to attend to flexible
spatial locations conditioned on input data. Recently it has
been applied to Vision Transformers [7,39,44]. Deformable
DETR [44] improves the convergence of DETR [4] by se-
lecting a small number of keys for each query on the top
of a CNN backbone. Its deformable attention is not suited
to a visual backbone for feature extraction as the lack of
keys restricts representation power. Furthermore, the at-
tention in Deformable DETR comes from simply learned
linear projections and keys are not shared among query to-
kens. DPT [7] and PS-ViT [39] builds deformable modules
to refine visual tokens. Specifically, DPT proposes a de-
formable patch embedding to refine patches across stages
and PS-ViT introduces a spatial sampling module before a
ViT backbone to improve visual tokens. None of them in-
corporate deformable attention into vision backbones. In
contrast, our deformable attention takes a powerful and yet
simple design to learn a set of global keys shared among
visual tokens, and can be adopted as a general backbone for
various vision tasks. Our method can also be viewed as a
spatial adaptive mechanism, which has been proved effec-
tive in various works [15, 33].
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Figure 2. An illustration of our deformable attention mechanism. (a) presents the information flow of deformable attention. In the left part,
a group of reference points is placed uniformly on the feature map, whose offsets are learned from the queries by the offset network. Then
the deformed keys and values are projected from the sampled features according to the deformed points, as shown in the right part. Relative
position bias is also computed by the deformed points, enhancing the multi-head attention which outputs the transformed features. We
show only 4 reference points for a clear presentation, there are many more points in real implementation de facto. (b) reveals the detailed
structure of the offset generation network, marked with sizes of input and output feature maps for each layer.

3. Deformable Attention Transformer

3.1. Preliminaries

We first revisit the attention mechanism in recent Vision
Transformers. Taking a flattened feature map x ∈ RN×C

as the input, a multi-head self-attention (MHSA) block with
M heads is formulated as

q = xWq, k = xWk, v = xWv, (1)

z(m) = σ(q(m)k(m)⊤/
√
d)v(m),m=1, . . . ,M, (2)

z = Concat
(
z(1), . . . , z(M)

)
Wo, (3)

where σ(·) denotes the softmax function, and d=C/M is
the dimension of each head. z(m) denotes the embedding
output from the m-th attention head, q(m), k(m), v(m) ∈
RN×d denote query, key, and value embeddings respec-
tively. Wq,Wk,Wv,Wo ∈ RC×C are the projection ma-
trices. To build up a Transformer block, an MLP block with
two linear transformations and a GELU activation is usually
adopted to provide nonlinearity.

With normalization layers and identity shortcuts, the l-th
Transformer block is formulated as

z′l = MHSA (LN(zl−1)) + zl−1, (4)
zl = MLP (LN(z′l)) + z′l, (5)

where LN is Layer Normalization [1].

3.2. Deformable Attention

Existing hierarchical Vision Transformers, notably PVT
[31] and Swin Transformer [23] try to address the challenge
of excessive attention. The downsampling technique of

the former results in severe information loss, and the shift-
window attention of the latter leads to a much slower growth
of receptive fields, which limits the potential of modeling
large objects. Thus a data-dependent sparse attention is re-
quired to flexibly model relevant features, leading to de-
formable mechanism firstly proposed in DCN [8]. How-
ever, applying DCN to Transformer models is a non-trivial
problem. In DCN, each element on the feature map learns
its offsets individually, of which a 3×3 deformable convolu-
tion on an H×W×C feature map has the space complexity
of 9HWC. If we directly apply the same mechanism in
the attention module, the space complexity will drastically
rise to NqNkC, where Nq, Nk are the number of queries and
keys and usually have the same scale as the feature map size
HW , bringing approximately a biquadratic complexity. Al-
though Deformable DETR [44] has managed to reduce this
overhead by setting a lower number of keys with Nk =4 at
each scale and works well as a detection head, it is inferior
to attend to such few keys in a backbone network because
of the unacceptable loss of information (see detailed com-
parison in Appendix). In the meantime, the observations
in [3, 42] have revealed that different queries have similar
attention maps in visual attention models. Therefore, we
opt for a simpler solution with shared shifted keys and val-
ues for each query to achieve an efficient trade-off.

