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Abstract

Knowledge distillation has shown great effectiveness
for improving neural architecture search (NAS). Mutual
knowledge distillation (MKD), where a group of mod-
els mutually generate knowledge to train each other, has
achieved promising results in many applications. In existing
MKD methods, mutual knowledge distillation is performed
between models without scrutiny: a worse-performing
model is allowed to generate knowledge to train a better-
performing model, which may lead to collective failures.
To address this problem, we propose a performance-aware
MKD (PAMKD) approach for NAS, where knowledge gen-
erated by model A is allowed to train model B only if the
performance of A is better than B. We propose a three-level
optimization framework to formulate PAMKD, where three
learning stages are performed end-to-end: 1) each model
trains an initial model independently; 2) the initial mod-
els are evaluated on a validation set and better-performing
models generate knowledge to train worse-performing mod-
els; 3) architectures are updated by minimizing a validation
loss. Experimental results on a variety of datasets demon-
strate that our method is effective.

1. Introduction

Neural architecture search (NAS) [34, 45, 64], which
aims to automatically search for high-performance neu-
ral architectures, has attracted much research attention re-
cently. Many NAS works [17, 26, 29, 35, 49, 57] propose to
leverage knowledge distillation (KD) [3, 21, 52] to improve
the quality of searched architectures, by transferring knowl-
edge from human-designed architectures to auto-searched
architectures [29, 35, 57], enabling multi-fidelity evaluation
of architectures [49], alleviating model capacity gap [26],
etc. In KD, a teacher model generates knowledge such
as pseudo-labels [21] and a student model is trained using
these knowledge. Among various studies on KD, mutual

KD [1, 4, 27, 28, 37, 51, 55, 62], where a group of models
mutually perform KD (i.e., each model generates pseudo-
labels to train other models), has shown promising results.
Mutual KD can help models converge to a more robust min-
ima [62], can achieve better generalization to test data [28],
can learn multi-scale representations to boost prediction ac-
curacy [55], etc.

In existing mutual KD works, knowledge distillation is
performed between any pair of models without scrutiny,
which may lead to collective failure. If a model A is
not performing well, its generated knowledge is not accu-
rate. Trained using these low-quality knowledge, the perfor-
mance of the rest models is degraded, which renders their
knowledge L to have low-quality as well. Updated using
L, model A becomes worse, which further worsens the rest
models. This vicious circle renders all models to fail col-
lectively (empirical justification is in Fig. 1).

In this paper, we aim to address this problem, by propos-
ing a performance-aware mutual KD approach, for improv-
ing NAS. In our method, performance scrutiny is performed
before transferring knowledge: a learner A is allowed to
generate knowledge to train another learner B only if the
performance of A is better than B. By doing this, the risk
of collective failure can be greatly reduced (empirical justi-
fication is in Fig. 1), because a poorly-performing learner is
prohibited from generating knowledge.

Existing mutual KD methods [1, 4, 27, 28, 37, 51, 55, 62]
are not amenable for performance scrutiny. In these meth-
ods, the same model weights are used for measuring per-
formance and are trained at the same time, which will lead
to a degenerated solution: all models have the same perfor-
mance and no KD will be conducted (empirical justification
is in Table 6). To address this problem, we propose to learn
two sets of model weights sequentially for each learner, use
one set of them for measuring performance and generat-
ing knowledge, and then train the other set using gener-
ated knowledge. The two sets of weights are learned se-
quentially at different stages instead of simultaneously at
the same stage, which can avoid the degenerated solution of
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existing methods (empirical justification is in Table 6).
Our method is formulated as a three-level optimization

problem, consisting of three learning stages performed end-
to-end. In the first stage, each learner k independently trains
a predictive model Vk. In the second stage, for each pair
of learners k and j, their models Vk and Vj are evaluated
on a validation dataset. If the performance of Vk is bet-
ter than Vj , then Vk generates knowledge which is used to
train another model Wj of learner j. In the third stage,
models trained in the second stage are further validated
and their architectures are updated by minimizing valida-
tion losses. Chen et al. [4] learn attentional weights to con-
trol how much knowledge is allowed to transfer from one
model to another. Attentional weights and model param-
eters are learned jointly on a training dataset, which may
lead to overfitting. In contrast, our method measures perfor-
mance (during scrutiny) on a validation set and trains mod-
els on a training set, which can greatly reduce the risk of
overfitting.

Another problem of existing KD methods [1, 4, 27, 28,
37, 51, 55, 58, 62] is that they mutually transfer knowledge
on individual examples [1, 4, 27, 28, 51, 55, 62] or on low-
order triplets [58], without considering the higher-order
(e.g. ≥ 4) relationship between examples, which there-
fore may not be able to capture complex structure of the en-
tire dataset (empirical justification is in Fig. 2). To address
this problem, we propose a new group-wise relative sim-
ilarity (GRS) based approach to transfer knowledge from
model j to k, where learner j uses its model to determine
which group of data instances have larger mutual similar-
ities, and learner k trains its model by fitting these GRS
relationships. These relationships capture high-order (≥ 4)
nonlinear manifold structure [46] in the dataset, which can
facilitate more effective knowledge transfer between learn-
ers (empirical justification is in Fig. 2).

The major contributions of this paper are:

• We propose a performance-aware mutual knowledge dis-
tillation (PAMKD) method for improving neural architec-
ture search. In PAMKD, a model A is allowed to generate
knowledge to train another model B only if the perfor-
mance of A is better than B, which can address the col-
lective failure problem of existing MKD methods. Our
framework consists of three learning stages which are
performed end-to-end: 1) each learner trains a prelimi-
nary model; 2) learners conduct performance-aware mu-
tual knowledge distillation; 3) architectures are updated
by minimizing validation losses.

