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Figure 1. Task illustration. Given the category of only one available image, our model well synthesizes the images of that category.

Abstract

This paper studies the task of One-Shot image Gener-
ation (OSG), where generation network learned on base
dataset should be generalizable to synthesize images of
novel categories with only one available sample per novel
category. Most existing methods for feature transfer in one-
shot image generation only learn reusable features implic-
itly on pre-training tasks. Such methods would be likely
to overfit pre-training tasks. In this paper, we propose
a novel model to explicitly learn and memorize reusable
features that can help hallucinate novel category images.
To be specific, our algorithm learns to decompose im-
age features into the Category-Related (CR) and Category-
Independent(CI) features. Our model learning to memo-
rize class-independent CI features which are further utilized
by our feature hallucination component to generate target
novel category images. We validate our model on several
benchmarks. Extensive experiments demonstrate that our
model effectively boosts the OSG performance and can gen-
erate compelling and diverse samples.

1. Introduction

As humans, our knowledge of concepts and the rich
imagination ability may allow us to visualize or ‘halluci-

*Corresponding author. This work was supported in part by NSFC un-
der Grant (No. 62076067), and SMSTM Project (2018SHZDZX01).

nate’ what the given image of the novel object would look
like in other poses, viewpoints, or background, as shown in
Fig. 1. Essentially, humans can robustly learn novel con-
cepts with very little supervision, benefiting from the well-
known ability of learning to learn. Inspired by such ability,
previous works [6, 26, 28] study the recognition task in the
low-data regime. In contrast, this paper addresses the task
of One-Shot image Generation (OSG), which is defined as
learning to synthesize images of a novel category with only
one training example. Especially, the newly synthesized im-
ages should be visually similar to the given example. For
example, given a new example of a novel target category in
Fig. 1, the OSG task aims at generating new possible ani-
mal images by implicitly varying their key attributes, such
as poses, viewpoints, and actions while crucially not chang-
ing the category of the example image.

Extensive efforts have been devoted to the one-shot im-
age generation task. Specifically, some few-shot recogni-
tion models [31, 35] explore the generative models as data-
augmentation methods, while these methods do not neces-
sitate generating images of good visual quality. Then, to
reduce the cost, researchers [16, 24] study training GANs
using only a few images and produce high-quality images
of good texture yet lacking semantic information. On the
other hand, there are many transfer learning-based meth-
ods [14, 21, 33, 34] that transfer the pre-training model to
the target task with only a few training samples. In these
works, the models pre-trained on large datasets are adapted
to some specific novel tasks or domains.
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Figure 2. Given a single image of a panda, the category indepen-
dent features pre-learned on the base dataset (prior knowledge)
would be reused to hallucinate the new images. Thus the syn-
thesized panda images have similar grass backgrounds or similar
poses of open-mouth as some images in the base dataset.

Despite there are plenty of previous endeavors, our OSG
task is still very difficult. The key challenges come from
two folds. (1) There is insufficient training data as only one
input image per class is available. (2) Pre-training (base)
categories and target (novel) categories are dis-jointed, and
the features learned on base are not necessarily generaliz-
able for image synthesis of target categories.

To address these challenges, this paper proposes to ex-
plicitly explore features of hallucination. Our key insight
is to learn features that are reusable and transferable from
source categories to the target. For example in Fig. 2, given
with only one example image of a panda, people can still
imagine how a panda looks like in different backgrounds or
poses. This is because people can maintain the prior knowl-
edge about category-independent (class-agnostic) informa-
tion, such as grass and open-mouth, and apply it to hallu-
cinate the new panda images. This motivates us to exploit
the Category-Independent (CI) and Category-Related (CR)
features. Technically, it is inefficient to produce the labels
to directly supervise the learning process of CI and CR fea-
tures.

To this end, we present the model of learning to Mem-
orize Feature Hallucination (MFH) that is capable of ex-
plicitly learning the CR and CI features via the image re-
construction process on the source/base dataset. The key
component of our MFH is to introduce a memory module
to learn and store the CI features. Specifically, our MFH is
composed of two parts: Learning to Memorize (L2M), and
Feature Hallucination (FeaHa). The L2M has the CI and
CR encoders and the memory. The FeaHa is composed of a
generator and discriminator.