Specifically, we propose deformable attention to model
the relations among tokens effectively under the guidance of
the important regions in the feature maps. These focused re-
gions are determined by multiple groups of deformed sam-
pling points which are learned from the queries by an offset
network. We adopt bilinear interpolation to sample features
from the feature maps, and then the sampled features are
fed to the key and value projections to get the deformed

4796



keys and values. Finally, standard multi-head attention is
applied to attend queries to the sampled keys and aggregate
features from the deformed values. Additionally, the loca-
tions of deformed points provide a more powerful relative
position bias to facilitate the learning of the deformable at-
tention, which will be discussed in the following sections.
Deformable attention module. As illustrated in Figure
2(a), given the input feature map x ∈ RH×W×C , a uni-
form grid of points p ∈ RHG×WG×2 are generated as the
references. Specifically, the grid size is downsampled from
the input feature map size by a factor r, HG = H/r,WG =
W/r. The values of reference points are linearly spaced 2D
coordinates {(0, 0), . . . , (HG − 1,WG − 1)}, and then we
normalize them to the range [−1,+1] according to the grid
shape HG ×WG, in which (−1,−1) indicates the top-left
corner and (+1,+1) indicates the bottom-right corner. To
obtain the offset for each reference point, the feature maps
are projected linearly to obtain the query tokens q = xWq ,
and then fed into a light weight sub-network θoffset(·) to gen-
erate the offsets ∆p = θoffset(q). To stabilize the training
process, we scale the amplitude of ∆p by some predefined
factor s to prevent the offset from becoming too large, i.e.,
∆p←− s tanh (∆p). Then the features are sampled at the
locations of deformed points as keys and values, followed
by projection matrices:

q =xWq, k̃ = x̃Wk, ṽ = x̃Wv, (6)
with ∆p = θoffset(q), x̃ = ϕ(x; p+∆p). (7)

k̃ and ṽ represent the deformed key and value embeddings
respectively. Specifically, we set the sampling function
ϕ(·; ·) to a bilinear interpolation to make it differentiable:

ϕ (z; (px, py))=
∑

(rx,ry)

g(px, rx)g(py, ry)z[ry, rx, :], (8)

where g(a, b) = max(0, 1 − |a − b|) and (rx, ry) indexes
all the locations on z∈RH×W×C . As g would be non-zero
only on the 4 integral points closest to (px, py), it simpli-
fies Eq.(8) to a weighted average on 4 locations. Similar
to existing approaches, we perform multi-head attention on
q, k, v and adopt relative position offsets R. The output of
an attention head is formulated as:

z(m) = σ
(
q(m)k̃(m)⊤/

√
d+ ϕ(B̂;R)

)
ṽ(m), (9)

where ϕ(B̂;R) ∈ RHW×HGWG correspond to the position
embedding following previous work [23] while with several
adaptations. Details will be explained later in this section.
Features of each head are concatenated together and pro-
jected through Wo to get the final output z as Eq.(3).
Offset generation. As we have stated, a sub-network is
adopted for offset generation which consumes the query