• We propose a group-wise relative similarity based knowl-
edge transfer approach which can capture high-order re-
lationships among data instances.

• Experiments on several datasets show the effectiveness of
our method.

2. Related works
Neural architecture search (NAS). NAS [15, 34, 39, 45,
64] aims to automatically identify highly-performing ar-
chitectures of deep neural networks instead of manually
designing them. Various approaches have been proposed
for NAS, based on gradient algorithms [2, 34, 53], rein-
forcement learning [43, 50, 64, 65], and evolutionary algo-
rithms [33, 45]. Our proposed framework is orthogonal to
existing NAS approaches and can be applied to improve dif-
ferentiable ones. Zaidi et al. [59] proposed a neural en-
semble architecture search method where an architecture
is searched for each baseline classifier in an ensemble. In
evolutionary algorithm based NAS approaches [33, 45], a
population of architectures are evaluated. Related to these
methods, our work also searches for a collection of architec-
tures. Such et al. [47] proposed a meta-learning approach
to generate synthetic data for NAS. Related to [47], our
work also leverages a three-level optimization framework
for architecture search. Different from these works includ-
ing [33, 45, 47, 59], our work performs mutual KD among
architectures during the search process while these works
do not. Knowledge distillation for NAS has been broadly
explored [17, 26, 29, 49]. In these works, a trained teacher
network (with a fixed architecture) is leveraged to generate
pseudo-labels, which are used to search the architecture of
a student network. Different from these works, architec-
tures of all models in our method are searchable. Peng et
al. [41] perform mutual KD among subnetworks within a
single model. Different from this work, our method per-
forms mutual KD among an ensemble of models.

Knowledge distillation (KD). KD has broad applica-
tions in machine learning, such as model compression [21],
achieving adversarial robustness [3], and semi-supervised
learning [52], etc. Some KD works [3, 21, 42, 52] are unidi-
rectional: knowledge is distilled from a teacher model to a
student model while other works [1, 4, 27, 28, 37, 51, 55, 62]
are bi-directional: mutual KD is performed between a col-
lection of models. You et al. [58] distill knowledge from
multiple teachers to a student, but there is not mutual
KD between teachers. Jonghwan et al. [40] distill knowl-
edge from each base model to its corresponding specialized
model in multiple choice learning, but there is no mutual
KD between base models or between specialized models.
In [62], a group of models are trained together where each
model generates pseudo labels to train other models. In [4],
a group of models mutually transfer knowledge and the en-
semble of these models transfers knowledge to a final model
to be deployed. In [55], a group of sub-networks with differ-
ent widths and input resolutions are trained together to mu-
tually learn multi-scale representations. In [28], mutual KD
is performed in an implicit way: each model is trained us-
ing pseudo-labels generated by an ensemble of all models.
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In [11], an online knowledge distillation method is proposed
to mutually transfer the knowledge of feature maps among
multiple networks, based on adversarial training. In [18],
online knowledge distillation is performed via collabora-
tively transferring knowledge among multiple models. In
these works, pseudo-labeling is performed without scrutiny,
which may lead to collective failure. Our work focuses on
addressing this problem.

3. Methods
In this section, we propose a performance-aware mu-

tual knowledge distillation method for neural architecture
search, based on tri-level optimization. In our framework,
there are a set of K learners, all of which learn to solve the
same target task. Each learner k has an architecture Ak and
two sets of model weights Vk and Wk. Vk is used for mea-
suring performance and generating knowledge, and Wk is
trained on knowledge generated by other learners. We use
two sets of weights instead of one [1,4,27,28,51,55,62] to
prevent a degenerated solution where all learners have the
same performance and no mutual knowledge distillation is
conducted. All learners share the same training dataset D(tr)

and the same validation dataset D(val).

3.1. Three learning stages
The K learners perform learning in three stages. In the

first stage, each learner k trains Vk. In the second stage, Vk

is evaluated on a validation dataset. For any two learners k
and j, if Vk performs better than Vj , then learner k uses Vk

to generate knowledge, which is used to train Wj of learner
j. In the third stage, each learner k measures the validation
performance of its model Wk trained in the second stage
and updates its architecture to improve the validation per-
formance. We discuss the details in the sequel.

Stage I. In the first stage, each learner k trains its weights
Vk by minimizing a training loss defined on D(tr), with its
architecture Ak tentatively fixed:

V ∗
k (Ak) = minVk

L(Vk, Ak, D
(tr)). (1)

The loss function L is application specific. For example,
in image classification, L is a cross-entropy loss. The ar-
chitecture Ak is used to define the training loss. However,
Ak should not be optimized to minimize the training loss.
Otherwise, the trained model will overfit the training data
and have poor performance on unseen data. The optimally
trained weights V ∗

k (Ak) depends on Ak since V ∗
k (Ak) de-

pends on L(Vk, Ak, D
(tr)) and L(Vk, Ak, D

(tr)) is a func-
tion of Ak.

