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Abstract

Despite plenty of efforts focusing on improving the do-
main adaptation ability (DA) under unsupervised or few-
shot semi-supervised settings, recently the solution of ac-
tive learning started to attract more attention due to its
suitability in transferring model in a more practical way
with limited annotation resource on target data. Neverthe-
less, most active learning methods are not inherently de-
signed to handle domain gap between data distribution,
on the other hand, some active domain adaptation meth-
ods (ADA) usually requires complicated query functions,
which is vulnerable to overfitting. In this work, we pro-
pose a concise but effective ADA method called Select-by-
Distinctive-Margin (SDM), which consists of a maximum
margin loss and a margin sampling algorithm for data se-
lection. We provide theoretical analysis to show that SDM
works like a Support Vector Machine, storing hard exam-
ples around decision boundaries and exploiting them to
find informative and transferable data. In addition, we
propose two variants of our method, one is designed to
adaptively adjust the gradient from margin loss, the other
boosts the selectivity of margin sampling by taking the gra-
dient direction into account. We benchmark SDM with
standard active learning setting, demonstrating our algo-
rithm achieves competitive results with good data scala-
bility. Code is available at https://github.com/
TencentYoutuResearch/ActiveLearning-SDM

1. Introduction

The domain adaptation problem has been widely studied
in transfer learning society, where adaptation algorithms are

*Both author contributed equally to this work. Work is completed dur-
ing Ming Xie’s internship at Tencent Youtu Lab.

†Corresponding author

Figure 1. A simple conceptual illustration of our Select-by-
Distinctive-Margin pipeline. Before each sampling step, a model
is trained with a maximum margin objective, and unlabeled data
lying in the margin with similar distance to different categorical
centers are sampled to augment training data.

designed to generalize a model trained on source domain
to a target domain with different data distribution [4]. In
most of studies, the semantic labels from target domain are
assumed to be unavailable [4, 8, 12, 13, 24] (UDA) or only
few-shot of target samples are labeled [21, 23, 29](SSDA).
However, in a more practical sense, although it is difficult
to annotate all data in target domain, a moderate amount of
labeled data should be acceptable given certain budget on
annotations cost.

With this consideration, domain adaptation turns into an
active learning problem (AL), which focusing on addition-
ally labeling limited data to bring maximum improvement
of machine learning algorithms [2,6,17,30,32,37,38]. How-
ever, currently most active learning algorithms are derived
from a pure semi-supervised scenario, where the unlabeled
data are assumed to conform to the same distribution as la-
beled data. These methods usually focus on designing a
distinctive query function to depict how informative or rep-
resentative an unlabeled data sample is, which highly relies
on the uncertainty [6, 32] or structural distribution of data
features [2, 30]. On the contrary, in a domain adaptation
problem, the task model is initially trained with only source
data and the query function is usually correlated to the pre-
diction of task models, in this case, most of target data will
be discriminated as uncertain regardless its location in fea-
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ture space. Consequently, the sampling methods are prone
to sample some target samples that are easily classified and
make less effect on the biased decision boundaries.

Recently, there exist some researches aimed at appro-
priate data selection under the scenario of domain adapta-
tion. However, these methods either design complicated
and hand-crafted query function with deliberately designed
architecture [11, 27], or select data in a tedious manner of
high complexity [26]. These complicated design makes
the query function and selection strategies easy to over-
fit to a certain transferring scenario and hard to be ex-
tended to more general cases. In addition, most of these
methods simply exploit all source data equally during train-
ing [11, 26, 34], which is vulnerable to bias toward source
domain and results unreliable query. Besides, few of studies
above discuss the intrinsic relationship between their train-
ing objective and query function, ignoring the potential cor-
relation between data of two domains during selection.