features and outputs the offset values for reference points
respectively. Considering that each reference point covers
a local s × s region (s is the largest value for offset), the
generation network should also have the perception of the
local features to learn reasonable offsets. Therefore, we im-
plement the sub-network as two convolution modules with
a nonlinear activation, as depicted in Figure 2(b). The input
features are first passed through a 5×5 depthwise convolu-
tion to capture local features. Then, GELU activation and a
1×1 convolution is adopted to get the 2D offsets. It is also
worth noticing that the bias in 1× 1 convolution is dropped
to alleviate the compulsive shift for all locations.
Offset groups. To promote the diversity of the deformed
points, we follow a similar paradigm in MHSA, and split the
feature channel into G groups. Features from each group
use the shared sub-network to generate the corresponding
offsets respectively. In practice, the head number M for the
attention module is set to be multiple times of the size of
offset groups G, ensuring that multiple attention heads are
assigned to one group of deformed keys and values.
Deformable relative position bias. Relative position bias
encodes the relative positions between every pair of query
and key, which augments the vanilla attention with spa-
tial information. Considering a feature map with shape
H×W , its relative coordinate displacements lie in the range
of [−H,H] and [−W,W ] for each of the two dimensions
respectively. In Swin Transformer [23], a relative posi-
tion bias table B̂ ∈ R(2H−1)×(2W−1) is constructed to
obtain the relative position bias B by indexing the table
with the relative displacements in two directions. Since our
deformable attention has continuous positions of keys, we
compute the relative displacements in the normalized range
[−1,+1], and then interpolate ϕ(B̂;R) in the parameterized
bias table B̂ ∈ R(2H−1)×(2W−1) by the continuous relative
displacements in order to cover all possible offset values.
Computational complexity. Deformable multi-head atten-
tion (DMHA) has a similar computation cost as the coun-
terpart in PVT or Swin Transformer. The only additional
overhead comes from the sub-network that is used to gen-
erate offsets. The complexity of the whole module can be
summarized as:

Ω(DMHA)=2HWNsC+2HWC2+2NsC
2︸ ︷︷ ︸

vanilla self-attention module

+(k2+2)NsC︸ ︷︷ ︸
offset network

,

(10)
where Ns = HGWG = HW/r2 is the number of sam-
pled points. It can be immediately seen that the compu-
tational cost of the offset network has linear complexity
w.r.t. the channel size, which is comparably minor to the
cost for attention computation. Typically, consider the third
stage of a Swin-T [23] model for image classification where
H=W =14, Ns=49, C=384, the computational cost for
the attention module in a single block is 79.63M FLOPs. If
equipped with our deformable module (with k=5), the ad-
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Figure 3. An illustration of DAT architecture. N1 to N4 are the numbers of stacked successive local attention and shift-window / deformable
attention blocks. k and s denote the kernel size and stride of the convolution layer in patch embeddings.

ditional overhead is 5.08M Flops, which is only 6.0% of the
whole module. Additionally, by choosing a large downsam-
ple factor r, the complexity will be further reduced, which
makes it friendly to the tasks with much higher input reso-
lution such as object detection and instance segmentation.

3.3. Model Architectures

We replace the vanilla MHSA with our deformable at-
tention in the Transformer (Eq.(4)), and combine it with
an MLP (Eq.(5)) to build a deformable vision transformer
block. In terms of the network architecture, our model, De-
formable Attention Transformer, shares a similar pyra-
mid structure with [7, 23, 26, 31], which is broadly appli-
cable to various vision tasks requiring multiscale feature
maps. As illustrated in Figure 3, an input image with shape
H ×W × 3 is firstly embedded by a 4×4 non-overlapped
convolution with stride 4, followed by a normalization layer
to get the H

4 ×
W
4 × C patch embeddings. Aiming to

build a hierarchical feature pyramid, the backbone includes
4 stages with a progressively increasing stride.

We introduce successive local attention and deformable
attention blocks in the third and the fourth stage of DAT.
The feature maps are firstly processed by a window-based
local attention to aggregate information locally, and then
passed through the deformable attention block to model the
global relations among the locally augmented tokens. This
alternate design of attention blocks with local and global re-
ceptive fields helps the model learn strong representations,
sharing a similar pattern in GLiT [5], TNT [14] and Point-
former [25]. Since the first two stages mainly learn local
features, deformable attention in these early stages is less
preferred. In addition, the keys and values in the first two
stages have a rather large spatial size, which greatly increase
the computational overhead in the dot products and bilin-
ear interpolations in deformable attention. Therefore we
only place deformable attention in the last two stages and
adopt the shift-window attention in Swin Transformer [23]
to learn better in the early stages. We build three variants
of DAT described in Table 1. Note that there are other de-
sign choices for the first two stages of DAT, e.g., the SRA
module in PVT. We show the comparison results in Table 7.