Stage II. In the second stage, we evaluate the models
{V ∗

k (Ak)}Kk=1 trained in the first stage. Given a vali-
dation set D(val), we apply V ∗

k (Ak) (optionally, together

with Ak) to make predictions on this dataset and ob-
tain a validation loss L(V ∗

k (Ak), Ak, D
(val)). A smaller

L(V ∗
k (Ak), Ak, D

(val)) indicates V ∗
k (Ak) has a better per-

formance. Then we perform performance-aware mutual
knowledge distillation. For each pair of learner k and j,
if L(V ∗

k (Ak), Ak, D
(val)) > L(V ∗

j (Aj), Aj , D
(val)), which

indicates that learner j performs better than learner k, then
we let learner j generate knowledge using V ∗

j (Aj) and
leverage this knowledge to train learner k. Different from
existing methods [51, 55, 58, 62] which conduct knowl-
edge transfer on individual data examples [51, 55, 62] or
lower-order triples [58] without considering the relationship
among examples, we propose a group-wise relative simi-
larity based knowledge distillation method which capture
high-order (≥ 4) relationship among data instances. Our
method transfers knowledge from learner j to k by let-
ting k fit the relative similarity relationship between two
groups of data examples, where the relationship is labeled
by j. Given two groups of data instances X = {xi}Ri=1 and
Y = {yi}Ri=1, each having R instances, we use V ∗

j (Aj)
to label which group has a relatively larger intra-group
instance-similarity. For a group X , its intra-group instance-
similarity s(X ;V ∗

j (Aj)) is defined as the smallest cosine
similarity between each pair of instances in X :

s(X ;V ∗
j (Aj)) =

min({c(e(x;V ∗
j (Aj)), e(x̂;V

∗
j (Aj)))|x, x̂ ∈ X})

(2)

where c(·, ·) denotes cosine similarity of two vectors,
e(x;V ∗

j (Aj)) denotes the embedding of x extracted by
V ∗
j (Aj), and min(·) denotes the minimum of a set. We

use minimum to measure the worst-case similarity. Let
X ≻ Y|V ∗

j (Aj) denote s(X ;V ∗
j (Aj)) > s(Y;V ∗

j (Aj)).
Such a group-wise relative similarity (GRS) relationship
is labeled by V ∗

j (Aj). To transfer knowledge from j
to k, we use GRS relationships labeled by learner j
to guide the training of learner k. Let s(X ;Wk) =
min({c(e(x;Wk), e(x̂;Wk))|x, x̂ ∈ X}) denote the intra-
group instance similarity calculated using Wk, we add the
following constraint when training Wk:

∀X ≻ Y|V ∗
j (Aj), s(X ;Wk) > s(Y;Wk). (3)

This constraint encourages Wk to learn representations that
are compatible with the GRS relationships specified by
learner j. Each GRS relationship involves 2R data instances
and the minimum value of R is 2. Therefore, the GRS-based
knowledge transfer approach can capture data relationships
with an order of at least 4. Overall, the second stage solves
the following optimization problem:

{W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj ̸=k)}Kk=1 =

min{Wk}Kk=1

∑K
k=1

(
L(Wk, Ak, D

(tr))+

λ
∑K

j ̸=k −I(L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val)))∑
X≻Y|V ∗

j (Aj)
I(s(X ;Wk) > s(Y;Wk))

)
,

(4)
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where I(·) is an indicator function. The first loss term
L(Wk, Ak, D

(tr)) is defined on a human-labeled dataset and
the second loss term represents knowledge distillation. λ is
a tradeoff parameter. X and Y are randomly sampled from
input data instances (removing labels) from D(val).

Eq.(4) further shows that two different sets of weights (V
and W ) are needed to conduct performance scrutiny. If the
same set of model weights are used for measuring validation
performance and are trained at the same time, Vk and Vj in
Eq.(4) would be replaced with Wk and Wj . A trivial way
to minimize this new loss is to make Wk and Wj to be the
same: if Wk = Wj , the indicator function I(·) is 0, and
the second loss term is 0. This is a degenerated solution
because no knowledge will be transferred among models.

Stage III. In the third stage, each learner validates its
W ∗

k (Ak, {V ∗
j (Aj), Aj}Kj ̸=k) on the validation set D(val).

The learners optimize their architectures by minimizing the
validation losses:

min{Ak}Kk=1

∑K
k=1 L(W

∗
k (Ak, {V ∗

j (Aj), Aj}Kj ̸=k), Ak, D
(val)).

(5)

Three-level optimization framework. To this end, we
formulate PAMKD as a three-level optimization problem:

min
{Ak}Kk=1

∑K
k=1 L(W

∗
k (Ak, {V ∗

j (Aj), Aj}Kj ̸=k), Ak, D
(val))

s.t. {W ∗
k (Ak, {V ∗

j (Aj), Aj}Kj ̸=k)}Kk=1 =

min{Wk}Kk=1

∑K
k=1

(
L(Wk, Ak, D

(tr))+

λ
∑K

j ̸=k −I(L(V ∗
k (Ak), Ak, D

(val)) > L(V ∗
j (Aj), Aj , D

(val)))∑
X≻Y|V ∗

j (Aj)
I(s(X ;Wk) > s(Y;Wk))

{V ∗
k (Ak)}Kk=1 = min{Vk}Kk=1

∑K
k=1 L(Vk, Ak, D

(tr))

Continuous relaxation. The indicator functions are not
differentiable, which prohibits applying gradient-based op-
timization methods. To address this problem, we use
hinge losses to relax indicator functions. We relax
I(L(V ∗

k (Ak), Ak, D
(val)) > L(V ∗

j (Aj), Aj , D
(val))) as:

max(0, L(V ∗
k (Ak), Ak, D

(val))− L(V ∗
j (Aj), Aj , D

(val))), (6)

and relax
∑

X≻Y|V ∗
j (Aj)

I(s(X ;Wk) > s(Y;Wk) as∑
X≻Y|V ∗

j (Aj)
max(0, ϵ− (s(X ;V ∗

j (Aj))− s(Y;V ∗
j (Aj)))

