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Abstract

Robustness and discrimination power are two fundamen-
tal requirements in visual object tracking. In most tracking
paradigms, we find that the features extracted by the pop-
ular Siamese-like networks cannot fully discriminatively
model the tracked targets and distractor objects, hinder-
ing them from simultaneously meeting these two require-
ments. While most methods focus on designing robust cor-
relation operations, we propose a novel target-dependent
feature network inspired by the self-/cross-attention scheme.
In contrast to the Siamese-like feature extraction, our net-
work deeply embeds cross-image feature correlation in mul-
tiple layers of the feature network. By extensively matching
the features of the two images through multiple layers, it is
able to suppress non-target features, resulting in instance-
varying feature extraction. The output features of the search
image can be directly used for predicting target locations
without extra correlation step. Moreover, our model can
be flexibly pre-trained on abundant unpaired images, lead-
ing to notably faster convergence than the existing methods.
Extensive experiments show our method achieves the state-
of-the-art results while running at real-time. Our feature
networks also can be applied to existing tracking pipelines
seamlessly to raise the tracking performance.

1. Introduction
Visual object tracking (VOT) is a long-standing topic in

computer vision. There are two fundamental yet competing
goals in VOT: on one hand, it needs to recognize the target
undergoing large appearance variations; on the other hand,
it needs to filter out the distractors in the background which
may be very similar to the target.

Most appearance-based approaches address this chal-
lenge in two perspectives: the first is to learn a more expres-
sive feature embedding space by Siamese-like extraction
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Figure 1. Comparison with the state-of-the-arts on GOT-10k [19].
We visualize the AO performance with respect to the model size.
All reported trackers follow the official GOT-10k test protocol.
Our SBT tracker achieves superior results while multiple trackers
(with suffix “CA”) can benefit from our correlation-aware features.

network [22,58]; the second is to develop a more robust cor-
relation operation, such as Siamese cropping [23,58], online
filter learning [3, 18] and Transformer-based fusion [5, 50].
Since the modern backbones [17, 34] become the main-
stream choice in deep era, most trackers devote to the cor-
relation operation, hoping to discriminate targets from dis-
tractors given their features. Despite their great success, few
of these tracking paradigms notice that the two competing
goals may put the feature network into a target-distractor
dilemma, bringing much difficulties to the correlation step.
The underlying reasons are three folds: 1) The Siamese en-
coding process is unaware of the template and search im-
ages, which weakens the instance-level discrimination of
learned embeddings. 2) There is no explicit modelling for
the backbone to learn the decision boundary that separates
the two competing goals, leading to a sub-optimal embed-
ding space. 3) Each training video only annotates one sin-
gle object while arbitrary objects including distractors can
be tracked during inference. This gap is further enlarged by
2). Our key insight is that feature extraction should have dy-
namic instance-varying behaviors to generate “appropriate”
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Figure 2. (a1) standard Siamese-like feature extraction; (a2) our target-dependent feature extraction; (b1) correlation step, such as Siamese
cropping correlation [23], DCF [11] and Transformer-based correlation [5] ; (b2) our pipeline removes separated correlation step; (c)
prediction stage; (d1)/(d2) are the TSNE [36] visualizations of search features in (a1)/(a2) when feature networks go deeper.

embeddings for VOT to ease the dilemma. In more details,
it needs to generate coherent features for the same object in
all frames of a video in spite of the variations; on the other
hand, it needs to generate contrasting features for the target
and distractors with similar appearance.

To this end, we present a novel dynamic feature net-
work on top of the attention scheme [37]. As shown in
Fig.2 (a2), our Single Branch Transformer (SBT) network
allows the features of the two images to deeply interact with
each other at the stage of feature extraction. Intuitively, the
cross-attention weights gradually filter out target-irrelevant
features layer by layer while the self-attention weights en-
rich the feature representations for better matching. Thus,
the feature extraction process is target-dependent and asym-
metrical for image pair, allowing the network to achieve
a win-win scenario: it differentiates the target from simi-
lar distractors while preserving the coherent characteristics
among dissimilar targets. The effectiveness of features from
SBT is validated in Fig. 2 (d2). The features belonging to
the target (green) become more and more separated from the
background (pink) and distractors (blue) while the search
features from Siamese extraction are totally target-unaware.

The overall framework of SBT is shown in Fig. 3. It has
three model stages on top of Extract-or-Correlation (EoC)
blocks. The patch embedding produces embeddings for the
template and search images. Then the embeddings are fed
to the stacked EoC blocks. There are two variants of EoC,
i.e. EoC-SA and EoC-CA, which use Self-Attention (SA)
and Cross-Attention (CA) as its core operator, respectively.
The EoC-SA block fuses features within the same image
while the EoC-CA block mixes features across images. The
output features of the search image are directly fed to the
prediction heads to obtain a spatial score map and a size
embedding map. Our key technical innovation is introduc-
ing one single stream for template and search image pair
processing that jointly extract or correlate through homoge-
neous attention-based blocks. Thus, SBT can be pre-trained
on abundant unpaired images such as ImageNet [33], lead-
ing to a fast convergence in the fine-tune on tracking.

