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Figure 1. Diverse restylized artworks from different backbones including AdaIN [14], Linear [20], SANet [26] and MST [41]. In the
first two rows, the first column is the source of the content image with the style image and the second column is the original artistic output,
the other columns are the output images with artistic styles discovered by our algorithm. In the last row, given a natural scene, our method
yields the other paintings.

Abstract

Style transfer has been well studied in recent years with
excellent performance processed. While existing methods
usually choose CNNs as the powerful tool to accomplish
superb stylization, less attention was paid to the latent style
space. Rare exploration of underlying dimensions results in
the poor style controllability and the limited practical ap-
plication. In this work, we rethink the internal meaning of
style features, further proposing a novel unsupervised algo-
rithm for style discovery and achieving personalized manip-

*Yi Li is the corresponding author.

ulation. In particular, we take a closer look into the mecha-
nism of style transfer and obtain different artistic style com-
ponents from the latent space consisting of different style
features. Then fresh styles can be generated by linear com-
bination according to various style components. Experi-
mental results have shown that our approach is superb in 1)
restylizing the original output with the diverse artistic styles
discovered from the latent space while keeping the content
unchanged, and 2) being generic and compatible for var-
ious style transfer methods. Our code is available in this
page: https://github.com/Shelsin/ArtIns.
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1. Introduction
The target of artistic style transfer is to transform the

style of one image into an arbitrary image, keeping the
latter’s content unchanged. The work in this topic has
seen rapid development in both academy and industry re-
cently. Convolutional neural networks (CNNs) [3, 8, 16] is
frequently used to achieve stylization because of its supe-
rior learning property and excellent performance, especially
VGG-net [35]. Besides CNNs, style transfer methods also
require large-scale datasets and more advanced neural net-
works to improve the quality of image generation. Never-
theless, it is still challenging to produce satisfying and con-
vincing artworks.

Starting from neural style transfer (NST) [7], recent
works tend to generate high-quality stylized image via two
main ways: iterative optimization [6, 23, 29] and feed-
forward network [9, 16, 40]. With the former, the prior
works rely on an optimization process to flexibly combine
content and style of arbitrary images, which requires a long
time to achieve stylization. The later achieves fast styl-
ization with a single forward pass, but a major limitation
of most feed-forward methods is that each network is re-
stricted to a fixed number of styles.

While achieving impressive results in artistic style trans-
fer, existing methods focus much on style extraction and
content reconstruction but ignore the significance of the
latent space. Although underlying knowledge learned by
these prior works can be transformed into the final output,
the real sense of them is less explored. In other words, the
essence of the stylization process is projecting the original
style features from the image space into the intermediate
space, then the decoder transforms the latent knowledge
back into the image space. During the process of style trans-
fer, most existing methods ignore the rich latent information
contained in the image space, which conducts limited style
controllability and diversity. Meanwhile, most of the pre-
vious methods need advanced devices like GPU with large
memory to train their models for diverse styles, which limits
their application to real-world scenarios.

In order to solve the problem, we propose a generally
applicable approach to discover a large number of artis-
tic styles via mathematical computation, which is unsu-
pervised and independent of any form of training. Our
method is named ArtIns as the short for Artistic Ingredi-
ents/Components Separation. In this work, we take a step
back and rethink the whole transfer process. After examin-
ing the relation between latent style features and the image
variation, we find that versatile styles can be divided into
multiple independent style components. According to these
style components, fresh styles can be obtained to produce
high-quality and controllable stylization results. In other
words, diverse artistic styles are discovered from the latent
space consisting of various style representations, which is

exhibited in Fig. 1. Extensive experiments based on popu-
lar pre-trained style transfer models(e.g., AdaIN [14], Lin-
ear [20], SANet [26] and MST [41]) indicate the effective-
ness and flexibility of our algorithm.

To summarize, the main contributions are as follows:

• We introduce a novel unsupervised algorithm that can
discover various styles from the latent space, advanc-
ing the ability of controllable stylization.

• We obtain the independent style components from the
mixed latent style dimensions in style transfer, result-
ing in multiple artistic stylizations and lowering com-
putational costs.

• Our method is generally applicable without training
and we demonstrate the effectiveness and flexibility
of our approach via abundant experiments on several
state-of-the-art style transfer models.