(s(X ;Wk)− s(Y;Wk))),
(7)

where ϵ is a small positive number. The hinge loss
max(0, dkj) where dkj = L(V ∗

k (Ak), Ak, D
(val)) −

L(V ∗
j (Aj), Aj , D

(val)) controls whether KD should be per-
formed from learner j to learner k. If dkj ≤ 0 which in-
dicates that j performs no better than k, the hinge loss is
zero and correspondingly the KD loss (second loss term in

Algorithm 1 Optimization algorithm for PAMKD
while not converged do
1. For learner 1, · · · ,K, update Vk

2. For learner 1, · · · ,K, update Wk

3. For learner 1, · · · ,K, update Ak

Eq.(3)) is zero. If dkj > 0, the hinge loss is dkj . The larger
this difference is, the more valuable it is to transfer knowl-
edge from j to k. Note that V in the hinge loss cannot be
replaced with W . Otherwise, a trivial solution in the second
step is to make dkj = 0, which in fact removes mutual KD.
Negative of the multiplication of the two indicator functions
is replaced with the multiplication of these two hinge losses.

Optimization algorithm. To solve the PAMKD problem,
we develop a gradient-based optimization algorithm, draw-
ing inspirations from [34]. First of all, we approximate
V ∗
k (Ak) using

V ′
k = Vk − ξV∇Vk

L(Vk, Ak, D
(tr)), (8)

where ξV is a learning rate. Plugging {V ′
j }Kj=1

into the loss function at the second stage, we obtain
an approximated objective O. Then we approximate
W ∗

k (Ak, {V ∗
j (Aj), Aj}Kj ̸=k) using one-step gradient de-

scent update of Wk w.r.t the approximated objective:

W ′
k = Wk − ξW∇Wk

O. (9)

Finally, we plug {W ′
k}Kk=1 into the validation loss at the

third stage and get an approximated validation loss. Then
we update {Ak}Kk=1 by minimizing the approximated vali-
dation loss:

Ak ← Ak − ξA(∇Ak
L(W ′

k, Ak, D
(val))+∑K

j ̸=k∇Ak
L(W ′

j , Aj , D
(val))).

(10)

These steps iterate until convergence. The algorithm is sum-
marized in Algorithm 1.

Differentiable representations of architectures. Fol-
lowing [34], we represent architectures using continuous
variables which are multiplied to the outputs of candidate
building blocks. A larger variable value indicates the cor-
responding block is more important. Architecture search is
formulated as identifying optimal values of these variables
using gradient based methods.

4. Experiments
In this section, we present experimental results.

4.1. Datasets

We performed the experiments on three datasets:
CIFAR-100, CIFAR-10, and ImageNet [12]. CIFAR-100
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Method Error-C100 Error-C10 Param. Cost

*ResNet [20] 22.10 6.43 1.7 -
*DenseNet [25] 17.18 3.46 25.6 -
*PNAS [32] 19.53 3.41±0.09 3.2 150
*ENAS [43] 19.43 2.89 4.6 0.5
*AmoebaNet [45] 18.93 2.55±0.05 3.1 3150
*DARTS-2nd [34] 20.58±0.44 2.76±0.09 1.8 1.5
*GDAS [13] 18.38 2.93 3.4 0.2
*R-DARTS [61] 18.01±0.26 2.95±0.21 - 1.6
*DARTS− [9] 17.51±0.25 2.59±0.08 3.3 0.4
*DropNAS [22] 16.95±0.41 2.58±0.14 4.4 0.7
*DrNAS [7] - 2.54±0.03 4.0 0.4
*ISTA-NAS [56] - 2.54±0.05 3.3 0.1
*MiLeNAS [19] - 2.51±0.11 3.9 0.3
*GAEA [30] - 2.50±0.06 - 0.1
*PDARTS-ADV [6] - 2.48±0.02 3.4 1.1

†Darts1st [34] 20.52±0.31 3.00±0.14 1.8 0.4
Darts1st + MKD [62] 18.37±0.16 2.70±0.05 2.1 1.3
Darts1st + NES [59] 18.32±0.19 2.75±0.11 2.2 1.2
Darts1st + OKDDip [4] 18.69±0.21 2.83±0.09 2.1 1.5
Darts1st + KDCL [18] 18.33±0.10 2.68±0.06 2.3 1.7
Darts1st + AFD [11] 18.62±0.17 2.85±0.06 2.2 1.6
Darts1st + ONE [28] 18.93±0.11 2.68±0.07 2.3 1.4
Darts1st + Cream [41] 18.36±0.14 2.95±0.12 2.3 1.8
Darts1st + PAMKD (ours) 17.61±0.16 2.38±0.03 2.2 1.2
*Pdarts [8] 17.43±0.15 2.54±0.04 3.6 0.3
Pdarts + MKD [62] 16.55±0.13 2.50±0.02 3.7 2.1
Pdarts + NES [59] 16.48±0.16 2.75±0.08 3.6 2.2
Pdarts + OKDDip [4] 16.92±0.20 2.77±0.11 3.8 2.4
Pdarts + KDCL [18] 16.59±0.08 2.52±0.05 3.8 2.3
Pdarts + AFD [11] 16.79±0.15 2.51±0.03 3.7 2.4
Pdarts + ONE [28] 17.04±0.09 2.68±0.07 3.8 2.0
Pdarts + Cream [41] 16.38±0.14 2.65±0.04 3.5 2.5
Pdarts + PAMKD (ours) 15.82±0.11 2.42±0.06 3.6 2.1
†Pcdarts [54] 17.01±0.06 2.57±0.07 4.0 0.1
Pcdarts + MKD [62] 16.38±0.13 2.56±0.03 4.2 0.6
Pcdarts + NES [59] 16.36±0.11 2.69±0.06 4.2 0.7
Pcdarts + OKDDip [4] 16.59±0.14 2.72±0.09 4.4 0.8
Pcdarts + KDCL [18] 16.33±0.09 2.61±0.08 4.3 0.9
Pcdarts + AFD [11] 16.71±0.16 2.59±0.07 4.3 0.8
Pcdarts + ONE [28] 16.92±0.18 2.66±0.04 4.0 0.8
Pcdarts + Cream [41] 16.63±0.10 2.74±0.05 4.3 1.0
Pcdarts + PAMKD (ours) 15.89±0.07 2.46±0.05 4.1 0.6
†Prdarts [63] 16.48±0.06 2.37±0.03 3.4 0.2
Prdarts + MKD [62] 16.35±0.08 2.35±0.02 3.3 0.8
Prdarts + NES [59] 16.59±0.06 2.48±0.06 3.6 0.9
Prdarts + OKDDip [4] 16.83±0.04 2.51±0.07 3.5 1.0
Prdarts + KDCL [18] 16.39±0.07 2.42±0.05 3.6 0.8
Prdarts + AFD [11] 16.47±0.06 2.39±0.08 3.6 0.9
Prdarts + ONE [28] 17.03±0.09 2.48±0.09 3.4 1.1
Prdarts + Cream [41] 16.86±0.05 2.36±0.06 3.6 1.5
Prdarts + PAMKD (ours) 16.05±0.04 2.28±0.03 3.5 0.8