DAT Architectures
DAT-T DAT-S DAT-B

Stage 1
(56×56)

N1=1, C=96 N1=1, C=96 N1=1, C=128
window size: 7 window size: 7 window size: 7

heads: 3 heads: 3 heads: 4

Stage 2
(28×28)

N2=1, C=192N2=1, C=192 N2=1, C=256
window size: 7 window size: 7 window size: 7

heads: 6 heads: 6 heads: 8

Stage 3
(14×14)

N3=3, C=384N3=9, C=384 N3=9, C=512
window size: 7 window size: 7 window size: 7

heads: 12 heads: 12 heads: 16
groups: 3 groups: 3 groups: 4

Stage 4
(7×7)

N4=1, C=768N4=1, C=768N4=1, C=1024
window size: 7 window size: 7 window size: 7

heads: 24 heads: 24 heads: 32
groups: 6 groups: 6 groups: 8

Table 1. Model architecture specifications. Ni: Number of block
at stage i. C: Channel dimension. window size: Region size
in local attention module. heads: Number of heads in DMHA.
groups: Offset groups in DMHA.

4. Experiments

We conduct experiments on several datasets to verify the
effectiveness of our proposed DAT. We show our results
on ImageNet-1K [9] classification, COCO [22] object de-
tection and ADE20K [41] semantic segmentation tasks. In
addition, we provide ablation studies and visualizations to
further show the effectiveness of our method.

4.1. ImageNet-1K Classification

ImageNet-1K [9] dataset has 1.28M images for training
and 50K images for validation. We train three variants of
DAT on the training split and report the Top-1 accuracy
on the validation split to compare with other Vision Trans-
former models.

We follow the common training settings in Vision Trans-
formers [23, 31] and report our results in Table 2 under
the 300-epoch protocol. Compared with other state-of-the-
art Vision Transformers, our DATs achieve significant im-
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ImageNet-1K Classification
Method Resolution FLOPs #Param Top-1 Acc.
DeiT-S [28] 2242 4.6G 22M 79.8
PVT-S [31] 2242 3.8G 25M 79.8
GLiT-S [5] 2242 4.4G 25M 80.5
DPT-S [7] 2242 4.0G 26M 81.0
Swin-T [23] 2242 4.5G 29M 81.3
DAT-T 2242 4.6G 29M 82.0 (+0.7)

PVT-M [31] 2242 6.9G 46M 81.2
PVT-L [31] 2242 9.8G 61M 81.7
DPT-M [7] 2242 6.9G 46M 81.9
Swin-S [23] 2242 8.8G 50M 83.0
DAT-S 2242 9.0G 50M 83.7 (+0.7)

DeiT-B [28] 2242 17.5G 86M 81.8
GLiT-B [5] 2242 17.0G 96M 82.3
Swin-B [23] 2242 15.5G 88M 83.5
DAT-B 2242 15.8G 88M 84.0 (+0.5)

DeiT-B [28] 3842 55.4G 86M 83.1
Swin-B [23] 3842 47.2G 88M 84.5
DAT-B 3842 49.8G 88M 84.8 (+0.3)

Table 2. Comparisons of DAT with other vision transformer back-
bones on FLOPs, parameters, accuracy on the ImageNet-1K clas-
sification task.

provements on the Top-1 accuracy with similar computa-
tional complexities. Our method DAT outperforms Swin
Transformer [23], PVT [31], DPT [7] and DeiT [28] in
all three scales. Without inserting convolutions in Trans-
former blocks [12, 13, 30], or using overlapped convolu-
tions in patch embeddings [6, 10, 38], DATs achieve gains
of +0.7, +0.7 and +0.5 over Swin Transformer [23] counter-
parts. When finetuning at 384 × 384 resolution, our model
continues performing better than Swin Transformer by 0.3.
The detailed training configurations and more results com-
bining convolutions are presented in the appendix.

4.2. COCO Object Detection

COCO [22] object detection and instance segmentation
dataset has 118K training images and 5K validation images.
We use our DAT as the backbone in RetinaNet [21], Mask
R-CNN [16] and Cascade Mask R-CNN [2] frameworks to
evaluate the effectiveness of our method. We pretrain our
models on ImageNet-1K dataset for 300 epochs and follow
the similar training strategies in Swin Transformer [23] to
compare our methods fairly.