Extensive experiments are conducted to compare dif-
ferent SBT network designs. Based on the insights, we

summarize a number of general principals. Our method
achieves superior performance and improves Siamese, DCF
and Transformer-based trackers as can be seen in Fig. 1.
The main contributions of this work are as follows:
• We present a novel tracking framework which allows the

features of the search and template image to be deeply
fused for tracking. It further improves existing popular
tracking pipelines. To our best, we are the first to propose
a specialized target-dependent feature network for VOT.

• We conduct a systematic study on SBT tracking both
experimentally and theoretically, and summarize several
general principles for following works.

The rest of the paper is organized as follows. We discuss
related work in Sec. 2. The SBT framework is presented
in Sec. 3. Then, we conduct empirical studies and theo-
retical analysis on SBT in Sec. 4 and Sec. 5, respectively.
Finally, we provide extensive experimental results in Sec. 6
and conclude the paper in Sec. 7.

2. Related Work
Visual Tracking. The Siamese network [2] based trackers
have drawn great attention in recent years. By introducing
the powerful backbones [22, 58] and elaborated prediction
networks [16, 23, 49], Siamese trackers obtain superior per-
formance. However, the offline target matching with a shal-
low correlation structure [2] lacks of discriminative power
towards distractors. Then, the dedicated modifications rise,
including attention mechanism [15, 41, 54], online mod-
ule [59, 61], cascaded frameworks [7, 14, 39], update mech-
anism [55] and target-aware model fine-tuning [24,38]. De-
spite the improvements, most of them bring much complex-
ity to the Siamese tracking pipeline. Instead, our target-
dependent feature network can upgrade the original network
seamlessly. Moreover, our feature network formulates a
novel and conceptually simple tracking pipeline by remov-
ing the separated correlation step in Siamese trackers.

Discriminative Correlation Filter (DCF) tracker [18]
learns a target model by solving least-squares based regres-
sion online. It is further improved by fast gradient algo-
rithm [11], end-to-end learning [3, 60] and CNN-based size
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Figure 3. (a) architecture of our proposed Single Branch Transformer for tracking. Different from Siamese, DCF and Transformer-based
methods, it does not have a standalone module for computing correlation. Instead, it embeds correlation in all Cross-Attention layers which
exist at different levels of the networks. The fully fused features of the search image are directly fed to Classification Head (Cls Head) and
Regression Head (Reg Head) to obtain localization and size embedding maps. (b) shows the structure of a Extract-or-Correlation (EoC)
block. (c) shows the difference of EoC-SA and EoC-CA. PaE denotes patch embedding. LN denotes layer normalization.

estimation [1, 52]. However, DCF is highly sensitive to the
complex handcrafted optimization, as well as the quality
of features which may lack of instance-level discrimination
under challenging scenarios. To improve this, our discrimi-
native target-dependent features can greatly lighten the bur-
den for the online DCF.

Recent rising Transformer-based methods [5, 40, 46, 50,
53] exploit the long-range modelling of Transformer to ef-
fectively fuse the features. Thus, they can track robustly
without online learning. However, the Transformer [37]
mainly designed for language processing domain is difficult
to be initialized properly for vision tasks during training, re-
sulting in enormous costs. Instead of using Transformer as
fusion module [5, 50, 52], we leverage the attention scheme
to dynamically generate customized features which estab-
lish the hierarchical fine-grained correspondence between
target and search area.

Vision Backbone. Modern CNNs [17, 34] generally serve
as the backbone network in vision tasks. Recently, Vision
Transformer (ViT) [12, 26, 43], guided by the principles
from CNN, achieves impressive results as vision backbone.
Deeper and more effective architectures are the two pillars
of powerful backbones, which boost numerous downstream
tasks. Similarly, the improvements brought by powerful
backbone in VOT mainly attribute to the more expressive
feature embedding [22, 58], which has subtle differences to
other tasks, e.g. object detection. However, the dynamic
nature of VOT actually requires asymmetrical encoding for
template and search image, which has not been given suf-
ficient attention in most prior works. By considering that,
we propose a dynamic instance-varying backbone for VOT,
beyond only pursuing an expressive embedding.

3. Architecture

This section introduces the overall architecture of our
Single Branch Transformer (SBT) (Fig. 3) as well as its
main building block (EoC block). Then, in the next section,
we evaluate a number of instantiations of the architecture
followed by a summary of favorable design principals.

3.1. Patch Embedding

Our model takes two images as input, comprising a tem-
plate image z ∈ R3×Hz×Wz and a larger search image
x ∈ R3×Hx×Wx . In general, z is centered on the target
object while x represents a larger region in the subsequent
frame which contains the target. In the Patch Embedding
(Pa.E) stage, the two images are fed to a convolutional layer
φ0
p with kernel size 7 × 7 and stride 4, followed by a layer

normalization (LN) layer. It embeds the images into feature
maps of f0

z and f0
x , respectively.

f0
z , f

0
x = LN(φ0

p(z)),LN(φ0
p(x)), (1)

where f0
z ∈ RC0×Hz

4 ×Wz
4 , f0

x ∈ RC0×Hx
4 ×Wx

4 and C0 is
the number of channels.