2. Related Works
2.1. Style Transfer

Style transfer aims to migrate the style of a painting to
a photograph, maintaining its original content. Initially,
Gatys et al [7] proposed an iterative method to transfer
styles by jointly minimising the distance of a white noise
image from the content representations and the style repre-
sentations. An increasing number of methods have been de-
veloped thereafter to advance the quality of stylization. For
instance, AdaIN [14], normalizing the mean and variance
of each feature map separately, was proposed to adaptively
combine the content and style. Considering the limitation
of learning a single style, transferring multiple styles into
one image with common content [3] is achieved by intro-
ducing conditional instance normalization. Besides, Avatar-
Net [33] utilizes a framework like U-net [30] to make up
the content features by semantically aligned style features,
preserving detailed style patterns and generating more plau-
sible artworks. Arbitrary style transfer in real-time [16] is
improved by minimizing perceptual loss which is the com-
bination of feature reconstruction loss as well as the style
reconstruction loss. Different from these, we set about style
discovery from the aspect of the latent space and achieve
various restylized results with low computation costs.

2.2. Image Editing

Disentangled representation is an unsupervised learning
technique that breaks down each feature into narrowly de-
fined variables and encodes them as separate dimensions.
Actually, many methods of unsupervised disentanglement
[2, 13, 17] have been achieved in general Generative Ad-
versarial Networks (GANs) [4, 5, 10, 12] and Variational
auto-encoders (VAEs) [18], since the former is an unsuper-
vised training method via unlabeled datasets and the latter
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can achieve similar effects by building a self-reconstruction
loss. Prior works [31, 39, 42] have already trained a lin-
ear classifier to accomplish the disentanglement of latent
dimensions for image editing, making remarkable results.
An unsupervised method of orthogonalization [32] is intro-
duced to discover latent semantics to generate realistic im-
ages with target attributes. The latent space distiller [34]
is used to achieve attribute disentanglement and GANSpace
[11] performs PCA on the sampled data to find primary di-
rections in the latent space. However, most of these meth-
ods only work under certain conditions, such as a clearly
defined target attribute classifier, data sampling or model
training. It is challenging and tough to separate latent style
directions since the relation among underlying dimensions
is complicated, especially in style transfer. In this paper,
we propose an algorithm to discover various artistic styles
via algebraic operation without any parameters and data to
learn or train.

3. Method

We introduce an unsupervised algorithm ArtIns to dis-
cover diverse styles from the latent space consisting of di-
verse style features. Specifically, we rethink the sense of
the style features and find that the latent style representa-
tions may be composed of multiple independent style com-
ponents. These style components can be captured from the
latent style space by mathematical operations. Finally, new
styles are synthesized by linearly combining style ingredi-
ents with different coefficients.

3.1. Basic Architecture of Style Transfer Models

In style transfer, the basic architecture of most exist-
ing methods [7, 22, 23, 33] is the encoder-decoder network
framework. Both the content image of photograph and the
style images of painting Ic, Is ∈ Rh×w×c are first trans-
formed into different latent space C, S ⊆ Rn via a encoder
network E. Then content features c ∈ C and style fea-
tures s ∈ S are projected into the common n-dimensional
latent space Z ⊆ Rn by an affine transformation. After
that, decoder D is responsible for generating novel image
I ∈ Rh×w×c with latent code z ∈ Z combining content
features and style features. Generally speaking, advanced
encoder plays an essential role in the whole style transfer
process for more detailed and accurate style features, which
can help the decoder produce high-quality stylized artwork.
A pre-trained VGG-net [35] is usually selected as the en-
coder to obtain content representations and style represen-
tations. For better discussion, we first denote the encoding
process of a style image as follow:

s = E(Is) (1)

3.2. Rethinking the Role of Style Features s

In order to study how the stylized image behaves when
the style representations change, we take a deep look to the
whole process of style transfer. Taking AdaIN model [14]
as an example for analysis, the latent code z is projected to
a stylized image layer by layer via the decoder. The image
variation may be related to the internal ingredients of the
latent code z. Considering the style representations, we set
µs and σs denotes the mean and standard deviation of the
style image features s respectively. AdaIN [14] applies a
style-defined affine transformation to normalize the content
features c shown as Eq. (2):

z = AdaIN(c, s) = σs(
c− µc

σc
) + µs (2)

where µc and σc are the mean and standard deviation over
the content feature channel. We name the first convolution
layer of the decoder network as conv1, which directly acts
on the latent code z. Based on Eq. (2), the partial convo-
lution effect conv1(s) can be separated from conv1(z) be-
cause of µs and σs. So we suppose that the latent style
feature s is the root factor to control the whole style of final
generated artwork. However, we gain no rule of the change
from one image style to another, resulting in the poor style
controllability.