More specifically, the CR encoder is to extract CR fea-

tures with supervision from the category label, while the CI
encoder projects CI features onto a memory from the given
image. The memory serves as a dictionary of the CI fea-
tures. To efficiently utilize the memory, a novel addresser
network is presented in our work. Note that since there is
no directly labeled supervision for the CI encoder, we intro-
duce an implicit supervision strategy at the pairwise level.
Particularly, given two different images from the same cat-
egory, we assume these two images have the same CR, and
yet different CI features. In the training stage, we randomly
select two CI features from memory and combine them with
the same CR feature; and we encourage the generator to
synthesize the image differently. Simultaneously, we en-
force the classifier to predict the label of the reconstructed
image the same as the original category. We thus define
such pairwise relationships as diversity loss to supervise our
MFH, which is learned in an end-to-end manner. In the test-
ing stage, we use the CR features from the input image and
sample the CI features from the memory. Then we employ
the generator to hallucinate the new images. Extensive ex-
periments on two benchmarks validate the efficacy of our
model.
Contributions We highlight several key contributions here:
(i) We propose a novel method of learning to memorize fea-
ture hallucination for the task of OSG. (ii) Our MFH has
the component of L2M and FeaHa. The L2M learns how to
disentangle image features and repurpose the memory struc-
ture to preserve the CI features. By sampling from memory,
our feature hallucination component can produce new im-
ages. (iii) To efficiently learn the class-independent CI fea-
tures, we present a novel pairwise supervision strategy to
help model explicitly learn features that can be reused in
one-shot generation tasks. The learned CI features can con-
sistently represent interpretable and meaningful concepts of
various categories. (iv)Interestingly, we show that the newly
synthesized images by our MFH can be directly employed
as additional training instances, thus can boost the perfor-
mance of one-shot classification.

2. Related Work
One-Shot Recognition It aims at rapidly generalizing to
new recognition tasks containing an only one available sam-
ple. Methods of one-shot recognition can be roughly di-
vided into these types: meta learning methods [26, 28] ,
metric learning based methods, optimization based meth-
ods [6] and so on. Beyond the recognition, this paper stud-
ies the one-shot image generation.
Image Generation There are many generative networks [5,
13, 38]. The basic problem to be solved is how to learn the
data distribution and how to synthesize new pictures based
on the learned distribution. The Generative Adversarial
Networks(GANs) [7] is one of the most popular generative
algorithms, with many well known unconditional models
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Figure 3. Network Structure Diagram. Our M reserves the CI features. In the inference phase, the generation network G uses randomly
selected CI features in the M and image CR features fcr in novel categories to generate diverse images.

including StyleGAN [30], BigGAN [3], and editing based
methods such as GANs Inversion [1, 2]. Unfortunately, the
vanilla GAN demands heavily rely on the training data, and
typically is not ready to synthesize the categories of only
one training sample. This inspires the exploration of few-
shot GAN.

One-Shot Image Generation Recently, there has been
some research on one-shot generation tasks [22, 39]. Un-
like one-shot recognition tasks that usually introduce meta-
learning, one-shot generation tasks are often based on trans-
fer learning. Some methods [10, 24, 29] try to directly learn
the image distribution information with one sample, where
FastGAN [16] uses data-augmentation and self-supervised
algorithms to avoid discriminator over-fitting under few-
shot training samples and SinGAN [24] uses a multi-scale
structure to learn the internal distribution information of
image from a single sample. Another solution is based
on transfer learning [14, 25, 34]. However, these types of
methods often focus on the performance of the model in
the novel domain rather than the novel category. Here we
mainly introduce the methods applicable to the novel cat-
egory. BAS [21] tries to solve the mode collapse problem
that may occur when fine-tuning the network, it proposed
to only update the batch normalization parameters. Fine-
tuneGAN [31] extends BAS as a data-augmentation method
to improve the performance of few-shot image recognition
models. MineGAN [33] designs a miner network to mine
the knowledge that is most beneficial to a specific dataset.
Different from the above one-shot image generation meth-
ods, our model solves the one-shot image generation task
from the perspective of disentangled learning and feature
reuse. Our model does not need to be fine-tuned or retrained
on the target category.