3.2. Extract-or-Correlation Block

EoC block which can simultaneously implement Self-
Attention (SA) and Cross-Attention (CA) is the main build-
ing block. Intuitively, they gradually fuse features from
the same and different images, respectively. It is known
that computing attention globally among all tokens leads to
quadratic complexity [26]. To address this, there are a num-
ber of works which attempt to reduce the computation cost.
We present a general formulation for different efficient at-
tention methods. On top of the formulation, we describe our
SA and CA operations.

Let χ(.) denote a function that reshapes/arranges a fea-
ture maps into the desired form. The function varies for
different methods. We compute the q, k, v features as:

qi = [χq(fi)]
Tωq, i ∈ {z, x},

ki = [χk(fi)]
Tωk, i ∈ {z, x},

vi = [χv(fi)]
Tωv, i ∈ {z, x},

(2)

where {ωq, ωk, ωv} represent linear projections.
The Vanilla Global attention (VG) [12] computes atten-

tion among all tokens. So {χq, χk, χv} represent iden-
tity mapping. The Spatial-Reduction Global attention
(SRG) [43, 56] uses a convolution with a stride larger than
one (i.e. {χk, χv}) to reduce the spatial resolution of the
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Table 1. The left part compares different factors of SBT including attention computation methods (ATTN), position encoding methods
(PE), patch embedding methods (PaE), number of model parameters and flops. The right part compares the rest of factors based on A5

(described in the left part) such as the feature dimensions (DIM) and the number of blocks (BLK), as well as the stride of the feature maps
in each stage. All models unless explained follow the same setting: training from scratch, interleaved EoC-SA/EoC-CA block in the third
stage, 128× 128 for template image and 256× 256 search image.

Setting A1
1 A2

2 A3 A4 A5 A6 A7 Setting B1 B2 B3 B4 B5 B6 B7 B8

Refer to [12] [26] [56] [43] [43] [43] [8] DIM(1,2) [64, 128] [64, 128] [64, 128] [64, 128][64, 128] [64, 128] [64, 128][32, 64]
ATTN VG SL SRG SRG SRG SRG VL/SRG DIM(3,4) [320] [320,512] [320,512] [512] [320] [320,512] [320] [320]

PE Abs Rel Cond Cond Cond Rel Cond BLK [3,4,10] [4,2,6,1] [2,2,6,2] [2,2,4] [3,4,10] [2,4,6,1] [3,4,12] [3,4,10]
PaE H1

3 H2
3 Conv H2

3 Conv Conv Conv STR [4,2,1] [4,2,1,1] [4,2,1,1] [4,2,1] [4,1,2] [4,2,1,1] [4,2,2]4 [4,2,1]

Param.(M) 22.5 40.2 23.9 20.1 21.3 21.0 19.6 Param.(M) 21.3 18.6 21.1 20.5 20.8 19.3 20.8 15.1
Flops(G) 35.1 36.5 20.2 18.9 19.6 19.3 17.5 Flops(G) 19.6 19.3 22.5 19.2 24.4 24.7 12.1 14.5

AO 47.5 56.4 63.7 61.7 63.5 63.1 60.1 AO 63.5 57.4 60.9 56.7 63.3 60.6 52.2 56.2
1 A1 does not have hierarchical structure, so we adopt 4 downsampling ratio at the beginning and drops the classification token.
2 For A2, we set the same image size (224× 224) for template and search image for simplicity.
3 H1 denotes the A1 splits an input image into non-overlapping patches (4× 4). H2 denotes a linear layer to change dimensions after patch split.
4 For model settings with total network stride 16, we increase the search image size to 320× 320 for a fair comparison.

key and value features. The resolution of the query fea-
tures is not changed. Then it computes global attention as
VG. The method largely reduces the computational over-
head. The Vanilla Local window attention (VL) [8] splits
feature tokens in groups based on their spatial locations and
only computes attention within each group. Swin Trans-
former [26] further adds a Shift window mechanism to
vanilla Local attention (SL) for global modelling.

Since the target object may appear anywhere in the
search image, it is not practical to use local attention meth-
ods for CA. In our work, we use SRG to implement SA and
CA. More discussions are in Sec. 4. The following equation
shows how we compute SA or CA:

f̃ij = Softmax(
qik

T
j√
dh

)vj , i, j ∈ {z, x}, (3)

In SA, i and j are from the same source (either z or x) and
the resulting feature update is:

fz := fz + f̃zz, fx := fx + f̃xx, (4)

In CA, it mixes the features from different sources:

fz := fz + f̃zx, fx := fx + f̃xz. (5)

We can see that the correlation between the two images
is deeply embedded in feature extraction seamlessly. EoC
block also consists of two LN layers and a 2-layer MLP as
shown in Fig 3 (b).