Table 1. Results on CIFAR-100 and CIFRA-10. * indicates that
the results are taken from DARTS− [9]. † indicates that the results
were obtained by re-running the methods for 10 times.

is split into a 25K training set, a 25K validation set, and
a 10K test set. So is CIFAR-10. The training and valida-
tion set is used as D(tr) and D(val) in PAMKD. ImageNet has
1.3M training images and 50K test images. CIFAR-100 and
CIFAR-10 have 10 classes and ImageNet has 1000 classes.

4.2. Experimental settings

Following [34], each experiment consists of an architec-
ture search phrase where an architecture A is learned and
an architecture evaluation where multiple copies of A are
composed into a larger network, which is then trained from
scratch and tested on the test set. For the search space
of A, we used the ones proposed in DARTS [34], 2) P-

Learner 1 Learner 2 Learner 3
Independent 20.1 21.4 20.2
MKD 20.8 21.3 21
AFD 20.3 20.7 20.6
KDCL 20.6 20.2 20.4
PAMKD 18.2 18.6 18.3

16

17

18

19

20

21

22

Learner 1 Learner 2 Learner 3

Independent MKD AFD KDCL PAMKD

Figure 1. Empirical evidence of cascaded failure.

DARTS [8], 3) PC-DARTS [54], and 4) PR-DARTS [63].
In PAMKD, we set the number of learners to 2. λ is set
to 0.1 for PCDARTS on CIFAR-100; 0.5 for PR-DARTS
on CIFAR-100/10, PCDARTS on CIFAR-10, DARTS1st on
CIFAR-10/100; 1 for PDARTS on CIFAR-100/10. ϵ is set
to 0.01. R is set to 5. When constructing GRS relation-
ships, instance groups are randomly sampled. For architec-
ture search on CIFAR-100 and CIFAR-10, each architec-
ture consists of a stack of 8 cells and each cell consists of 7
nodes.

For architecture search on ImageNet, following [54], we
randomly sample 10% images from the 1.3M training set as
D(tr) and 2.5% images as D(val) in PAMKD. In PC-DARTS,
architectures are directly searched on ImageNet. Search
was performed for 50 epochs. After searching, among the
K learners, the one achieving the smallest validation loss
is retained and its architecture is evaluated. The mean and
standard deviation of 10 random runs are reported.

We compare with the following baselines: 1) MKD [62]
without performance scrutiny, 2) neural ensemble search
(NES) [59], 3) online knowledge distillation with diverse
peers (OKDDip) [4], 4) knowledge distillation via collabo-
rative learning (KDCL) [18], 5) adversarial feature distilla-
tion (AFD) [11], 6) on-the-fly native ensemble (ONE) [28]
for knowledge distillation, and 7) distilling prioritized paths
for one-shot neural architecture search (Cream) [41]. We
adapted MKD, OKDDip, KDCL, AFD, and ONE to archi-
tecture search tasks.

4.3. Results and analysis on CIFAR-100 and
CIFAR-10

In Table 1, we compare different methods on CIFAR-
100 and CIFAR-10. In PAMKD, we count the number
of parameters in a single retained learner (the one yield-
ing the lowest validation loss). We observe the follow-
ing from this table. First, under different settings of
search spaces, including those from DARTS, P-DARTS,
PC-DARTS, and PR-DARTS, our method performs sig-
nificantly better than MKD, KDCL, AFD, and ONE. Our
method performs scrutiny when performing mutual KD: a
learner A is allowed to generate knowledge to train another
learner B only when performance of A is better than B.
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Data Space Darts [34] DartsES [60] Darts− [9] MKD [62] OKDDip [4] Ours
C10 S1 4.66±0.71 3.05±0.07 2.76±0.07 4.38±0.59 4.01±0.36 2.43±0.11
C10 S2 4.42±0.40 3.41±0.14 2.79±0.04 4.58±0.25 4.32±0.69 2.30±0.07
C10 S3 4.12±0.85 3.71±1.14 2.65±0.04 4.07±0.62 3.89±0.58 2.27±0.04
C10 S4 6.95±0.18 4.17±0.21 2.91±0.04 5.96±0.37 5.61±0.15 2.54±0.15
C100 S1 29.93±0.41 28.90±0.81 23.26±0.59 29.53±0.66 29.18±0.49 22.32±0.23
C100 S2 28.75±0.92 24.68±1.43 22.31±0.65 28.47±0.32 28.83±0.69 21.47±0.50
C100 S3 29.01±0.24 26.99±1.79 21.47±0.40 28.58±0.42 27.62±0.23 20.61±0.27
C100 S4 24.77±1.51 23.90±2.01 21.75±0.26 23.99±1.37 23.64±1.06 21.05±0.64