With the consideration above, in this paper, we pro-
pose to tackle domain adaptation problem with a simple
but effective active learning strategy called Selective-by-
Distinctive-Margin (SDM) by evaluating the distance from
a data sample to different categorical clusters (as shown in
Figure 1). Different from most of previous efforts focus-
ing on selecting data through the uncertainty or diversity of
pure unlabeled target data [11, 26, 27, 30, 32], SDM makes
attempt to select unlabeled data via their relation to some
“hard examples” from the source domain. However, in-
stead of explicitly model such data relation, we implicitly
depict the similarity between unlabeled samples and poten-
tial hard source samples via a simple maximum margin loss
function. Intuitively, the margin loss will guide the network
to maximize the distance between close examples from dif-
ferent categorical clusters in source domain, meanwhile ig-
nore the affect from well classified source samples. This
reversely helps detecting informative target samples still ly-
ing near the trained decision boundaries through a simple
margin sampling query function. By collecting these data
into training set, the manifold of decision boundaries can be
further refined and generalized to target distribution. The-
oretically, by analyzing with a simplified linear model, we
confirm that model trained with margin loss can act like a
Support Vector Machine [7], which collects only “hard ex-
amples” in source domain, and take these examples to de-
tect unlabeled target data via the similarity in feature space.

In addition, derived from the simple SDM baseline, we
further extend the strategy into two variants. For the training
phase, for the sake of dynamically adjust gradient of margin
loss to adapt to samples of different difficulties, we propose
to extend the original margin loss to a dynamic form with
adaptive modulation factor and max-logit reglularizer. On
the other hand, during sample selection, to boost the selec-
tivity, we take the first-order gradient of margin sampling

function as additional guidance in query function, leading to
select target samples which decreases the sampling function
in the fastest direction with its estimated gradient. Further,
both variants can further be combined together to construct
more effective active learning pipeline.

Our SDM algorithm is evaluated on different domain
adaption benchmarks like Office-Home [28] and Office-
31 [35] under a classical active learning setting, besides,
we also extend our method to a general active learning task
on CIFAR-10 [18], demonstrating our approach can achieve
state-of-the-art results with less query complexity and good
data-scalablility. In a nutshell, our contributions can be
summarized into three folds:

• We propose Select-by-Distinctive-Margin (SDM), a
concise but effective active learning method for active
domain adaptation, which consists of a maximum mar-
gin loss and a margin sampling function as a complete
active learning cycle. Theoretical analysis is provided
to show this SDM framework work like a SVM to take
hard examples to mine informative targets.

• Derived from the SDM baseline, two variants are de-
veloped. One is designed for training phase to dynami-
cally adjust margin loss gradient, the other is designed
to enhance the selectivity with the help of first-order
gradient of margin sampling function.

• Experiments conducted on several domain adaptation
benchmarks show that our approach can achieve state-
of-the-art results with limited annotation budget.

2. Related Work

Domain Adaptation. The goal of domain adaptation is to
generalize a model trained on source domain to target data
distribution [4]. The core issue of domain adaptation lies in
the misalignment between feature and label space of source
and target domain. To deal with this problem, previous do-
main adaptation focus on guiding a deep neural network to
learn some domain invariant representation and classifiers.
To be specific, the adversarial training [12, 24] is utilized to
align feature distribution with a domain discriminator, reg-
ularizers like entropy constraint [13, 29] or maximum pre-
diction rank [8] are applied to implicitly constrain the cross-
domain feature space. Recently, there are also some works
regard the domain alignment as minimizing the one-to-one
optimal matching cost across two sets [10].

One common characteristic of methods above is that all
of them assume the annotation in target domain is not ac-
cessible or only accessible for a few data, resulting unsuper-
vised or semi-supervised domain adaptation setting. How-
ever, in a more practice scene, a moderate number of la-
beled data from target domain is usually allowed, and there
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are already some pseudo-label based methods demonstrat-
ing some properly labeled target data are powerfully enough
to adapt a model from source to target domain [5,22,23,33].
As a result, new demand emerges to maximize the model
transfer ability given a proper budget of annotated target
data samples, which is highly overlapped with the study in-
terests of Active Learning community.
Active Learning. The research of active learning aims at
selecting proper samples to label and taking them to aug-
ment original training set and maixmum the improvement
on model performance [31]. To measure the value of la-
beling a sample, a query function is usually designed to
assign a query score to each sample for rank and selec-
tion. Classically, the query function is decided by the un-
certainty metrics like entropy, score margin [3] or least
confidence [20]. Recently, some advanced active learn-
ing pipelines are proposed, which are usually accompanied
with deliberately designed training process, among which
the Variational Auto Encoder is widely used to model the
probability of erroneous prediction [6] or directly learn a
binary classifier [32,38] or sample loss ranker [17,37] to se-
lect samples. Besides, there are other studies starting from
the coverage of appended samples, and select data toward
the objective of maximum diversity [2, 30]. All the meth-
ods above achieve promising performance on active learn-
ing task of consistent data distribution, however, none of
them is designed with specific consideration of potential
domain gap between labeled and unlabeled data. Conse-
quently, these query function or sampling strategy are easy
to select data with less training difficulty.
Active Domain Adaptation. AADA [34] is one of the
earliest research to apply active learning technique specifi-
cally for domain adaptation, which applies a discriminator
with cross-domain adversarial learning to construct sam-
ple query function. The work of [11, 27] consider the do-
main misalignment and design series of training objective
and rules to measure the uncertainty and domainness of a
target sample, [11] further proposes a randomize selection
strategy to enhance the sample diversity. The method of
CLUE [26] design a entropy weighted clustering algorithm
to take both diversity and uncertainty of target data into an
unified clustering framework.