3.3. Position Encoding

For majority methods [4, 12, 26], the encoding is gen-
erated by the sinusoidal functions with Absolute coordi-
nates (Abs) or Relative distances (Rel) between tokens. Be-
ing much simpler, Conditional positional encoding [9, 43,
56] (Cond) generates dynamic encoding by convolutional
layers. In our model, we add a 3 × 3 depth-wise convolu-
tional layer φpe to MLP before GELU as conditional PE.

3.4. Direct Prediction

Different from the existing tracking methods, we directly
add a classification head Φcls and regression head Φreg on
top of the search feature f̂x from SBT Ω without additional
correlation operations:

f̂x = Ω(z, x), yreg = Φreg(f̂x), ycls = Φcls(f̂x),
(6)

where yreg, ycls denote the target regression and classifica-
tion results to estimate the location and shape of the target.

We implement Φreg and Φcls by stacking multiple Mix-
MLP Blocks (MMB) which can jointly model the depen-
dency between the spatial and channel dimensions of the
input features f̂ i−1 in the ith MMB:

f̂ i = φsp(RS(φcn(RS(f̂
i−1)))), (7)

where φsp and φcn consist of a linear layer followed by
RELU activation. RS represents reshape. φcn is applied to
features along the channel dimension, and the weights are
shared for all spatial locations. In contrast, the operator φsp

is shared for all channels.

4. Empirical Study of SBT Instantiations
In this section1, we conduct empirical studies on SBT

variants by raising a number of questions.
As efficient attention computing is vital to the SBT,

we firstly ablate other network factors including hierarchi-
cal structure, position encoding and patch embedding. As
shown in Tab. 1, it is obvious that hierarchical structure per-
forms much better than singe stage because of multi-scale
representation (A1 Vs. A2 to A7). Conditional PE only
surpasses the relative PE by 0.4 points (A5 Vs. A6). The
difference between PE methods is rather small, indicating
that PE does not have key impacts on performance. We also

1All the experiments follow the official GOT-10k [19] test protocol.
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find that convolutional PaE is more practical and expressive
than hand-crafted patch merging (A4 Vs. A5).

Which attention computation is better for SBT
tracker? The main difference between attention computa-
tion lies in the operation to reduce complexity (global/local
attention). We find that local attention (VL/SL) block can-
not directly perform Cross-Attention as the inequality of lo-
cal windows in template and search image. Thus, for SBT
constructed by pure local attention blocks, we adopt same
image size (224 × 224) for template/search image (A2) to
avoid tedious hand-crafted cross strategies. Comparing to
the settings with global attention block (VG/SRG) (A3 to
A7) which adopt 128 × 128 as template size, the perfor-
mance of pure local attention (A2) drop at least 3.6 points
in AO with more parameters and flops. This is mainly due
to the negative impacts of over background information in
template which may confuse the search branch. We also in-
vestigate the mix setting of SRG and VL block (A7). To
be specific, the VL block is for Self-Attention while SRG
block is for Cross-Attention. We observe that the pure SRG
block design achieves the better performance (A5 Vs. A7).
This illustrates that SBT benefits from unified block choice.
A3 also validates the effectiveness of pure SRG blocks with
63.7% in AO. We conclude that pure SRG block is more
practical and efficient for SBT tracker.

Do earlier and more EoC-CA blocks help to tracking
better? With a baseline designed from above principles, it
strikes to us that SBT may benefit from earlier and more
cross correlation. We ablate different position/number of
EoC-CA block in Fig. 4. As shown in Fig. 4 (d), when
the number of EoC-CA blocks increases, the performance
of model rises consistently with the same EoC-SA/EoC-CA
position pattern (C3 vs. C4, C1 vs. C2, C6 vs. C9). It
proves that SBT tracker benefits from more comprehensive
Cross-Attention between template and search branch. In
Fig. 4 (d), when the number of EoC-CA block is the same,
earlier cross design has significant positive impacts (C4 sur-
passes C1 by 4.9 points, C6 surpasses C2 by 6.5 points).

The underlying reason is that early-cross generates target-
dependent features which help tracker to see better.

Is tracking performance related to the placement pat-
tern of EoC-CA blocks? As the position and number of
EoC-CA block have significant impacts on performance,
it comes to us which pattern of placement is the optimal
choice. So we make attempts to place EoC-SA/EoC-CA
block differently. In Fig. 4 (f), we surprisingly find that
interleaved EoC-SA/EoC-CA pipeline performs better than
the separation pattern even with less Cross-Attention and
latter earliest cross position (C3 vs. C1). The potential
cause is that EoC-SA block can refine the template/search
feature after the correlation, resulting in a more expres-
sive feature space for matching. In Fig. 4 (f), model (C9)
achieves the best performance 67.2% when the interval is
1. When the interval increases to 2, the performances drops
from 61.1% to 59.2% (C3 vs. C10). Thus, we prefer an
interleaved EoC-SA/EoC-CA block design for SBT tracker.