Memory Networks It [36] proposes to expand memory
modules to maintain the long-term memory of networks.
Neural Turing Machines [8] extend the capabilities of neu-

ral networks by coupling them to external memory modules.
Such memory networks are widely used in many tasks, such
visual question answering [12, 27, 37] and 3D point cloud
segmentation [9], and open world recognition [18]. Differ-
ent from these works, our framework is learned to memorize
the features, which are reused for the hallucination task.

3. Method
Problem Definition The One-Shot image Generation
(OSG) task assumes that we have the base/source dataset
Dsrc = {xsrc,ysrc} and a novel dataset Dnov =
{xnov,ynov}. xsrc and xnov denote the train and test set
respectively. The label sets are ysrc and ynov . We denote
the categories of source dataset and novel dataset as Csrc

and Cnov , where Csrc ∩ Cnov = ∅. We take the gen-
eral few-shot learning setting: there are plenty of labeled
instances on Dsrc, and only one labeled instance per class
on Dnov . Given one image xnov

i ,∈ Dnov , our MFH aims at
generating more diverse images x̃nov , which should main-
tain the category unchanged. Notably, our task is different
from the vanilla class conditioned GAN, as we only have
one-shot image per class.
Overview We propose a novel network of learning to Mem-
orize Feature Hallucination (MFH) for a one-shot image
generation task, as summarized in Fig. 3. It has the novel
components of Learning to Memorize (L2M), and Feature
Hallucination (FeaHa). The key insight of our model is
to map the image to the Category-Related and Category-
Independent embedding spaces through two encoders Ecr

and Eci. The L2M module enforces the pairwise supervi-
sion to learn CI features reusable among categories, which
are further memorized and stored in the memory structure
M . The FeaHa component samples from the memory, and
hallucinate new images with additional CR features from
the input exemplar. Our model is trained end-to-end and
does not require fine-tuning during inference.
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Figure 4. Model generated images. Here we show the performance of our model given an input image. Here we emphasize that none of
the displayed species have appeared in the training set. The images synthesized by our MFH under the one-shot setting are more diverse
than other competitors.

3.1. Learning to Memorize

The L2M component has the category-related Ecr and
category-independent encoder Eci, which maps the input
images to the CR & CI embedding spaces, respectively.
The L2M further preserves the CI features into the memory
module M, which will be readable by the FeaHa module. To
efficiently learn the memory, we present a novel addresser
R network to read the information from M for reconstruc-
tion.
Encoder Ecr The Ecr calculates the mean of instances xi

from the same category. Particularly, given class c ∈ Csrc∪
Cnov , we can encode the averaged features of its class,

f cr
c =

1

K

K∑
i=1

Ecr (xi · c (yi)) , (1)

Where f cr
c represents the mean feature of class c in the

prototypical-type embedding space; f cr
c is CR feature. K

represents number of samples; and we have K = 1 on the
novel class. c : Y → {0, 1} is an indicator function:

c (y) =

{
1, y = c
0, y �= c

(2)

Encoder Eci Different from CR features from Ecr, we take
CI features from the memory module M. Specifically, The
CI encoder Eci extracts feature f̃ ci

i from the input image
xi, as F ci = {Eci (xi)}Ki=1. Here the encoded features
F ci are further utilized as the intermediate representations
to construct the target CI features in the Memory M.