We report our DAT on RetinaNet model in 1x and 3x
training schedules. As shown in Table 3, DAT outper-
forms Swin Transformer by 1.1 and 1.2 mAP among tiny
and small models. When implemented in two-stage detec-
tors, e.g., Mask R-CNN and Cascade Mask R-CNN, our

RetinaNet Object Detection on COCO
Method FLOPs #Param Sch. AP AP50 AP75 APs APm APl

PVT-S 286G 34M 1x 40.4 61.3 43.0 25.0 42.9 55.7
Swin-T 248G 38M 1x 41.7 63.1 44.3 27.0 45.3 54.7
DAT-T 253G 38M 1x 42.8 64.4 45.2 28.0 45.8 57.8
PVT-S 286G 34M 3x 42.3 63.1 44.8 26.7 45.1 57.2
Swin-T 248G 38M 3x 44.8 66.1 48.0 29.2 48.6 58.6
DAT-T 253G 38M 3x 45.6 67.2 48.5 31.3 49.1 60.8
Swin-S 339G 60M 1x 44.5 66.1 47.4 29.8 48.5 59.1
DAT-S 359G 60M 1x 45.7 67.7 48.5 30.5 49.3 61.3
Swin-S 339G 60M 3x 47.3 68.6 50.8 31.9 51.8 62.1
DAT-S 359G 60M 3x 47.9 69.6 51.2 32.3 51.8 63.4

Table 3. Results on COCO object detection with RetinaNet [21].
The table displays the number of parameters, computational cost
(FLOPs), mAP at different mIoU thresholds and different object
sizes. The FLOPs are computed over backbone, FPN and detection
head with RGB input image at the resolution of 1280×800.

model achieves consistent improvements over Swin Trans-
former models in different sizes, as shown in Table 4. We
can see that DAT achieves most improvements on large ob-
jects (up to +2.1) due to the flexibility in modeling long-
range dependencies. The gaps for small objects detection
and instance segmentation are also pronounced (up to +2.1),
which shows that DATs also have the capacity of modeling
relations in the local region.

4.3. ADE20K Semantic Segmentation

ADE20K [41] is a popular dataset for semantic segmen-
tation with 20K training images and 2K validation images.
We employ our DAT on two widely adopted segmentation
models, SemanticFPN [20] and UperNet [35]. To make a
fair comparison to PVT [31] and Swin Transformer [23],
we follow the learning rate schedules and training epochs,
except for the degree of stochastic depth, which is a key
hyper-parameter affecting the final performance. We set it
for 0.3, 0.3 and 0.5 for tiny, small and base variants of our
DAT respectively for both two models. With the pretrain-
ing models on ImageNet-1K, we train SemanticFPN for 40k
steps and UperNet for 160k steps. In Table 5, we report the
results on the validation set with the highest mIoU score of
all methods. In comparison with PVT [31], our tiny model
outperforms PVT-S by +0.5 mIoU even with less FLOPs
and achieves a sharp boost with +3.1 and +2.5 in mIoU
with a slightly larger model size. Our DAT has a signif-
icant improvement over the Swin Transformer at each of
three model scales, with +1.0, +0.7 and +1.2 in mIoU re-
spectively, showing our method’s effectiveness.
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(a) Mask R-CNN Object Detection & Instance Segmentation on COCO
Method FLOPs #Param Schedule APb APb

50 APb
75 APb

s APb
m APb

l APm APm
50 APm

75 APm
s APm

m APm
l

Swin-T 267G 48M 1x 43.7 66.6 47.7 28.5 47.0 57.3 39.8 63.3 42.7 24.2 43.1 54.6
DAT-T 272G 48M 1x 44.4 67.6 48.5 28.3 47.5 58.5 40.4 64.2 43.1 23.9 43.8 55.5
Swin-T 267G 48M 3x 46.0 68.1 50.3 31.2 49.2 60.1 41.6 65.1 44.9 25.9 45.1 56.9
DAT-T 272G 48M 3x 47.1 69.2 51.6 32.0 50.3 61.0 42.4 66.1 45.5 27.2 45.8 57.1
Swin-S 359G 69M 1x 45.7 67.9 50.4 29.5 48.9 60.0 41.1 64.9 44.2 25.1 44.3 56.6
DAT-S 378G 69M 1x 47.1 69.9 51.5 30.5 50.1 62.1 42.5 66.7 45.4 25.5 45.8 58.5
Swin-S 359G 69M 3x 48.5 70.2 53.5 33.4 52.1 63.3 43.3 67.3 46.6 28.1 46.7 58.6
DAT-S 378G 69M 3x 49.0 70.9 53.8 32.7 52.6 64.0 44.0 68.0 47.5 27.8 47.7 59.5