3.3. Exploration of Internal Style Space

In recent decades, there are numerous applications where
the data can be represented by the linear combination of
other samples. For instance, each individual face can be
represented exactly as the linear combination of eigenfaces
[1]. Inspired by the Fourier transform [38], time-domain
and frequency-domain analysis of signals [25, 27, 36], we
argue that the style features s is mixed after encoding the
style image, which can be seen as the discrete series shown
in Eq. (3):

si = [styi1, styi2, · · · · · · , styin] (3)

where si ∈ S denotes the latent style representations of the
i-th style image. And styit represents the t-th dimensional
representation of si, which can be regarded as the sample
value in the discrete series at the time t = 1, 2, 3, · · · , n.
According to the discrete Fourier transform [37], an arbi-
trary signal can be easily manipulated merely by represent-
ing it as a linear combination of simple and mathematically
well-defined signals. In other words, the style features si
can be separated as multiple independent components. Lin-
ear combination of these independent components with dif-
ferent coefficients results in versatile styles.

3.4. Artistic Ingredients Separation

In Sec. 3.2 and Sec. 3.3, we take a step back and re-
analyze the sense of the style features, which consists of
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Figure 2. The style features are linear sum of style components where the mixed matrix SFn×m can be divided into the mixing matrix
Ap×m and style components Vn×p.

various independent style components. We define one sin-
gle style component vector vx ∈ Rn as Eq. (4) where
x = 1, 2, 3, · · · , p and p represents the number of indepen-
dent style component vectors.

vx = [elex1, elex2, · · · · · · , elexn] (4)

Here, elexn represents the n-th element in the compo-
nent vector vx. For the i-th style image, the latent style
feature vector si can be denoted as the linear sum of p style
component vectors, which is shown in Eq. (5):

si = V ·ai = v1 ·coffi1+v2 ·coffi2+· · ·+vp ·coffip (5)

where ai = [coffi1, coffi1, · · · , coffip] is the coefficient
of linear sum for independent component vectors. We sam-
plem style images and utilize the style encoder to transform
them into latent style representations, which are ingredients
of the style feature matrix SF ∈ Rn×m. The coefficients
of linear sum for each style vector can be constructed as the
coefficient matrix A ∈ Rp×m and p independent style com-
ponent vectors is defined as matrix V ∈ Rn×p. Then we
can gain the relation as follow:

SFn×m = Vn×p ·Ap×m (6)

By observing Eq. (6), we suppose that it can be trans-
formed into the cocktail party problem. In details, matrix V
is the source signals and the coefficient matrixA is a mixing
matrix. Then the style features matrix SF can be seen as the
mixture signals. The whole mixing steps is shown in Fig. 2.
In this work, we make advantages of FastICA [15,19] algo-
rithm to obtain each independent style component vector.

3.5. Implementation on Artistic Models

We have introduced an unsupervised algorithm to dis-
cover styles from latent space consisting of diverse style
features. Actually, our algorithm can be effectively per-
formed in various style transfer methods which are based
on the encoder-decoder network framework. In this part,
we describe how to embed our algorithm into representative

style transfer networks, such as AdaIN [14], Linear [20],
SANet [26] and MST [41].

All of the artistic methods above conduct a combina-
tion of content features and style features in different ways.
For instance, AdaIN [14] has no learnable affine parame-
ters to integrate two kinds of features by simply aligning
the channel-wise mean and variance of content features to
match those of style features. Linear [20] and SANet [26]
achieve the feature fusion via a module that contains several
convolutional transformations. After centering two kinds of
features by subtracting their mean vectors, MST [41] blends
content features with transferred features made by feature
whitening and coloring as used in WCT [21]. No matter
how these methods integrate content code and style code,
we obtain independent style components only from multiple
style features after encoding. We gather these latent style
representations like a combination and style components
can be separated from the latent combinative space. Finally,
changing the style code according to each style component
vector to generate fresh stylized images.

3.6. Discussion

Difference from Interpolation. Both the method of in-
terpolation and our algorithm can achieve the diversity of
fresh stylized images, but the computational cost and the
stylized effect make difference. Compared to the method
of interpolation, our algorithm only requires a small dataset
of style images to separate basic style ingredients. These
style components can be reconstructed back into the orig-
inal styles or even be linearly grouped into various new
styles that do not exist in the style dataset. For the interpola-
tion in artistic models, a large-scale style dataset is needed
to bulid multiple style features via the encoder instead of al-
gebraic manipulation, which is time and energy consuming.
And the generated artwork is equipped with the mixture of
different style features because of interpolation, which is
difficult to control the changing direction of artistic styles.