Memory M and Addresser R The vanilla strategy of
memory networks such as VQ-VAE [23] employs the near-
est neighbor to read target information from Memory M.
However, it has some underlying disadvantages of very sen-
sitivity to initialization and non-stationary to clustered neu-
ral activation in training our MFH framework. To this end,
we present a novel Addresser R with the structure of a
multi-layer perception. The input of Addresser R is f̃ ci, and
its output is a one-hot vector, representing the position of
the target CI feature in Memory M. To differentiablly learn
the one-hot vectors in Memory M, we employ the Gumbel-
softmax [11] for optimization, it can be formulate as:

πi =
exp

((
R
(
f̃ ci
i

)
+ gi

)
/τ

)

∑k
j=1 exp

((
R
(
f̃ ci
i

)
+ gi

)
/τ

) (3)

where πi is One-hot vector that refers to the position of
the target CI feature in the Memory M. gi are indepen-
dent and identically distributed (i.i.d) samples drawn from
Gumbel (0, 1). The hyperparameter τ is the temperature
coefficient in Gumbel-softmax.

Since πi is a one-hot vector, we can easily use matrix
multiplication to obtain the target CI feature from M. The
final CI feature is:

f ci
i = πi ·M (4)

where πi ∈ R1×n and M ∈ Rn×w, n represents the num-
ber of CI features stored in M, and w is the dimension of CI
feature.
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3.2. Feature Hallucination

Feature hallucination contains two modules: generator
and discriminator. The generator is subject to imagining
new pictures according to the CI features in Memory M and
CR features from novel categories while the discriminator
is responsible for adversarial training.
Generation Network The generation network G is respon-
sible for combining CR and CI features to generate the cor-
responding images. To facilitate such a purpose, we make a
good design of the structure. Given a CR feature f cr and a
CI feature f ci

i from memory M, we first concatenate these
two features as the input of the network. We learn to control
Adaptive Instance Normalization (AdaIN) operations after
each convolution layer of the synthesis network G. Note
that different from the AdaIN in StyleGAN, we utilize dif-
ferent conditions for AdaIN to help the disentangled learn-
ing: before the resolution of the feature map reaches 32×32,
we use the CI feature f ci

i as a condition for AdaIN, and we
utilize the CR feature f cr for the rest of generator network.

The reason for our design is to consider that the gener-
ated image needs to maintain the same category as the input
image, so we only employ the CR features to calculate the
AdaIN parameter in the second half of the generated net-
work.

xgen
i = G

(
f cr
c , f ci

i

)
(5)

where xgen
i indicates generated images, f ci

i refers to CI fea-
tures selected from Memory M.

In the inference stage, we randomly sample the FeaHa
components from Memory M and combine it with the CR
feature of the One-shot image as the input of the Generator
to imagine new images.
Discriminator D Considering that we have strict require-
ments on the category of the generated image, it requires to
be consistent with the input image category. Thus we use
the discriminator structure of cGAN [19, 20].

3.3. Loss Functions and Training Strategy

Here we give a detailed description of the loss functions
and training strategy of the model. During the training pro-
cess, we only use the images in the source dataset. For sim-
ple notation, assuming that in one forward process, we ran-
domly sample one image x from one category y. We train
the OSG task by solving a minimax optimization,

minmax LGAN + λRLR + λdsLds + λcbLcb (6)

where LGAN , LR, Lds, and Lcls are the GAN loss, the con-
tent image reconstruction loss, diversity loss and category
balance loss individually.

The GAN loss is a conditional one given by

LGAN (G,D) =Ex,y [−logD (x,y)]

+Ex,y [log(1−D (xgen,y))]
(7)

The loss is computed only using the corresponding binary
prediction score of the class, the GAN loss here includes
classification supervision.

The Reconstruction Loss LR is to help the network bet-
ter learn how to generate images. According to the input
x, we can obtain its category-independent feature f ci

x and
category-related features f cr

x respectively. The loss LR en-
courages the generator G to reconstruct the input image x
based on f ci

x and f cr
x . That is

LR = Ex

[∥∥x−G
(
f cr
x , f ci

x

)∥∥
1

]
(8)

Reconstruction loss is the key to ensure that the model can
synthesize high-quality images.