What is the optimal network variants for tracking
model? Then, it comes to us a long-standing problem for
designing a deep tracker. We ablate different network stride,
model stage and model size. As shown in Tab. 1, over
parameters and flops in shallow level (stage 1 and 2) is
harmful. It is mainly because the low dimension cannot
formulate informative representations (57.4 of B2 Vs. 60.6
of B6). We also observe that increasing the head number
slightly improves the performance but decreases the speed.
With the same total network stride, three-stage model per-
forms better than four-stage model (63.5 of B1 Vs. 57.4
of B2) with comparable parameters and flops. Though set-
ting the network stride to 16 can reduce the flops, the per-
formance drops 11.3 points (B1 Vs. B7), indicating that
SBT tracker prefers larger spatial size of features. As the
channel dimensions influence model size a lot, it is vital to
achieve a balance between block numbers and channel di-
mensions (56.7 of B4 Vs. 63.3 of B5).

Does flexible design of EoC-SA/EoC-CA bring nega-
tive/positive effects? We examine the potential negative/-
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positive effects in SBT. From Fig. 4 (b) and Fig. 4 (c),
we observe that early-cross in shallow-level (stage 1 and
2) does not bring much improvements (C2 vs. C8, C6

vs. C7) but lowers the inference speed. It is because the
early-cross destroys the one-shot inference. The shallow-
level EoC-SA blocks perform as buffer. So the trade-off
between early-cross and speed should be well-considered.
In Fig. 4 (e), SBT tracker benefits from more pre-trained
weights and converges much faster than Transformer-based
trackers, such as TransT [5] and STARK [50].

5. Single Branch Transformer Driven Tracking
Beyond exploring SBT experimentally, we theoretically

analyze SBT from the perspective of general VOT. Then, we
design four versions of SBT and integrate them into typical
trackers to show generality.

5.1. Theoretical Analysis on SBT for Tracking

SBT overcomes the intrinsic restrictions in deep
trackers. Deep trackers have an intrinsic requirement for
strict translation invariance, f (c, x [∆τj ]) = f(c, x) [∆τj ]
where ∆τj is the shift window operator, c denotes the tem-
plate/online filter in Siamese/DCF tracking and f denotes
correlation operation. Modern backbones [17, 48] can pro-
vide more expressive features while their padding is in-
evitable to destroy the translation invariance. Thus, deep
trackers [22, 58] crop out padding-affected features and
adopt spatial-aware sampling training strategy to keep the
translation invariance. Theoretically, padding in SBT can
be removed completely or only exists in patch embedding
for easy implementation. Moreover, the flattened feature
tokens has permutation invariance which makes EoC block
completely translation invariance. As the EoC block pro-
vides global receptive field, SBT can enjoy arbitrary size of
template/search image and larger search area scale. Thus,
we argue that SBT driven tracking can overcome the in-
trinsic restrictions in classical deep trackers theoretically by
using brand-new network modules.

Cross-Attention is more than twice as effective as
depth-wise correlation. We first prove that Cross-
Attention can be decomposed into dynamic convolutions
(D-Conv). CA which performs as feature correlation is
mathematically equivalent to two D-Convs and a SoftMax
layer. For simplicity, we annotate the encoded {q, k, v} fea-
tures to their original feature as the projection matrix is 1×1
position-wise convolutional filters. So the CA for query
from search feature x to template feature z is:

Inter = RS(z)
T
x+ 0 = W1(z)

Tx+ b1,

Attnxz = Softmax(Inter),

f̃xz = Attnxzz + x = W2(z, x)
Tx+ b2(x),

(8)

where W (a, b), b(a, b) is the weight matrix and bias vector

Light Small Base Large
PaE Conv(7, 32, 4) Conv(7, 64, 4) Conv(7, 64, 4) Conv(7, 64, 4)

Stage1

[
EoCA 1 8
MLP 32

]
× 2

[
EoCA 1 8
MLP 64

]
× 2

[
EoCA 1 8
MLP 64

]
× 3

[
EoCA 1 8
MLP 64

]
× 3

PaE Conv(3, 64, 2) Conv(3, 128, 2)Conv(3, 128, 2) Conv(3, 128, 2)

Stage2

[
EoCA 2 4
MLP 64

]
× 2

[
EoCA 2 4
MLP 128

]
× 2

[
EoCA 2 4
MLP 128

]
× 4

[
EoCA 2 4
MLP 128

]
× 4

PaE Conv(3, 160, 1)Conv(3, 320, 1)Conv(3, 320, 1) Conv(3, 320, 1)