Nevertheless, most of these approaches rely on scenario-
specific prior and complicated query functions with series
of hyper-parameters, making the methods easy to overfit to
specific transfer scenarios and not general. Besides, there
are some complicated operations like adversarial exam-
ple [11,27] or clustering [26] with high complexity. In con-
trast, our SDM algorithm is simple in both training and data
selection with insightful theoretical interpretation, by ex-
ploiting only some hard examples from source domain, our
strategy can achieve promising results on different bench-
marks.

Figure 2. Illustration of active learning loop for domain adaptation

3. Approach
3.1. Problem Formulation

In the problem of Active Domain Adaptation, a labeled
source domain is denoted as Ds = {(xs, ys)}, with data
xs and its semantic label ys ∈ {1, 2, · · · ,K}, where K is
the number of class types, an unlabeled target domain is
denoted as Dt = {xt}. Meanwhile, we denote a labeled
target set as D̃t, which is an empty set ϕ initially. With
these initial data and a given annotation budget B, an active
domain adaptation loop can be build as Figure 2. The unla-
beled data is sampled several times, for each selected data
x̂t ∈ Dt/D̃t, annotators will assign its label ŷt to it, and
D̃t is augmented with new labeled target data {(x̂t, ŷt)} af-
ter each sampling step, then the model can be trained with
Ds ∪ D̃t, afterward the updated model is exploited to select
new target data for annotation from set Dt/D̃t. The process
repeats until appended number of target samples achieves
the budget |D̃t| = B. For the ease of representation, we de-
note our model as a composition of a feature extractor g(·)
to extract data feature f = g(x) and a linear classifier c(·)
to categorize a feature into class logit vector of size K.

3.2. Select by Distinctive Margin

3.2.1 Pipeline

In a classical paradigm, all labeled data from Ds ∪ D̃t can
be utilized to train a new deep network, which is widely fol-
lowed by previous ADA approaches [11, 26, 27]. However,
such strategy makes trained model dominated and biased
toward some salient area in source domain of high data den-
sity at early stages, and reversely prevent the query function
from detecting informative target data.

To mitigate such source-oriented bias, we propose to ex-
ploit only “hard examples” from source domain to construct
our training objective, since these examples are important to
shape the decision boundaries with less domain-biased in-
formation. Therefore we design the categorical-wise mar-
gin loss to supervise the network output due to its inherent
selective property

Lm(x, y) =
∑
i ̸=y

[m− c(g(x))y + c(g(x))i]+ (1)
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where [x]+ denotes zero-clip operation max(0, x), the sub-
script y and i indicates the y-th and i-th entry of vectors, and
m is a hyperparameter to control the expected margin width.
From Eq (1), we see only samples with similar classification
score between ground-truth class and other classes can con-
tribute the gradient for deep network, thus the model will
not be dominated by redundant source samples and be eas-
ier to transfer to target domain.

On the other hand, since the loss in Eq (1) explicitly en-
larges the gap between different category clusters, it is natu-
ral to pay more attention to those samples with smaller gap
between category-scores in target domain due to the impact
they will have on current learned decision boundaries. As
a result, a margin sampling query function is proposed to
evaluate the importance of an unlabeled target sample

p = softmax(c(g(xt))) (2)

Q(x) = 1− (p1∗ − p2∗) ∀xt ∈ Dt/D̃t (3)

where the subscript 1∗ and 2∗ indicates the index of maxi-
mum and second maximum value of a vector, before com-
puting the query function, softmax operation is applied to
map the logit vector to normalized probability to ensure the
scale of Q(x) ∈ (0, 1). The smaller category gap a sample
has, the larger Q(x) value is assigned. Therefore unlabeled
target data can be re-ranked by the metric in Eq (3) and top
ranked samples are labeled to augment training set.