Algorithm 1 PairWise Supervision

Require: images xi with label yi

1: Sample f ci
a and f ci

b from M ∈ Rn×w ▷ Randomly
sample two CI features from Memory M

2: f cr = Ecr (xi) ▷ Extract Category-Related feature
from xi

3: xgen
a = G(f cr, f ci

a ) ▷ Combine f ci
a and f cr to

generate corresponding image
4: xgen

b = G(f cr, f ci
b ) ▷ Combine f ci

b and f cr to
generate corresponding image

5: Classify the generated images, Cls(xgen
a ) =

Cls(xgen
b ) = yi ▷ The categories of the

two randomly generated images need to be consistent
with the input images xi. The classifier is included in
the discriminator.

6: Calculate α−Ex [∥G (fcr,m1)−G (fcr,m2)∥1] ▷
Encourage different CI features to get different images

Here we introduce our pairwise Diversity Loss in detail,
which is the key to supervising our MFH to explicitly ex-
tract reusable features. According to the previous introduc-
tion, we randomly sample two category-independent fea-
tures f ci

a , f ci
b from memory M, then combine them with

f cr
x as the input of the Generator to generate two images
xgen
a , xgen

b . Lds encourages the generated two images to be
significantly different. Lds can be formulated as:

Lds = α−Ex

[∥∥G (
f cr
x , fci

a

)
−G

(
f cr
x , f ci

b

)∥∥
1

]
(9)

where α is hyperparameter for controlling the diversity.
Finally, Lcb is used to make the distribution of each CI

features as balanced as possible.

Lcb = KL (πi ∥ q (π)) (10)

where KL is the Kullback-Leibler divergence, and q(π) is
assumed to be uniformly distributed.

The pseudo code of our proposed module is in Alg 1,
which show just how easy it is to implement our pairwise
diversity supervision.
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One-Shot Random Generated Images

One-Shot Random Generated Images

Figure 5. Visualization of different category images combined
with the same CI features. One-Shot images are marked with a
red box, and the rest are images synthesized by the model.

4. Experiments

AnimalFace [17]. This dataset is constructed by using im-
ages from ImageNet [4] dataset. The images come from
149 carnivorous animals of 119 source/seen classes and the
30 target/unseen classes. This dataset contains a total of
117574 images.
NABirds(NAB) [32]. A high-quality dataset containing
48,562 images of North American birds with 555 cate-
gories, part annotation, and bounding boxes [32]. We eval-
uate whether our model as a data-augmentation method im-
proves the performance of the one-shot classification model
on this dataset. We follow MetaIRNet [31] setting, and split
NAB with a portion of train:test=3:1.
Implementation We use Adam with learning rate
(lr)=0.0001, β1 = 0.001 and β2 = 0.999 for all methods.
Spectral normalization is applied to the discriminator. The
final generator is a historical average version of the inter-
mediate generators where the update weight is 0.001. We
train the model for 150,000 iterations in total. Each training
batch consists of 64 content images, which are evenly dis-
tributed on a DGX machine with one 3090 GPU, each with
24GB RAM. The resolution of the images we generated and
input is 128 × 128. For Memory M in the network, we set

Dataset Method FID

AnimalFace [17]

MineGAN [33] 94.25
FastGAN [16] 80.23

FinetuneGAN [31] 91.39
BAS [21] 102.31

ours 75.28

NABirds [32]

MineGAN [33] 79.28
FastGAN [16] 59.64

FinetuneGAN [31] 75.56
BAS [21] 84.56

Ours 42.24

Table 1. Comparison with other methods in the one-shot setting
on AnimalFace and Nab datasets.

50 memory sizes for both datasets. The details of MFH are
in the supplementary.
Evaluation Protocol Here we evaluate our model from two
perspectives, which are the quality of images generated by
the model and whether the generated images are helpful for
one-shot classification tasks. For the quality of the gener-
ated image, we employ Frechet Inception Distance (FID) to
measures the similarity between two sets in the embedding
space. FID is widely used to measure both quality and di-
versity of the generated images. For each dataset, we let the
model generate 50 images for each category and randomly
sample 50 images from each test category to calculate the
FID with the synthesized image. To evaluate whether our
method is helpful for one-shot classification tasks, we fol-
low the setting in MetaIRNet [31] and use our method as a
data-augmentation strategy to expand support set. For fair
comparison, we use ProtoNet [26] as the base classifier of
other data augmentation baselines.