Stage3

[
EoCA 5 2
MLP 160

]
× 6

[
EoCA 5 2
MLP 320

]
× 6

[
EoCA 5 2
MLP 320

]
× 10

[
EoCA 5 2
MLP 320

]
× 18

PaE Conv(3, 256, 2)Conv(3, 512, 2)Conv(3, 512, 2) Conv(3, 512, 2)

stage4

[
EoCA 8 1
MLP 256

]
× 2

[
EoCA 8 1
MLP 512

]
× 2

[
EoCA 8 1
MLP 512

]
× 2

[
EoCA 8 1
MLP 512

]
× 2

Head Classification: MMB × 2 Regression: MMB × 2

EoC-CA [2, 4, 6] [2, 4, 6] [2, 4, 6, 8, 10] [6, 8, 10, 12, 14, 16, 18]
Params 3.03 M 13.80 M 21.27 M 35.20 M
FLOPs 3.81 G 11.92 G 19.27 G 31.46 G
Speed 62 FPS 50 FPS 37 FPS 24 FPS

Table 2. Model settings of SBT in four scales. “Conv(k, c, s)”
means convolution layers with kernel size k, output channel c and
stride s. “MLP c” is the MLP with hidden channel 4c and output
channel c. “EoCA n r” is the EoC attention computation with the
number of heads n and down-sampling ratio r. EoC-CA blocks are
in the third stage. We report the speed in single Tesla V100 GPU.

of dynamic filters generated by {a, b} and RS denotes re-
shape. To obtain the correlation feature f̃xz , the search fea-
ture x goes through a D-Conv layer generated by z, a Soft-
Max layer and another D-Conv layer generated by z and
x. Two D-Conv layers come from the reshape of z along
channel and spatial dimension. The depth-wise correlation
(DW-Corr) or pixel-wise correlation (Pix-Corr) [51] is only
equivalent to one D-Conv layer. Thus, CA is twice as effec-
tive as DW-Corr or Pix-Corr with the same template feature
as dynamic parameters.

Hierarchical feature utilization is embedded in serial
pipeline. Siamese trackers [6, 22] perform correlation for
each hand-selected feature pair and feed them into parallel
prediction heads. Then, prediction results are aggregated
by a weighted sum. Comparing to the hand-craft layer-wise
aggregation, SBT structure explores multi-level feature cor-
relation intrinsically. We take three-level feature utilization
as an example:

xi, zi = ϕi
ca(x̃i, z̃i), i ∈ {0, 1, 2}

x2, z2 = ϕ2
ca(ϕ

1
ca(ϕ

0
ca(x0, z0))),

Ssbt = φp(x2),

(9)

where {0, 1, 2} represents shallow, intermediate and deep
level, {x̃, z̃} are the previous layer features of {x, z},
{ϕca, φ

p} denote EoC-CA block and prediction head.
Though in a serial pipeline, the prediction result Ssbt nat-
urally contains hierarchical feature correlation results.

5.2. Four Versions of SBT network

Following the guidelines from Sec. 4, our four versions
of SBT is described in Tab. 2. For pre-training, we add extra
fourth model stage and modify the network stride as [26].
For fine-tune on tracking, we only use three-stage model
and replace the prediction head.
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Tr Stark Stark SBT SBT SBT SBT
SiamRPN++ ATOM DiMP SAMN AutoMatch Siam TransT s50 st101 light small base large

[22] [11] [3] [47] [57] [40] [5] [50] [50]

AO ↑ 51.8 55.6 61.1 61.5 65.2 66.0 67.1 67.2 68.8 60.2 66.8 69.9 70.4
SR50 ↑ 61.6 63.4 71.7 69.7 76.6 76.6 76.8 76.1 78.1 68.5 77.3 80.4 80.8
SR75 ↑ 32.5 40.2 49.2 52.2 54.3 57.1 60.9 61.2 64.1 53.0 59.2 63.6 64.7

Table 3. Comparison on the GOT-10k [20] test set.

Tr Stark SBT SBT SBT SBT
SiamRPN++ ATOM DiMP AutoMatch DualTFR Siam TransT DTT s50 light small base large

[22] [11] [3] [57] [46] [40] [5] [52] [50]

AUC ↑ 49.6 51.5 56.9 58.3 63.5 62.4 64.9 60.1 65.8 56.5 61.1 65.9 66.7
Prec↑ 49.1 50.5 56.7 59.9 66.5 60.0 69.0 - 69.7 57.1 63.8 70.0 71.1

Table 4. Comparison on the LaSOT [13] test set.

Stark Stark SBT SBT SBT SBT
Ocean ATOM SiamMask SuperDiMP STM DET50 AlphaRef s50 st101 light small base large

[59] [11] [42] [1] [30] [21] [51] [50] [50]

Acc.↑ 0.693 0.462 0.624 0.492 0.751 0.679 0.754 0.761 0.763 0.742 0.750 0.752 0.753
Rob.↑ 0.754 0.734 0.648 0.745 0.574 0.787 0.777 0.749 0.789 0.712 0.775 0.825 0.834
EAO↑ 0.430 0.271 0.321 0.305 0.308 0.441 0.482 0.462 0.497 0.415 0.477 0.515 0.529

Table 5. Results on VOT2020. We use AlphaRefine [51] to gener-
ate mask for VOT benchmark.