3.2.2 Theoretical Insights

To further discuss how a marginal loss helps our model to
select informative sample under the margin sampling query
function, we simplified our model into a parameterized bi-
nary linear classification problem c(g(x)) = [w+, w−]

Tx,
where a data feature x ∈ RD can only be categorized as
positive or negative, under this setting, we prove that the
query function Q(x) is correlated to the similarity be-
tween x and “hard examples” during training. To be
specific, we denote a training batch as S = S+∪S−, where
S+ denotes the set of positive sample and S− contains all
negative samples in a batch, these training samples are ex-
ploited to train a binary linear classifier with positive weight
w+ and negative weight w− via a margin loss as Eq (1),
after training, a sample x can be discriminated via its pre-
dicted probability of belonging to a certain category

p+(x) =
ew

T
+x

ew
T
+x + ew

T
−x

p−(x) =
ew

T
−x

ew
T
+x + ew

T
−x

(4)

Data Selection. With the formulation in Eq (4), we define a
Signed Local Similarity Indicator I (x;S) as Definition 1.

Definition 1 (Signed Local Similarity Indicator). Given
a sample feature x, its Signed Local Similarity Indicator

I (x;S) is defined as

I (x;S) =
∑

xp∈S+

δ(m > wT
+xp − wT

−xp)x
T
p x (5)

−
∑

xn∈S−

δ(m > wT
−xn − wT

+xn)x
T
nx

where δ(·) equals 1 if the condition inside holds otherwise
equals 0.

From the definition, we see the indicator I(x;S) only fo-
cuses on the similarity between x and those labeled samples
xp, xn close to classification boundary, i.e. samples that are
vague for current classifiers to discriminate, when x mani-
fests stronger similarity with vague positive samples xp in
batch S, I(x;S) increases, in contrast, when x is closer to
vague negative samples, I(x;S) gets smaller value. With
the Definition 1, we claim that the Proposition 1 holds

Proposition 1. ‡ If an unlabeled sample xt ∈ Dt/D̃t is
measured by query function Q(xt) as Eq (3), after a gradi-
ent descending step on batch S, then the following mono-
tonicity holds

• if p+(xt) > p−(xt), Q(xt) is decreasing monotoni-
cally with respect to I(xt;S)

• if p+(xt) < p−(xt), Q(xt) is increasing monotoni-
cally with respect to I(xt;S)

With the Proposition 1, we see our margin loss per-
forms under a mechanism analogous to Support Vector Ma-
chine [7], where only a few hard examples (like the sup-
port vectors) are collected as component to decide the query
function score of a target sample xt, e.g. if the trained clas-
sifier predicts that sample xt is more likely to be positive,
i.e. p+(xt) > p−(xt), then the closer xt is to existing hard
positive samples, the less query function value Q(xt) will
be obtained, in contrast, when xt is closer to some hard neg-
ative samples, margin loss will impose a larger Q(xt) score.
Transferability. It should be noticeable that SDM is not
only suitable for data selection, but also helps domain trans-
fer theoretically. Following the analysis of [29], we define
a margin-based domain classifier space as

H = {h(x)} =
{
δ(|wT

+x− wT
−x| ≥ m)|w+, w− ∈ RD

}
(6)

then we can obtain the Proposition 2 to verify that SDM
helps to shrink the domain gap [4] under certain assumption

Proposition 2. ‡ For source and target data xs ∼ Ps, xt ∼
Pt, given the margin domain classifier family H of Eq (6),
if P(h(xt) = 1) ≤ P(h(xs) = 1), then optimizing the bi-
nary margin loss is equivalent to minimize the upperbound
of domain H-divergency dH(Ps,Pt) defined by [4].

‡The proof can be found at supplementary material.
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Figure 3. Examples of query with first-order differential margin.
The left figure shows situation where the gradient direction from
loss and query function diverge a lot. The right figure illustrates
an example where the feature gradient from both loss and query
function share similar update direction and yield high query score.