Deep Network vs. Conventional Signal Analysis. At
start, we have considered to use a deep network to achieve
the decomposition but find it inappropriate. 1) We need
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Figure 3. Various generated artworks via random linear combination of style components conducted in four methods including
AdaIN [14] (the first two rows), Linear [20] (the third row), SANet [26] (the fourth and fifth rows) and MST [41] (the last row). The
first column is the source image of the content with the source image of the style and the second column is the original output. The other
columns are diverse artworks with new styles generated by setting random coefficients of linear sum.

to set an appropriate loss function between every two style
components to decrease their correlation, which is a super
large computation cost. 2) The essence of feature maps is
the mixture of the most style components, which is hard to
learn the independent style component. 3) It is inconvenient
to retrain the network when embedded into different artistic
methods.On the other hand, it is more reasonable to explore
the style feature than the raw image. We argue that divid-
ing the images only obtain the external pixel information
about RGB channels, while the style feature holds compact
and abstract style information. ArtIns can be applied to the
generated artworks and reconstruct the original output.

4. Experiments

In this section, we conduct different experiments on a
wide range of artistic models, which indicates the flexibility
of our method. We first introduce the basic preparation and

related parameters setting before processing experiments.
Then we evaluate the performance of our method, using our
algorithm to discover various styles. Besides, we utilize de-
tached style components to achieve image editing and beau-
tification, which demonstrates the application scenarios of
our method. In a nutshell, we discuss the following topics
in this section:

• Whether our algorithm can generate diverse artistic
styles?

• Does these independent style components make sense?

• Whether the original styles can be reconstructed via
independent components?

4.1. Artistic Models and Datasets

Artistic Models. We evaluate the unsupervised algo-
rithm on four state-of-the-art artistic models, AdaIN [14],
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Figure 4. Interpolation of style components on SANet [26]. The
first column is the image of natural scenes and the other columns
are the variation between two artistic style components discovered
by our method. The parameters in parentheses represent the pro-
portion of two style components.

Linear [20], SANet [26] and MST [41] respectively. Our
experiments of these methods can be simply operated on
both CPU and general GPU devices.

Datasets. We adopt the MS-COCO dataset [24] as the
content images and the WikiArt dataset [28] as the style im-
ages. Both datasets contain tens of thousands of images and
we resize every input image to 512×512 in our experiment.
Based on a large body of style data, we demonstrate that a
sufficient number of examples and style components is re-
quired for the ICA decomposition. Unless otherwise speci-
fied, we sample 512 style images from the WikiArt [28] to
be projected into the latent style space and we assume each
style vector consists of 512 independent style component
vectors.

4.2. The Diversity of Generated Artistic Styles

In Sec. 3, we make a deep analysis of latent style features
and discover that each style vector can be decomposed into
multiple independent style component vectors. These style
ingredients can be linearly grouped into another fresh style
which do not exist in the style dataset. We verify the di-
versity of generated styles in two ways: one is making a
linear combination of style components with random coef-
ficients, the other is conducting the interpolation of style
components.

Linear Combination of Style Components. In order to
verify the effectiveness of our method, we set random coef-
ficients of linear sum to build diverse new styles as shown in
Fig. 3. The experimental results are obtained on four artis-
tic models, which are AdaIN [14], Linear [20], SANet [26]
and MST [41] respectively. By observing the results, we
can find that there is significant difference between the orig-

Figure 5. Artwork adjustment based on color tone in different
artistic methods, including AdaIN [14], Linear [20], SANet [26]
and MST [41]. For each set of images, the first column is the
source of the content image with the style image, the second col-
umn is the original artistic output, and the last two columns are
the output images by changing the style code according to style
components found by our method.

inal stylized image and other generated artworks with ran-
dom styles. Each fresh artwork not only owns its special
style features but also keeps its original content features
well. We utilize different coefficients to achieve linear sum
of style components, resulting in various new styles, which
demonstrates the diversity of artistic styles discovered by
our method. Meanwhile, the results tell us that our algo-
rithm possesses strong flexibility.

Interpolation of Style Components. We conduct our
experiments on SANet [26] to demonstrate the diversity of
artistic styles. Fig. 4 gives some experimental results. From
the results, we gain that each component vector has its spe-
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Figure 6. Artwork adjustment on SANet [26]. We give two style
images from Van Gogh, then we adjust the coefficients to make
the original artworks become the sketch and Picasso styles which
are not in the datasets.

cial style features and controls different style effects. Dif-
ferent style components can be interpolated to get diverse
styles. For example, we can discover two components that
control the yellow and blue respectively as shown in the
first row in Fig. 4. By setting different interpolation param-
eters, we can obtain a change in style from yellow to green
to blue. Similarly, we can overlay other style components
controlling the line, texture, shape, etc, which also verifies
the latent style representations can be divided into multiple
independent components.