DiMP SiamFC++ DualTFR TransT DTT STARK-s50 SBT-light SBT-small SBT-base SBT-large

AUC ↑ 74.0 75.4 80.1 81.4 79.6 80.3 68.2 78.2 81.9 82.2
Norm.Prec↑ 80.1 80.0 84.9 86.7 85.0 85.1 74.5 83.0 87.1 87.5

Table 6. Comparison on the TrackingNet test set.

5.3. Correlation-Aware Feature for Other Trackers

We replace the backbone in four typical trackers with
SBT, which are named as Correlation-Aware Trackers.

6. Experiments

This section describes the implement details, compar-
isons to the state-of-the-art (sota) trackers and improve-
ments in CATs. Exploration studies are also provided.

6.1. Implementation Details

ImageNet pre-training. We firstly train 4-stage SBT
with classification head on the ImageNet [33]. Similar to
the network for image classification, our model structure
and data flow is one-stream. The setting mostly follows [35]
and [43]. We employ the AdamW [27] optimizer for 300
epochs. The input image is resized to 224×224 and the aug-
mentation and regularization strategies of [35] are adopted.

Finetune on tracking. Next, the pre-trained weights are
to initialize our tracking model. By arranging EoC-
SA/EoC-CA blocks, the model is still one-stream in struc-
ture but two-stream in data flow. For each image pair, We
compute standard cross-entropy loss for the classification
and GIoU [32] loss and L1 loss for the regression. We use
8 tesla V100 GPUs and set the batch size to be 160. The
template and search image size are set to 128 × 128 and
256 × 256. The sample pairs of each epoch is 50, 000 and
the total epoch is 600. The learning rate is set to be 10−4

for the head, and 10−5 for the rest and it decays by a fac-
tor of 10 at the 200th, 400th epoch. The training datasets
include the train subsets of LaSOT [13], GOT-10K [19],
COCO2017 [25], and TrackingNet [29]. Other settings are
the same with [5, 46]. Details are in supplement.

Box-level Tracker Params(M) Flops(G) SR50 SR75 AO
SiamFCpp 13.9 19.8 69.5 47.9 59.5

SiamFCpp-CA 16.3 14.1(5.7↓) 74.8(5.3↑) 54.5(6.6↑) 64.7(5.2↑)
DiMP 26.1 - 71.7 49.2 61.1

DiMP-CA 26.3 - 74.1(2.4↑) 56.8(7.2↑) 65.2(4.1↑)
STARK 23.3 11.5 76.1 61.2 67.2

STARK-CA 23.6 8.7(2.8↓) 77.8(1.7↑) 62.7(1.5↑) 68.3(1.1↑)
Pixel-level Tracker Params(M) Flops(G) J F Mean

STM 24.5 - 69.2 74.0 71.6
STM-CA 25.1 - 72.8(3.6↑) 75.6(1.6↑) 74.2(2.6↑)

Table 7. Improvements of CATs over baselines on GOT-10k [19]
and DAVIS17 [31] benchmarks. J /F denotes the mean of the
region similarity/contour accuracy.

Figure 5. Comparisons on (a) OTB-100 [45] and (b) GOT-10k [19]
test set in terms of success plot.

Testing. For SBT/Siamese, we adopt fixed template
as [46]. For DCF/STM, the inputs are firstly fused with
template by SBT.

6.2. Comparison to State-of-the-Art Trackers
GOT-10K. GOT-10K [19] is a large-scale benchmark
which has the zero overlap of object classes between train-
ing and testing. We follow the official policy without ex-
tra training data. As shown in Tab. 3 and Fig. 5, in a fair
comparison scenario, our base and large version outper-
form other top-performing trackers such as STARK-st101,
TransT, TrSiam, and DiMP, verifying the strong general-
ization to unseen objects. Our light and small version also
achieve competitive results with much smaller size.

OTB100/VOT2020/LaSOT. We refer the reader to [13,
21, 45] for detailed descriptions of datasets. In challeng-
ing short-term benchmarks (VOT2020 and OTB100), Tab. 5
shows that SBT-small achieves competitive result, which is
better than SuperDiMP. After increasing the model variants,
SBT-base obtains an EAO of 0.515, being superior to other
top-performing trackers. With a much simpler pipeline, our
SBT-large is even closed to the winner of VOT2020 chal-
lenge RPT [28] (0.530 EAO). Fig. 5 shows our base and
large version achieves sota results in OTB. In long-term
benchmark LaSOT, with the comparable model size and
no online update, SBT-base outperforms the recent strong
Transformer-based methods (STARK-s50 and TransT).

6.3. Improvement over Baselines
Box-Level tracking. In Tab. 7, our correlation-aware fea-
tures improve other tracking pipelines with comparable
model size and less computation burden.