3.3. Variants

Dynamically Adjusted Margin Loss. Although the loss in
Eq (1) can implicitly select hard source data, it still shows
some flaws. First, all hard samples contributes equally in
terms of the backward gradient. Besides, the margin con-
straint only considers the relative distance from samples to
different class decision boundaries, ignoring constraint on
the absolute score of ground-truth class label. With this con-
sideration, we propose a dynamic version of margin loss to
adaptively adjust the backward gradient in proportion to the
margin size, and append a max-logit regularizer to ensure
the gradient from ground-truth class will not vanish even if
the margin is large enough than pre-defined m

L̃m(x, y) =
∑
i̸=y

αi [m− c(g(x))y + c(g(x))i]+ − c(g(x))y

(7)

αi = 1− c(g(x))y − c(g(x))i
m

In Eq (7) we modify the rectified margin as a modulation
factor αi and take it to modulate the score of other classes
except ground-truth. With this modulation, the loss term
with smaller margin will be emphasized and generate larger
gradient to push sample away from corresponding categor-
ical clusters, helping our network adpatively focusing on
hard source examples of different difficulties. Besides, a
max-logit term is appended in Eq (7) to constrain our net-
work to always assign large score to prediction on ground-
truth class. This kind of variant is termed as “SDM-A”.
Query with Gradient Direction Consistency. To boost
the selectivity of our query function, derived from the ba-
sic marge sampling in Eq (3), we further take its variation
into account. Inspired by [2] which applies the weight vari-
ation to depict the data importance, we expect that the gra-
dient from a newly appended sample will push its feature
representation f toward direction that minimizes the margin
sampling function as examplified in Figure 3, this is equiv-

alent to ensure the gradient from both loss term and margin
sampling manifests similar orientation in feature space

Q̃(x) = Q(x) + λ ⟨∇fLm(x, y),∇fQm(x)⟩ (8)

where ⟨·, ·⟩ is cosine-similarity metric, λ is a balance factor.
However, it is not possible to acquire the annotation y of
an unlabeled sample before selection, instead, we take the
probabilistic gradient estimation ∇f L̂m(x) which is consis-
tent with margin sampling

∇f L̂m(x) = p1∗∇fLm(x, 1∗) + p2∗∇fLm(x, 2∗) (9)

where the notation p, 1∗, 2∗ follow the same definition from
Eq (3). Through the modified query function in Eq (8), the
sampled data is not only close to decision boundaries of
trained model, but also ensured to fast converged to a non-
fuzzy state. This variant is termed as “SDM-G”. Besides,
the two variants are not mutually exclusive to each other
and can be exploited simultaneously to obtain a combined
active learning pipeline as “SDM-AG”.

4. Experiments
4.1. Setup

Dataset and Metric. In our experiments, We first evaluate
the performance of our framework on two mainstream do-
main adaptation benchmarks, Office-Home [28] and Office-
31 [35]. Then we further extend our method to single-
domain dataset CIFAR-10 [18] to validate the generality
of SDM. The Office-31 dataset includes 3 different domain
with imbalance image distribution, there are total 4110 im-
ages of 31 object categories. The Office-Home dataset is a
more challenging benchmark consisting of 4 different do-
mains and 65 different types of objects. CIFAR-10 is a
widely used dataset for different machine learning tasks,
there are total 50000 images for 10 common classes. Fol-
lowing the work of [11], for experiments on Office-31 and
Office-Home, we report results on all transfer scenarios and
average the accuracy on different scenarios for final com-
parison. Our active learning loop starts with data from only
source domain, at each sampling step, 1% of target data
is sampled, and totally 5 times of sampling steps are con-
ducted. For CIFAR-10, our training process starts from 10%
of full training data, at each sampling step, 5% of data is
sampled and the budget is set as 30% of training data.
Implementation Detail. Our experiments are implemented
with Pytorch framework. Following the setting of [11], we
take the commonly used ResNet50 [14] architecture which
is pre-trained on ImageNet [19] as our feature extractor
and classifier. Different from some of previous methods
for ADA [11, 26] combining unsupervised domain adap-
tion methods and trained with data from target domain, in
our implementation, we avoid training on unlabeled data
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Method Office-Home
A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Avg

ResNet [14] 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3

RAN 56.8 78.0 77.7 58.9 70.7 70.5 60.9 53.2 76.8 71.5 57.5 81.8 67.9
ENT 56.8 80.0 82.0 59.4 75.8 73.8 62.3 54.6 80.3 73.6 58.8 85.7 70.2