4.1. Main Results and Discussion

Quantitative Results We compare our method with other
methods in the one-shot setting on AnimalFace and Nab
datasets. FinetuneGAN [31], MineGAN [33] and BAS [21]
are first trained on ImageNet [4] and then adapt model
on a one samples in the target category by fine-tuning the
weights of the model, FastGAN [16] use a self-supervised
algorithm to ensure that the discriminator will not overfit
even with few samples. Here our main comparison meth-
ods are to make the generative network generalize to the
novel category, and some methods [14, 22] whose purpose
is to generalize to the novel domain are not included in our
comparison. From Tab. 1, our FID is much lower than other
competitors.

From Tab. 2, we can see that the data-augmentation
method for comparison includes both traditional image
transformations, such as Gaussian noise and flip as well as
generative networks FinetuneGAN, introduced by MetaIR-
Net [31], is based on the BAS model extension). When
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(a) AnimalFace (b) NABirds

Real Data&Generated Data:

Figure 6. We visualize the tSNE plot of generated images and real
images. It is clear that the images synthesized by our model have
high diversity while keeping the category labels accurate.

Method Data Augmentation NABirds Acc.↑
ProtoNet - 77.93±0.67
ProtoNet FinetuneGAN 76.28±0.63
ProtoNet Flip 78.72±0.64
ProtoNet Gaussian 77.94±0.67
ProtoNet Ours 79.02±0.61

MetaIRNet FinetuneGAN 79.21±0.63
MetaIRNet FinetuneGAN, Flip 79.52±0.62
MetaIRNet Ours 82.98±0.60

Table 2. Results of on 5-way 1-shot tasks from NABirds with
ImageNet pre-trained ResNet18.

using our model as a data-augmentation method, it can be
improved by about 4 points compared to the basic protonet.
Our model as a data-augmentation strategy is also signifi-
cantly better than other data-augmentation methods. In or-
der to better show why our model can improve the perfor-
mance of the one-shot classification model, In Fig. 6 we use
tSNE to visualize the distribution of our generated samples
and realistic samples in the embedding space.
Qualitative Analysis As seen from Fig. 4 in the one-shot
setting, our model can produce diverse and high-quality
samples. When selecting different CI features from mem-
ory back and combining them with the CR feature of the
one-shot image, our model generates more diverse images
while keeping the same category of the generated image
and the input image. This shows that our model disen-
tangles “category-independent” and “category-related” fea-
tures well. FinetuneGAN can only synthesize images sim-
ilar to the image used for training, and the quality of the
synthesized images is also very poor. FastGAN performs
better than FinetuneGAN but the images it generated still
lack diversity. Our model can generate more diverse images
while keeping the object category unchanged. In Fig. 5,
It can be seen from the experimental results that images
synthesized by combining different “category-related fea-
tures” with the same “category-independent features” will
have the same mode (such as “looking to the left”) while re-
taining the same category features as the input image. This

Different Background Different Posture

Figure 7. We show that in datasets with similar backgrounds, such.
as NABirds, our model can learn not only features such as pose but
also some background features that can be shared.

Dataset
Methods

Ours FinetuneGAN FastGAN

Im.Q
AnimalFace 32 5 13

NABirds 28 4 18

Im.D
AnimalFace 42 2 6

NABirds 38 1 11

Table 3. User study. We invite 50 users to vote by the generated
image quality(Im.Q) and generated image diversity(Im.D).

ds-loss gumbel-softmax AnimalFace NABirds

� 90.54 71.36
� 87.63 65.72
� � 75.28 42.24

Table 4. Ablation of MFH. Here we mainly analyze the two most
important components, diverse loss and gumbel-softmax.

further reveals the insights of our model. We use a crowd-
sourcing platform to invite 50 users who are unknown to our
project and make binary voting of the quality and diversity
of the images synthesized by different methods. Each user
randomly gives one synthesized image of each method. We
summarize the results as shown in tab 3, our methods have
obtained more user votes on both evaluation indicators. In
Fig. 7, We can see that the model has learned how to change
the background and posture of the object. In other words,
the model of unsupervised learning has characterized the
background and posture as two key features shared among
categories. Such results are reasonable.