(b) Cascade Mask R-CNN Object Detection & Instance Segmentation on COCO
Method FLOPs #Param Schedule APb APb

50 APb
75 APb

s APb
m APb

l APm APm
50 APm

75 APm
s APm

m APm
l

Swin-T 745G 86M 1x 48.1 67.1 52.2 30.4 51.5 63.1 41.7 64.4 45.0 24.0 45.2 56.9
DAT-T 750G 86M 1x 49.1 68.2 52.9 31.2 52.4 65.1 42.5 65.4 45.8 25.2 45.9 58.6
Swin-T 745G 86M 3x 50.4 69.2 54.7 33.8 54.1 65.2 43.7 66.6 47.3 27.3 47.5 59.0
DAT-T 750G 86M 3x 51.3 70.1 55.8 34.1 54.6 66.9 44.5 67.5 48.1 27.9 47.9 60.3
Swin-S 838G 107M 3x 51.9 70.7 56.3 35.2 55.7 67.7 45.0 68.2 48.8 28.8 48.7 60.6
DAT-S 857G 107M 3x 52.7 71.7 57.2 37.3 56.3 68.0 45.5 69.1 49.3 30.2 49.2 60.9
Swin-B 982G 145M 3x 51.9 70.5 56.4 35.4 55.2 67.4 45.0 68.1 48.9 28.9 48.3 60.4
DAT-B 1003G 145M 3x 53.0 71.9 57.6 36.0 56.8 69.1 45.8 69.3 49.5 29.2 49.5 61.9

Table 4. Results on COCO object detection and instance segmentation. The table displays the number of parameters, computational cost
(FLOPs), mAP at different IoU thresholds and mAP for objects in different sizes. The FLOPs are computed over backbone, FPN and
detection head with RGB input image at the resolution of 1280×800.

4.4. Ablation Study

In this section, we ablate the key components in our DAT
to verify the effectiveness of these designs. We report the
results on ImageNet-1K classification based on DAT-T.
Geometric information exploitation. We first evaluate
the effectiveness of our proposed deformable offsets and
deformable relative position embeddings, as shown in Ta-
ble 6. Either adopting offsets in feature sampling or us-
ing deformable relative position embedding provides +0.3
improvement. We also try other types of position embed-
dings, including a fixed learnable position bias and a depth-
wise convolution in [10]. But none of them is effective with
only +0.1 gain over that without position embedding, which
shows our deformable relative position bias is more compat-
ible with deformable attention. There is also an observation
from rows 6 and 7 in Table 6 that our model can adapt to dif-
ferent attention modules at the first two stages and achieve
competitive results. Our model with SRA [31] at the first
two stages outperforms PVT-M by 0.5 with 65% FLOPs.
Deformable attention at different stages. We replace the
shift-window attention of Swin Transfomer [23] with our
deformable attention at different stages. As shown in Table
7, only replacing the attention in the last stage improves by
0.1 and replacing the last two stages leads to a performance
gain of 0.7 (achieving an overall accuracy of 82.0). How-

ever, replacing with more deformable attention at the early
stages slightly decreases the accuracy.
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Ablation study on different offset range factors

Figure 4. Ablation study on dif-
ferent offset range factor s.

Ablation on different
s. We further study the
impact of different max-
imum offsets, i.e., the
offset range scale factor
s in the paper. We con-
duct an ablation experi-
ment of s ranging from
0 to 16 where 14 cor-
responds to the largest
reasonable offset given
the size of the feature
map (14×14 at stage 3).
As shown in Figure 4, the wide selection range of s shows
the robustness of DAT to this hyper-parameter. Practically,
we choose a small s=2 for all models in the paper without
additional tuning.