CONF 57.7 81.3 82.2 60.8 76.5 74.2 61.9 54.5 80.4 73.4 59.4 85.9 70.7
MAR 58.6 81.3 81.7 60.3 76.2 73.6 63.4 55.2 80.5 73.8 60.5 86.3 70.9

QBC [9] 56.9 78.0 78.4 58.5 73.3 69.6 60.2 53.3 76.1 70.3 57.1 83.1 67.9
Cluster [25] 56.0 76.8 78.1 58.4 72.6 69.2 58.4 51.2 75.4 70.1 56.4 82.4 67.1
AADA [34] 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
ADMA [15] 57.2 79.0 79.4 58.2 74.0 71.1 60.2 52.2 77.6 71.0 57.5 85.4 68.6
BADGE [2] 59.2 81.0 81.6 60.8 74.9 73.3 63.7 54.2 79.2 73.6 59.7 85.7 70.6

TQS [11] 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5

SDM-AG 61.2 82.2 82.7 66.1 77.9 76.1 66.1 58.4 81.0 76.0 62.5 87.0 73.1

Table 1. Classification accuracy (%) on the Office-Home dataset with the budget of 5% data. Among the abbreviation, “RAN” is random
sampling, “ENT” is entropy-based sampling, “CONF” is least confidence sampling and “MAR” is pure margin sampling.

Method
Office-31

A→W A→D W→A W→D D→A D→W Avg

ResNet [14] 81.5 75.0 63.1 95.2 65.7 99.4 80.0

RAN 87.1 84.1 75.5 98.1 75.8 99.6 86.7
UCN [16] 89.8 87.9 78.2 99.0 78.6 100.0 88.9
QBC [9] 89.7 87.3 77.1 98.6 78.1 99.6 88.4

Cluster [25] 88.1 86.0 76.2 98.3 77.4 99.6 87.6
AADA [34] 89.2 87.3 78.2 99.5 78.7 100.0 88.8
ADMA [15] 90.0 88.3 79.2 100.0 79.1 100.0 89.4
CLUE [26] 88.1 91.4 76.1 100.0 76.1 98.6 88.4
TQS [11] 92.2 92.8 80.4 100.0 80.6 100.0 91.0

SDM-AG 93.5 94.8 81.9 100.0 81.9 100.0 92.0

Table 2. Classification accuracy (%) on the Office-31 dataset with
the budget of 5% data. “RAN” represents random sampling.

with any unsupervised learning technique for fairer com-
parison, this also makes our SDM suitable for both pooled
and sequential setting of active learning. During the train-
ing process, we first train our network with initial data for
10 epochs with margin loss and an auxiliary cross entropy
loss, after which we start our sampling steps. The sampling
process is performed every two epochs until the labeled tar-
get data reaches the total budget. The learning rate is set to
be 0.01 and batch size is set as 72. We set the hyper param-
eter margin m in Eq (1) to 1 and λ in Eq (8) to 0.01 in terms
of detailed ablation studies.

4.2. Main Results

We compare our “SDM-AG” pipeline with other active
learning approaches on different benchmarks. We take a
ResNet50 trained with pure initial source data as our base-
line method for comparison, methods with classical active
learning strategies [2, 9, 16, 25] are taken into account, fur-
ther, we also compare our methods with recent state-of-the-
art ADA approaches [11, 15, 26, 34]. Besides, we also com-

Figure 4. Experiment results on CIFAR-10 dataset from 10%
training data to 30% training data. “RAN” is random sampling
and “ENT” is entropy-based sampling.

pare with some commonly used simple query functions like
random sampling (RAN), entropy-based sampling (ENT),
least confidence (CONF) and margin sampling (MAR).