4.3. The Sense of Style Components

In this part, we show more effective experimental results
to verify the meaning of independent style components.
Next step, we study how to integrate these style components
to achieve the image editing and beautification.

Color Tone for Artwork. By abundances of experi-
ments, we discover that some style components can control
different variation. These components can be given explicit
property definitions, such as exposure, brightness, defini-
tion, contrast, saturation, color temperature, etc. Fig. 5
gives some examples. In order to modify related categories,
we allow four methods, including AdaIN [14], Linear [20],
SANet [26] and MST [41], to extend their latent style code
by increasing the proportion of corresponding artistic style
components discovered by our algorithm. In this way, we
can edit and beautify various artworks. In some situations,
it may be more convenient to find a suitable style image.
However, the available artworks are limited in practice and
may not convey the desired style. When there is no proper
reference by hand, our method provides effective solution
by modifying the components. Besides primary character-
istics as brightness and contrast, ArtIns can also edit more
complex attributes, including the textures of wave, sketch
and spot. Fig. 6 gives an example.

Stylization of Natural Scenes. Generally speaking, the
image of the natural scene needs the image of paintings as
the style guideline for most artistic models, which is time

Figure 7. Versatile artworks of natural scene stylization on
AdaIN [14], Linear [20], SANet [26] and MST [41]. For each
set of images, the first column is the image of natural scenes and
the other columns are the fresh artistic outputs with new styles dis-
covered by our method.

and energy consuming to collect a large number of style im-
ages and increase the computational costs. In this work, we
find that some special style components can control differ-
ent artistic effects, such as sketch, oil painting, etc. For the
natural image, we use the encoder to make its style as the
original style features. Then we can replace or extend the
latent style representation to stylize the natural scene with-
out other style images as guideline. Fig. 7 shows experi-
mental results based on four models, including AdaIN [14],
Linear [20], SANet [26] and MST [41].

4.4. The Effect of Style Reconstruction

In order to verify the original styles can be recovered
with independent style components, we utilize the mixing
matrix A and style components V to reconstruct the origi-
nal styles as much as possible. Fig. 8 shows the results of
style reconstruction based on four artistic models, includ-
ing AdaIN [14], Linear [20], SANet [26] and MST [41]. By
observing the results, we argue that the style features can
be exactly divided into a lot of independent style compo-
nents and these components can be linearly combined into
the original styles. Besides, we compute the mean square
error (MSE-loss) between the style code of style image and
that of the original artistic output (OS). We also compute
the style loss of style reconstruction (RS). Tab. 1 gives the
specific information. We argue that it is challenging to
completely recover the original styles because these style
components are not absolutely independent as discussed in
Sec. 4.5, which requires further study.
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Figure 8. Style Reconstruction on AdaIN [14], Linear [20], SANet [26] and MST [41] according to the mixing matrix A. For each set
of images, the first two columns are the image of content and style respectively. The other columns of the first row are the original artistic
outputs and that of the second row are the fresh artworks with reorganized styles.

Table 1. The style loss of the output before and after style recon-
struction.

Method OS RS

AdaIN [14] 0.29 1.17
Linear [20] 0.09 0.34
SANet [26] 0.04 0.19
MST [41] 0.25 0.69

4.5. Limitations

Our method is achieved under the assumption that the
style features are linearly combined by multiple indepen-
dent style components. Hence ArtIns may not be well ap-
plied if the style features are nonlinearly combined by style
components, which is hard to be defined for its complex in-
gredient composition. In our experiments, we find that there
exists style components that effect more than one element.
For example, the line width would also be changed when we
modify a color. But we also discover that the component of
green can be replaced by linearly combing the components
of yellow and blue. There might be some nonlinear relation
between style components, which is rather challenging and
complex to learn.

5. Conclusion
In this paper, we have proposed a novel unsupervised

algorithm to address the style controllability by discovering
artistic styles with independent components. Specifically,
we rethink the meaning of the style features and find that
the latent style representations can be divided into multiple
style ingredients. We take full advantage of rich latent
knowledge to obtain these independent style components.
Then various fresh styles can be generated by linearly
assembling the style components. Extensive experiments
on four artistic methods show that our algorithm not only
controls the style changing direction of the images but
also is generic and compatible for various style transfer
methods. Compared to state-of-the-art methods, our
unsupervised method requires no parameter to learn or
train, which is more flexible, efficient and practical.
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