Table 2. Evaluation of robustness: errors on test sets of CIFAR-10 (C10) and CIFAR-100 (C100).

Ours 17.15 16.02
Weights 18.52 17.27
Embedding 18.84 17.12

Darts-1st Pdarts

L2E 18.96 16.95
L2W 18.89 16.98

PL 18.3 16.62
PS 18.33 16.65
TS 18.29 16.59
L2E 18.96 16.95
L2W 18.89 16.98
Ours 17.61 15.82

14
15
16
17
18
19
20

Darts-1st Pdarts

PL TS PS L2W L2E Ours Query NNs by GRS NNs by PL

Figure 2. (Left) Comparison of knowledge transfer approaches. (Right) Nearest neighbors retrieved by GRS and PL.

With such a scrutiny mechanism, collective failure can be
prevented. In contrast, in MKD, KDCL, AFD, and ONE,
each learner is allowed to generate knowledge to train other
learners, even when this learner performs worse than oth-
ers, which incurs high risk of collective failure. Figure 1
provides some empirical evidence. We first train the initial
models of three learners independently. Then we train the
second set of models of these learners via MKD, KDCL,
AFD without scrutiny. As can be seen, after MKD, KDCL,
AFD training, performance of learner 1 and 3 are both de-
graded. This is because learner 2 performs worse than
learner 1 and 3. Knowledge generated by learner 2 has poor
quality. Trained using such low-quality knowledge, the per-
formance of learner 1 and 3 is degraded. Under PAMKD
which only allows KD when one learner outperforms an-
other, the performance of all three learners are improved.

Second, our method works better than OKDDip. While
OKDDip learns attentional weights to control how much
knowledge is allowed to transfer between one learner to
another, it trains these attentional weights together with
model parameters on a single training set, which is prone to
overfitting. In contrast, our method conducts performance-
scrutiny on a validation set and trains model parameters on
a training set, which is resilient to overfitting. Third, our
method achieves significantly lower test errors than vanilla
DARTS1st, PDARTS, PCDARTS, PR-DARTS, and NES.
These methods do not perform mutual knowledge distilla-
tion, which leads to inferior performance. In our method,
learners with different architectures collaboratively solve
the same task. With different architectures, these learn-
ers possess complementary advantages. Via collaboration,
each learner can transfer the knowledge in areas it is good
at to other learners. Collaboration enables different learners

to jointly improve. Fourth, parameter number and search
cost of our method is similar to those of other differentiable
methods, indicating that our method can search more ac-
curate architectures without incurring significant additional
costs in memory footprint and inference time.

4.4. Robustness

By dynamically transferring knowledge from better-
performing models to worse-performing models where the
knowledge is group-wise relative similarity relationships
generated by encoders of better-performing models, our
method can learn representations that are robust to per-
formance collapse. We empirically verify this by evaluat-
ing our method on four architecture search spaces designed
by [60]. These spaces are specifically crafted for assess-
ing robustness against performance collapse. Table 2 shows
our method achieves lower test errors on CIFAR-100/10 un-
der these four spaces, in comparison with baselines. This
demonstrates the capability of our method in avoiding per-
formance degeneration.

4.5. Comparison of knowledge transfer approaches

We compare our group-wise relative similarity based
knowledge transfer approach with the following: 1) pseudo-
labeling (PL) [62]; 2) triple-wise similarity (TS) [58]: a
better-performing model (BPM) annotates relative similar-
ity relations (e.g., the similarity between x and y is larger
than that between z and y) and a worse-performing model
(WPM) fits these relative similarities; 3) pairwise similarity
(PS) [5]: a BPM annotates whether two images are simi-
lar or dissimilar and a WPM fits these similarity labels; 4)
L2 regularization on encoder weights (L2W) [44]: encour-
aging model weights of different learners to have small L2
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distance; 5) L2 regularization on embeddings (L2E) [16]:
encouraging embeddings generated by two models to have
small L2 distance.

Figure 2(left) shows the results. Our method works bet-
ter than PL, L2E, and L2W. These baselines transfer knowl-
edge on individual data instances without considering the
relationship between instances, which cannot capture global
properties of an entire dataset. In contrast, our method takes
the group-wise relative similarity relationships among data
instances as input and transfers knowledge between learners
at the group level instead of individual instance level. Our
method works better than PS and TS. PS and TS are lim-
ited to capturing second-order and third-order relationships
among instances while our method can capture higher order
(≥ 4) relationships.

Figure 2(right) shows 4-nearest neighbors retrieved by
GRS and PL for some randomly sampled CIRAR-100 test
images. As can be seen, nearest neighbors under GRS are
more semantically similar to query images than PL. By en-
couraging different learners to be consistent on group-wise
similarities, GRS can more effectively group similar images
together, which is good for classification.