The comparison results on Office-Home are presented
in Table 1. From this table, we see our SDM-AG pipeline
outperforms either classical active learning approaches or
recent ADA methods designed with complicated selection
strategies. To be specific, our SDM-AG method can bring
about +2.6% performance gain in average accuracy over
state-of-the-art active learning methods like TQS [11] or
BADGE [2]. Further, it can be observed that in some harder
scenarios with larger discrepancy between source and tar-
get (e.g. C to A and P to A), the improvement from our
SDM-AG method is more salient. In total, our method can
achieve +14.8% improvement on the average performance
over the baseline with pure source data. Similar results can
be found on the dataset of Office-31, which is listed in Ta-
ble 2. Although some transferring scenarios in this bench-
mark is kind of saturated, it can still be observed that SDM-
AG achieves substantial performance gain over other state-
of-the-art method [11, 26, 34] on some challenging scenar-
ios, and our simple pipeline can outperforms all compared
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Method Adjust Gradient A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

Baseline 58.6 81.3 81.7 60.3 76.2 73.6 63.4 55.2 80.5 73.8 60.5 86.3 70.9
SDM 60.5 79.6 81.4 65.3 76.5 74.9 65.8 56.5 80.6 75.2 61.1 85.7 71.9

SDM-A ✓ 60.7 81.5 82.1 65.7 76.8 76.3 66.3 58.1 80.2 75.2 62.7 86.6 72.7
SDM-G ✓ 61.2 81.9 82.7 65.6 77.6 76.1 66.0 58.0 80.8 75.8 61.8 86.9 72.9

SDM-AG ✓ ✓ 61.2 82.2 82.7 66.1 77.9 76.1 66.1 58.4 81.0 76.0 62.5 87.0 73.1

Table 3. Ablation study with different configuration with 5% of target labeled data on Office-Home dataset. “Baseline” is a model trained
with cross-entropy loss and selecting data with margin sampling. “Adjust” indicates dynamically adjusted margin loss. “Gradient” denotes
first-order gradient consistency.

Sample Strategy Training Loss Acc ∆

Entropy Cross Entropy 70.24 +0.28Margin Loss 70.52

Least Confidence Cross Entropy 70.68 +0.54Margin Loss 71.22

Margin Sample Cross Entropy 70.94 +0.98Margin Loss 71.92

Table 4. Comparison with different combination between differ-
ent types of training loss and sampling strategies on Office-Home
dataset. The “Acc” represents the averaged accuracy over all 12
transferring scenarios. ∆ denotes improvement with margin loss.

methods in terms of averaged domain adaptation accuracy.
In addition, we also extend our experiment and compar-

ison to a general active learning setting without domain gap
on the benchmark of CIFAR-10. The results are evaluated
after training of each sampling step and ploted in Figure 4.
It can be observed that our SDM pipeline can still outper-
forms most of other state-of-the-art methods [2, 30, 32] re-
gardless of numbers of labeled data and comparable to some
newest AL algorithms [1,36]. It is also noticeable that when
the number of queried number is small (e.g. 10% ∼ 20% of
training data), SDM outperforms all competitors including
recently proposed DAAL [36] or CDAL [1] by a large mar-
gin, demonstrating our SDM algorithm is more friendly to
scenarios of active learning with low budget.

4.3. Detailed Analysis

In this section, we analysis the components of our algo-
rithm in detail. If not specified, the analysis is conducted on
Office-Home with our default setting.
Improvement over Cross-Entropy Baseline. First we
conduct experiments to investigate the superiority of SDM
over a simple active learning baseline. To thie end, we de-
sign a baseline method where the network is trained with
pure cross-entropy loss, but selecting samples with the same
criterion of margin sampling as Eq (3). The comparison
on different transferring scenarios is shown in Table 3. It
is observed that our SDM paradigm, i.e. model trained

with margin loss and selecting data by margin sampling
achieves consistent improvement over cross-entropy base-
line on most scenarios and overall performance. This ob-
servation indicates that the improvement is the results of
the whole solution of SDM instead of a simple inclusion of
sampling strategy.
Effectiveness of Different Variants. Next we investi-
gate the improvement of different variants based on our
SDM baseline. The results are listed in Table 3. From
the table, we observe that both SDM-A and SDM-G can
bring significant performance gain compared with simple
SDM pipeline, demonstrating the improved dynamic mar-
gin loss and query function with gradient guidance can
benifit the active learning process respectively. Besides,
we see the combination of two variants, i.e. SDM-AG can
further boost the averaged performance to at most 73.1%
and achieve the best results on most of scenarios of Office-
Home dataset.
Compatibility between Margin Loss and Sampling. In
the discussion of Proposition 1, we have show training with
margin loss is inherently helpful for margin sampling espe-
cially to mine informative data from target domain. In this
section we further investigate this property with empirical
results. To this end, we test different combination between
training objective and query functions. For training loss,
we investigate the margin loss and commonly used cross-
entropy loss, as for sampling strategy, in addition to margin
sampling, the commonly used least confidence and entropy
sampling strategies are exploited. The test results are shown
in Table 4, from the table we can conclude that: (1) Regard-
less of the sampling strategy we use, margin loss can bring
improvement over pipeline trained with cross-entropy. (2)
In terms of the performance gain (∆ in Table 4), the margin
sampling strategy obtains the most gain in average accu-
racy, indicating that the margin loss is inherently suitable
for a relative margin-based data selection strategy to mine
informative data for domain transfer, which is consistent to
Proposition 1.
Variation with Different Budget Size. The annotation
budget B is an important parameter for active learning since
it decides the available target data to be labeled, therefore
we test how the domain adaptation performance varies with
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(a) P to C (b) R to A