Pixel-Level tracking. In multi-object video object seg-
mentation (VOS) benchmark DAVIS17 [31], STM-CA im-
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Setting Fea.Ext Corr.Emd Fea.Corr Low Mid High AO

① ResNet-50 ✗ DW-Cor S2 S3 S4 56.2
② ResNet-50 ✗ CA S2 S3 S4 57.5
③ ResNet-50 ✗ DCF1 - - S4 30.3
④ SBT-base ✗ DW-Corr S3B6 S3B8 S3B10 60.1 (3.9↑)
⑤ SBT-base ✗ CA S3B6 S3B8 S3B10 61.5 (4.0↑)
⑥ SBT-base ✗ DCF - - S3B10 31.5 (1.2↑)
⑦ SBT-base ✓ - S3B6 S3B8 S3B10 65.0 (3.5↑/7.5↑)
⑧ SBT-base ✓ DW-Cor S3B6 S3B8 S3B10 65.9 (4.8↑/9.7↑)
⑨ SBT-base ✓ DCF S3B6 S3B8 S3B10 35.2 (3.7↑/4.9↑)

Table 8. Ablation studies on GOT-10k [19]. S3B6 denotes the
third stage 6th block. Fea.Ext denotes the feature extraction net-
work. Corr.Emd denotes whether network embeds correlation into
extraction layers. Fea.Cor denotes the feature correlation method.
For DCF, we integrate SBT-base to ECO [10].

0

0.4

0.8

TP 1/Neg

0

0.4

0.8

TP 1/Neg

0

0.4

0.8

1 2 3 4 5

TP 1/Neg

(a)

(b)

(c)

Figure 6. (a), (b), (c) denote three trackers (refer to Sec. 6.4). The
first sub-figure indicates the average true positive rate and average
negative numbers of negative objects. The other sub-figures de-
note the T-SNE and classification maps.

proves STM by 3.6% in terms of J , proving that VOS
methods can benefit from our discriminative embeddings.

6.4. Exploration Study

We further explore the characteristics of our SBT feature
by training it on the GOT-10k [19] training split.
Correlation-embedded structure. As shown in Tab. 8,
correlation-embedded SBT (⑦, ⑧, ⑨) significantly im-
proves the tracking performance on all correlation cases
(④, ⑤, ⑥). Comparing to the layer-wise aggregation,
correlation-embedded trackers outperform the CNN-based
trackers or attention-based trackers (65.9% of ⑧ Vs. 60.1%
of ④, 65.0% of ⑦ Vs. 61.5% of ⑤, 39.2% of ⑨ Vs. 30.3%
of ③). It clearly verifies that SBT structure is more effective
on multi-level feature utilization. We also prove that CA
works better than DW-Corr in feature correlation (60.1% of
④ Vs. 61.5% of ⑤ ). Fig. 7 also shows the superiority of
correlation-embedded structure.
Target-dependent feature embedding. We further ex-
plore the features of three different settings in two folds:
one is to maintain spatial location information while another
is to classify the target from distractor objects. We begin
by training three models with Cls head only to localize the
target: (a) Correlation-embedded tracker. (b) Siamese cor-
relation with SBT. (c) Siamese correlation with ResNet-50.
We select the five hard videos from OTB [44] benchmark.
The search image randomly jitters around target. We only
evaluate the Cls map for localization. In Fig. 6, the true pos-

(a)

(b)

(c)

Figure 7. Visualization of classification (Cls) map ons SBT-base
tracker with three different settings. (a): layer-wise aggregation
with DW-Corr; (b): layer-wise aggregation with EoC-CA block;
(c): correlation-embedded.
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Figure 8. Tracking performance of SBT with various pretrained
settings. (a) denotes the pretrained block number. In (b), different
models are to initialize the tracking model. (c) denotes the IoU
curves during training epochs.

itive rate of target ground-truth indicates that (a), (b) can
preserve more spatial information than CNN (c). The T-
SNE/Cls map also show the target-dependent characteristic
of (a) features. The average negative objects (largest con-
nected components) of (a) is higher than (b) which indicates
that correlation-embedded is critical to filter out distractors.
Benefits from pre-training. Comparing to the existing
trackers [5, 46, 50], our tracking model except prediction
heads can be directly benefit from the ImageNet [33] pre-
trained weights. As shown in Fig. 8 (a), there is a signifi-
cant correlation between the number of pre-trained blocks
and tracking performance. We also investigate the impacts
of model variants of SBT. In Fig. 8 (b), the SBT tracking
model prefers consistent block numbers for pre-training.
We also observe that SBT converges faster and the stabi-
lized IoU value rises with more pre-trained model weights.

7. Conclusion
In this work, we are the first to propose a target-

dependent feature network for VOT. Our SBT greatly sim-
plifies the tracking pipeline and converges much faster than
recent Transformer-based trackers. Then, we conduct a
systematic study on SBT tracking both experimentally and
theoretically. Extensive experiments demonstrate that our
method achieves sota results and can be applied to other
tracking pipelines as dynamic feature network.
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