4.5. Visualization

To verify the effectiveness of deformable attention, we
use a similar mechanism to DCNs to visualize the most
important keys across multiple deformable attention layers
by propagating their attention weights. Specifically, from
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Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc mIoU†

PVT-S S-FPN 225G 28M 41.95 53.02 41.95
DAT-T S-FPN 198G 32M 42.56 54.72 44.22
PVT-M S-FPN 315G 48M 42.91 53.80 43.34
DAT-S S-FPN 320G 53M 46.08 58.17 48.46
PVT-L S-FPN 420G 65M 43.49 54.62 43.92
DAT-B S-FPN 481G 92M 47.02 59.47 49.01
Swin-T UperNet 945G 60M 44.51 55.61 45.81
DAT-T UperNet 957G 60M 45.54 57.95 46.44
Swin-S UperNet 1038G 81M 47.64 58.78 49.47
DAT-S UperNet 1079G 81M 48.31 60.44 49.84
Swin-B UperNet 1188G 121M 48.13 59.13 49.72
DAT-B UperNet 1212G 121M 49.38 61.82 50.55

Table 5. Results of semantic segmentation. The FLOPs are com-
puted over encoders and decoders with RGB input image at the
resolution of 512×2048. † denotes the metrics are reported under
a multi-scale test setting with flip augmentation. S-FPN is short
for SemanticFPN [20] model. The results of PVT and Swin Trans-
former are copied from their Github repositories, which are higher
than the versions in their original papers.

Attn. Offsets Pos. Emebd FLOPs #Param Acc. Diff.
S ✗ ✗ 4.57G 28.29M 81.4 -0.6
S ✗ Relative 4.57G 28.32M 81.7 -0.3
S ✓ ✗ 4.58G 28.29M 81.7 -0.3
S ✓ Fixed 4.58G 29.73M 81.8 -0.2
S ✓ DWConv 4.59G 28.31M 81.8 -0.2
P ✓ Relative 4.48G 30.68M 81.7 -0.3
S ✓ Relative 4.59G 28.32M 82.0 DAT

Table 6. Ablation study on different ways to exploiting geometric
information. P represents the first two stages use SRA attention
in [31], and S represents shift-window attention in [23]. ✓ in off-
sets means performing spatial sampling in deformable attention
module while ✗ means not.

Stages w/ Deformable Attention
FLOPs #Param Acc.

Stage 1 Stage 2 Stage 3 Stage 4
✓ ✓ ✓ ✓ 4.64G 28.39M 81.7

✓ ✓ ✓ 4.60G 28.34M 81.9
✓ ✓ 4.59G 28.32M 82.0

✓ 4.51G 28.29M 81.4
Swin-T [23] 4.51G 28.29M 81.3

Table 7. Ablation study on applying deformable attention on dif-
ferent stages. ✓ means this stage is made up of successive local
attention and deformable attention Transformer blocks.

Figure 5. Visualizations of the most important keys on COCO [22]
validation set. The orange circles show the key points with high-
est propagated attention scores at multiple heads. Larger radius
indicate higher score. Note that the bottom right image displays a
person waving a racket to hit a tennis ball.

the last deformable attention layer, we cumulatively multi-
ply the attention weights of each deformed keys to previous
layers, then average them among all queries to discover the
keys with the most contributions. As shown in Figure 5, our
deformable attention learns to place the keys mostly in the
foreground, indicating that it focuses on the important re-
gions of the objects, which supports our hypothesis shown
in Figure 1 of the paper. More visualizations can be found
in appendix.

5. Conclusion

This paper presents Deformable Attention Transformer,
a novel hierarchical Vision Transformer that can be adapted
to both image classification and dense prediction tasks.
With deformable attention module, our model is capable of
learning sparse-attention patterns in a data-dependent way
and modeling geometric transformations. Extensive experi-
ments demonstrate the effectiveness of our model over com-
petitive baselines. We hope our work can inspire insights
towards designing flexible attention techniques.
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