Figure 5. Performance variation with different budget size on dif-
ferent scnarios of Office-Home dataset.

(a) Analysis of m (b) Analysis of λ

Figure 6. Sensitivity analysis on hyper-parameters of SDM on
different scenarios of Office-Home dataset.

increasing budget. To make horizontal comparison, we also
compare SDM with other two ADA methods TQS [11] and
CLUE [26]. In addition, we also compare with recent un-
supervised DA methods like CDAN [24] and ATDOC [23]
to see the required sample number to achieve competitive
results to these approaches. The budget size B is controlled
within the range from 0% to 20% of target data. The results
are plotted as curves in Figure 5. When compared with TQS
and CLUE, our SDM-AG methods can achieve consistent
improvement regardless of the budget size, this superior-
ity is more obvious on the scenario of R to A, demonstrat-
ing that our method can steadily benefit from the growth of
budget B and is not easy to saturate. Besides, when com-
pared with ATDOC and CDAN, our methods can achieve
the comparable results with a burden of only 5% target data
labeled, demonstrating the efficiency of our algorithm.
Sensitivity of Hyper-parameter. We further test how the
hyper-parameters in our SDM pipeline affect the overall
performance of domain adaptation to see if our algorithm
is sensitive to some parameters. To be specific, we tune the
training margin m of Eq (7) and balance factor λ in Eq (8)
within a tolerable range and test the accuracy on three sce-
narios of different difficulties (P to C, R to C, R to A). The
results are ploted as curves in Figure 6. On all scenarios,
we see the accuracy varies marginally with the tuned hyper-
parameters. This observation demonstrate our approach is
stable and not sensitive to specific hyper-parameters.
Complexity Analysis. Finally, we analyze the complexity
and running time to confirm the claim that our SDM algo-
rithm is a simple pipeline compared with other complicated

Method Query Complexity Time (s)

BADGE [2] O(BNKD) 11.47
CLUE [26] O(tNBD) 1.65

TQS [11] O(NMK +N logN) 2.19
SDM-AG (ours) O(NKD +N logN) 0.067

Table 5. Comparison between complexity and running time of
different methods. B is the budget size, K is number of classes,
D is feature dimension, N is number of target samples, t is the
clustering iteration in [26] and M is the committee size in [11].

ADA methods. To be specific, we compare the theoreti-
cal complexity and actual running time of one round of data
query and sampling. We compare SDM with state-of-the-art
clustering method [2, 26] and ranking method [11]. For all
methods, we ignore the running time and complexity of net-
work forward pass since this is the common step and con-
sumes the same time, and for all rank-based methods, we as-
sume a stable comparison sort algorithm is applied with the
lower bound of complexity O(N logN) to sort all data. The
comparison results are listed in Table 5, readers can refer to
the appendix material for more details about the complexity
derivation of SDM. In Table 5, we see the rank-based meth-
ods do not rely on budget size B, resulting more efficient
complexity. In terms of running time, SDM achieves 24.6×
query speed compared with the nearest competitor [26] and
is much faster than TQS [11], since TQS requires parsing
results from multiple classifiers and running an additional
discrimination network for domainess.

5. Conclusion
In this paper, aimed at the active domain adaptation prob-

lem, we propose a simple but effective solution termed as
Select-by-Distinctive-Margin (SDM). We provide theoreti-
cal analysis to show how a model trained with margin loss
select informative data, and further propose two variants to
enhance the model training and data sampling. Compre-
hensive experiment results demonstrate that our algorithm
is a concise, stable and superior solution toward the active
domain adaptation problem.
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