4.6. Results on ImageNet

In Table 3, we make a comparison of different meth-
ods on ImageNet, in terms of top-1 and top-5 classifica-
tion errors (%). PAMKD-pcdarts-ImageNet denotes the ar-
chitecture is searched on ImageNet by applying PAMKD
to Pcdarts. Similar meanings hold for other notations like
this. Observations made from this table are similar to those
in Table 1. Our method outperforms MKD, KDCL, AFD,
and ONE, which further demonstrates the effectiveness of
conducting performance scrutiny during mutual knowledge
transfer. Our method performs better than OKDDip, which
further shows the effectiveness of conducting performance
scrutiny on a separate validation set. Our method achieves
lower errors than NES and vanilla DARTS1st, P-DARTS,
PCDARTS, which again demonstrates the effectiveness of
performing mutual knowledge transfer.

4.7. Results on NAS-Bench-201

Table 4 shows the results on NAS-Bench-201. Our
method outperforms baselines. The analysis of reasons is
similar to that for results in Table 1.

4.8. Ablation studies

In the first ablation study, we further investigate the ef-
fectiveness of performance scrutiny in mutual knowledge
distillation. We experimented with the following ablation
settings: in our framework, replacing the objective func-
tion at the second stage in Eq.(4) with the objectives of
MKD and KDCL (denoted by 2nd-MKD and 2nd-KDCL

Method Top-1 Top-5

*Inception-v1 [48] 30.2 10.1
*ShuffleNet 2× (v2) [38] 25.1 7.6
*PNAS [32] 25.8 8.1
*AKDNet [36] 24.5 6.9
*AmoebaNet-C [45] 24.3 7.6
*DSNAS-ImageNet [23] 25.7 8.1
*SDARTS-ADV-CIFAR10 [6] 25.2 7.8
*PCDARTS-CIFAR10 [54] 25.1 7.8
*ProxylessNAS-ImageNet [2] 24.9 7.5
*FairDARTS-ImageNet [10] 24.4 7.4
*PR-DARTS [63] 24.1 7.3
*DARTS+-CIFAR100 [31] 23.7 7.2

*Darts2nd-cifar10 [34] 26.7 8.7
†Darts1st-cifar10 [34] 26.1 8.3
MKD-darts1st-cifar10 [62] 24.7 7.6
NES-darts1st-cifar10 [59] 24.8 7.7
OKDDip-darts1st-cifar10 [4] 25.0 8.0
KDCL-darts1st-cifar10 [18] 24.9 7.7
AFD-darts1st-cifar10 [11] 24.7 7.5
ONE-darts1st-cifar10 [28] 25.3 8.0
Cream-darts1st-cifar10 [41] 26.0 8.2
PAMKD-darts1st-cifar10 (ours) 24.3 7.2
*Pdarts-cifar10 [8] 24.4 7.4
MKD-pdarts-cifar10 [62] 24.4 7.3
NES-pdarts-cifar10 [59] 24.3 7.2
OKDDip-pdarts-cifar10 [4] 24.5 7.4
KDCL-pdarts-cifar10 [18] 24.4 7.4
AFD-pdarts-cifar10 [11] 24.5 7.6
ONE-pdarts-cifar100 [28] 24.4 7.4
Cream-pdarts-cifar10 [41] 24.3 7.3
PAMKD-pdarts-cifar10 (ours) 23.9 6.8
*Pdarts-cifar100 [8] 24.7 7.5
MKD-pdarts-cifar100 [62] 23.8 7.1
NES-pdarts-cifar100 [59] 24.0 7.3
OKDDip-pdarts-cifar100 [4] 24.3 7.5
KDCL-pdarts-cifar100 [18] 23.9 7.2
AFD-pdarts-cifar100 [11] 23.8 7.0
ONE-pdarts-cifar100 [28] 24.6 7.6
Cream-pdarts-cifar100 [41] 24.5 7.5
PAMKD-pdarts-cifar100 (ours) 23.2 6.7
*Pcdarts-ImageNet [54] 24.2 7.3
MKD-pcdarts-ImageNet [62] 23.2 6.8
NES-pcdarts-ImageNet [59] 23.4 7.0
OKDDip-pcdarts-ImageNet [4] 23.6 7.1
KDCL-pcdarts-ImageNet [18] 23.4 7.1
AFD-pcdarts-ImageNet [11] 23.2 6.9
ONE-pcdarts-ImageNet [28] 23.5 7.1
Cream-pcdarts-ImageNet [41] 23.9 7.2
PAMKD-pcdarts-ImageNet (ours) 22.8 6.4

Table 3. Top-1 and top-5 test errors on ImageNet. * indicates that
the results are taken from DARTS− [9], DrNAS [7], and AKD-
Net [36]. † denotes that the result is obtained from our run. The
rest notations are the same as those in Table 1.

respectively), where different models are allowed to mutu-
ally teach each other without performance scrutiny. Test
errors on CIFAR-100 and CIFAR-10 are shown in Table 5.
We can see that our method (which uses the performance
scrutiny objective function in Eq.(4)) outperforms these two
ablation settings. This further demonstrates the necessity of
conducting performance scrutiny during mutual knowledge
distillation.