5. Ablation Study
Here we mainly discuss the two modules of the model.

One is L2M module. In the previous introduction, we ex-
plained why we choose Gumbel softmax for Addresser R
instead of the K-means [15]. In ablation study, we will ver-
ify it through experiments. The other one is the design of
the loss function, especially the influence of Lds on model
performance. Finally, we will also give the failure case of
the network and analyze the reasons.
Effect of the Gumbel Softmax In this paper, we use a clas-
sification network to directly predict the CI features’ ad-
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Input Images Random Generated Images

Figure 8. Results of using K-means [15] to replace Gumbel soft-
max. From left to right are the input images and the network ran-
domly generated images.

Input Images Random Generated Images

Figure 9. After removing the diverse loss Lds, the performance of
the model. From left to right are the input images and the network
randomly generated images.

dresses to which each sample belongs, and Gumbel-softmax
as a differentiable argmax operation. Here we replace the
Gumbel-softmax operation with the K-means to show why
we choose Gumbel-softmax instead of K-means. In the
training process, we calculate the distance between the fea-
ture of the source sample and the memory items. And
through the stop gradient method in VQ-VAE to update
each memory item.

As shown in Fig. 8, When Addresser R uses K-means
instead of Gumbel Softmax, it is easy to cause multiple CI
features to collapse into one CI feature, which causes the
generation network G to be insensitive to the input from the
memory bank. This is why no matter which CI feature we
select, the output of the generated network is the same, and
the generated images lack the diversity of content. After re-
placing gumble-softmax with k-means, in Tab. 4, the FID
score has also risen sharply, which indicates that the effect
and diversity of the model’s image generation have deterio-
rated.
Effect of the Design of Loss Function In order to make the
images generated by the network have diversity, and keep
its category consistent to the input images. Here we re-
move the diversity loss to understand the impact of the two
losses on the network generation performance. As shown
in Fig. 9, When we remove Lds, although not all generated
images are the same, the diversity of generated images is
still significantly reduced, multiple CI features have over-
lapped. As shown in Tab. 4, When we remove the diverse
loss, the FID score performance of the model has greatly
increased on the two different data sets of AnimalFace and
NABirds. This shows that the diversity of generated images
is significantly reduced.
Interpolate between CI Features Although our network is

Start End

Figure 10. We randomly select two CI features and interpolate
from one to another. Our model can generate meaningful interme-
diate results by using these interpolated CI features.

Input Images Random Generated Images

Figure 11. We show that some failure cases are caused by strange
poses and multi-object occlusion.

trained to set as a hyperparameter the number of CI features
in memory M. Such CI features are discrete variable. Here
we show that we can generate more images by interpolat-
ing between the two CI features. Specifically, we randomly
select CI features from the memory; and then we perform
linear interpolation between them. As shown in Fig. 10, we
can see that the intermediate CI features can generate mean-
ingful results.

Failure Case Analysis Fig. 11 shows several failure cases
generated by our model.The reason for the failure case may
be that there are cases in the image that have not been seen
in the training, such as multiple animals and strange poses
and so on.

6. Conclusion

In this paper, we introduce a novel framework to solve
one-shot image generation problems. We propose a genera-
tive model to learn and memorize the category-independent
features on the source, so as to generate more data based
on this learned knowledge when given the one-shot exam-
ple. Specially, we propose a pairwise diversity supervision
strategy to help the model learn category-independent fea-
tures explicitly. We show that while given only one example
of a new category, our network can still generate plausible
and diverse new images whose category is strictly consis-
tent with the input sample. We validate our model on several
benchmarks and achieve state-of-the-art generation perfor-
mance.
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