Next, we perform an ablation study of “no first stage
(No-1st)”: the first learning stage is removed. Performance-
aware knowledge distillation is performed using the weights
W . λ is set to 1. We use the search space of P-DARTS,
DARTS1st, and PR-DARTS. Table 6 shows test errors. Re-
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CIFAR-10 CIFAR-100 ImageNet-16-120
Validation Test Validation Test Validation Test

DARTS2nd [34] 39.77±0.00 54.30±0.00 38.57±0.00 38.97±0.00 18.87±0.00 18.41±0.00
GDAS [14] 90.01±0.46 93.23±0.23 24.05±8.12 24.20±8.08 40.66±0.00 41.02±0.00
SNAS [53] 90.10±1.04 92.77±0.83 69.69±2.39 69.34±1.98 42.84±1.79 43.16±2.64
DSNAS [24] 89.66±0.29 93.08±0.13 30.87±16.40 31.01±16.38 40.61±0.09 41.07±0.09
PC-DARTS [54] 89.96±0.15 93.41±0.30 67.12±0.39 67.48±0.89 40.83±0.08 41.31±0.22

Drnas [7] 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00
MKD+Drnas [62] 88.47±0.82 90.58±0.74 67.44±2.56 68.96±3.58 43.75±0.15 44.59±0.27
NES+Drnas [59] 90.91±0.68 87.55±0.42 65.38±3.72 70.48±3.52 46.27±0.33 45.72±0.13
OKDDip+Drnas [4] 91.04±0.73 89.72±0.44 68.71±1.08 70.73±4.88 44.69±1.36 38.64±0.52
KDCL+Drnas [18] 89.01±0.75 89.36±0.58 67.28±1.94 69.27±3.92 46.26±0.42 39.05±0.26
AFD+Drnas [11] 88.95±0.79 87.99±0.64 66.04±2.51 71.25±2.70 45.84±0.41 41.82±0.77
ONE+Drnas [28] 89.35±0.37 93.50±0.21 68.84±0.38 70.59±2.61 41.64±0.12 40.86±2.49
Cream+Drnas [41] 85.49±0.36 94.37±0.26 70.62±0.99 74.02±0.53 45.98±0.23 40.72±0.31
Ours+Drnas 92.64±0.11 94.83±0.07 74.58±0.10 74.25±0.07 47.73±0.15 47.59±0.09

Table 4. Validation and test accuracy on NAS-Bench-201.

Method Error-CIFAR100 Error-CIFAR10
2nd-MKD + Darts1st 18.25±0.10 2.66±0.07
2nd-KDCL + Darts1st 18.03±0.14 2.68±0.06
Ours + Darts1st 17.61±0.16 2.38±0.03
2nd-MKD + Pdarts 16.72±0.09 2.53±0.03
2nd-KDCL + Pdarts 16.51±0.06 2.50±0.06
Ours + Pdarts 15.82±0.11 2.42±0.06

Table 5. Test errors (%) on CIFAR-100 and CIFAR-10, in the
ablation study of performance scrutiny.

Method Error (%)

C100

PAMKD + Pdarts 15.82±0.11
No-1st + Pdarts 17.58±0.26
PAMKD + Prdarts 16.05±0.04
No-1st + Prdarts 16.89±0.06

C10

PAMKD + Darts1st 2.38±0.03
No-1st + Darts1st 2.65±0.07
PAMKD + Prdarts 2.28±0.03
No-1st + Prdarts 2.50±0.04

Table 6. Classification errors for “no first stage (No-1st)”, on test
sets of CIFAR-100 (C100) and C10.

moving the first stage renders the errors to increase on both
CIFAR-10 and CIFAR-100. The reason is that: in No-1st,
for each learner, the same model weights are evaluated and
trained simultaneously. To minimize the knowledge distil-
lation loss, a trivial solution is to make all learners have the
same validation performance, which makes the knowledge
distillation loss become 0. This is a degenerated solution
where all learners perform learning independently. In the
experiments, we observed that different learners in No-1st
reach the same validation loss around epoch 40 and stop
mutual KD. Our full method avoids this problem by using
two different sets of model weights to conduct performance-
aware MKD: one for measuring performance and the other
gets trained. In the experiments, we observed that different
learners in our method perform mutual KD throughout the
entire training process.

Figure 3(Left) shows how classification error of
PAMKD+Pdarts changes with the tradeoff parameter λ, on
5K held-out CIFAR-100 data. A λ in the middle ground
yields the optimal performance.

We investigate how classification error changes with
the number of learners K, in PAMKD+Darts1st. Fig-
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Figure 3. How classification errors change with λ (left) and K
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ure 3(Right) shows results on 5K held-out CIFAR-100 data.
When increasing K from 1 to 2, the error decreases. Under
K = 1, there is no collaboration. When K = 2, two learn-
ers collaboratively help each other to improve via PAMKD.
When K increases from 2 to 3, the performance does not
change significantly. This indicates that two learners are
sufficient for exploring the benefit of PAMKD.

5. Conclusions and discussions
We propose a tri-level optimization based performance-

aware mutual knowledge distillation (MKD) approach for
neural architecture search, to address the collective fail-
ure problem of previous MKD methods. Unlike previ-
ous methods where knowledge distillation can happen from
any two models, our method adds a scrutiny mechanism:
model A is allowed to generate knowledge to train model B
only if the performance of A is better than B. We formu-
late performance-aware MKD as a three-level optimization
problem, containing three stages performed end-to-end: 1)
each learner trains an initial model independently; 2) learn-
ers perform performance-aware MKD; and 3) each learner
updates its architecture by minimizing validation losses.
Experiments on a variety of datasets demonstrate the effec-
tiveness of our method.

Our method has the following limitations: it learns mul-
tiple models instead of one, which incurs more memory
consumption and computational cost. We present some
studies towards addressing this limitation in the supple-
ments. Our work has the following potential negative so-
cietal impact: the increased computational overhead due
to training multiple models consumes more power energy,
which leads to more greenhouse gas emissions.
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