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Abstract

Recent salient object detection (SOD) methods based
on deep neural network have achieved remarkable perfor-
mance. However, most of existing SOD models designed for
low-resolution input perform poorly on high-resolution im-
ages due to the contradiction between the sampling depth
and the receptive field size. Aiming at resolving this con-
tradiction, we propose a novel one-stage framework called
Pyramid Grafting Network (PGNet), using transformer and
CNN backbone to extract features from different resolu-
tion images independently and then graft the features from
transformer branch to CNN branch. An attention-based
Cross-Model Grafting Module (CMGM) is proposed to en-
able CNN branch to combine broken detailed information
more holistically, guided by different source feature dur-
ing decoding process. Moreover, we design an Attention
Guided Loss (AGL) to explicitly supervise the attention ma-
trix generated by CMGM to help the network better inter-
act with the attention from different models. We contribute
a new Ultra-High-Resolution Saliency Detection dataset
UHRSD, containing 5,920 images at 4K-8K resolutions. To
our knowledge, it is the largest dataset in both quantity and
resolution for high-resolution SOD task, which can be used
for training and testing in future research. Sufficient exper-
iments on UHRSD and widely-used SOD datasets demon-
strate that our method achieves superior performance com-
pared to the state-of-the-art methods.

1. Introduction
Salient object detection (SOD) [1, 5] aims at identify-

ing and segmenting the most attractive objects in a certain

scene. As a pre-processing step, it is widely applied in var-

*Correspondence should be addressed to Changqun Xia (Email: xi-

achq@pcl.ac.cn ). The code and dataset are available at https://
github.com/iCVTEAM/PGNet.

Figure 1. Comparison of the results of the different methods. (a)

Input image. (b) Ground truth mask. (c) Directly input to Resnet-

18 based FPN. (d) Downsample then input to Swin transformer

based FPN. (e) Ours.

ious computer vision tasks, such as light field segmenta-

tion [21, 41], instance segmentation [47] and video object

segmentation [13, 42].

Recently, deep neural networks based salient object de-

tection methods have made remarkable achievements [3, 9,

14, 19, 26, 29]. However, most of existing SOD methods

perform well within a specific input low-resolution range

(e.g., 224 × 224, 384 × 384 ). With the rapid development

of image capture devices (e.g., smartphone), the resolution

(e.g., 1080p, 2K and 4K) of the images accessible to people

has far exceeded the range to which existing saliency de-

tection method can be adapted directly. As shown in Fig. 1

(c), we fed the high-resolution image directly into the com-

monly used network with Resnet-18 as the backbone, and

comparing ground truth Fig. 1 (b) shows that the segmen-

tation result is incomplete and many detail regions are lost.

In order to reduce computational consumption and memory

usage, existing methods often downsample the input images
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and then upsample the output results to recover original res-

olution, as illustrated in Fig. 1 (d). This challenge is due

to the fact that most low-resolution SOD networks are de-

signed in an Encoder-Decoder style, and as the input reso-

lution increases dramatically, the size of features extracted

increases, but the receptive field determined by the network

is fixed, making the relative receptive field small, ultimately

resulting in the inability to capture global semantics that are

vital to SOD task. Since direct processing cannot handle

the challenges posed by high resolution, a number of meth-

ods have emerged in recent years specifically designed for

high-resolution input. There are two representative high-

resolution SOD methods (HRSOD [40], DHQSOD [30]).

HRSOD divides the whole process into global stage, local

stage and reorganization stage, where the global stage pro-

vides guidance on both the local stage and the crop process.

And DHQSOD disentangle the SOD task into classification

task and regression task, where the two task is connected by

their proposed trimap and uncertainty loss. They generate

relatively good saliency maps with sharp boundaries.

However, both of the above methods use a multi-stage

architecture, dividing SOD into semantic(in low resolution)

and detailed (in high resolution) phases. This has led to two

new problems: (1) Inconsistent contextual semantic trans-

fer between stages. The intermediate maps obtained in the

previous stages are input into the last stage, while the errors

are also passed on. Further more, the refinement in the last

stage will likely inherit or even amplify the previous errors

as there is not enough semantic support, which implies that

the final saliency maps are heavily dependent on the perfor-

mance of the low-resolution network. (2) Time consuming.

Compared to the one-stage method, the multi-stage method

are not only difficult to parallel but also have the potential

problem of increasing number of parameters, which makes

it slow.

Based on the above defects of existing high-resolution

methods , we propose a new perspective that since the spe-

cific features in a single network cannot settle the paradox

of receptive field and detail retention simultaneously, in-

stead we can separately extract two sets of features of dif-

ferent spatial sizes and then graft the information from one

branch to the other. In this paper, we rethink the dual-branch

architecture and design a novel one-stage deep neural net-

work for high-resolution saliency detection named Pyramid

Grafting Network (PGNet). As illustrated in Fig. 1 (e), we

use both Resnet and Transformer as our Encoders, extract-

ing features with dual spatial sizes in parallel. The trans-

former branch first decode the features in the FPN style,

then pass the global semantic information to the Resnet

branch in the stage where the feature maps of two branches

have similar spatial sizes. We call this process feature graft-

ing. Eventually, the Resnet branch completes the decod-

ing process with the grafted features. Compared to classic

FPNs, we have constructed a higher feature pyramid at a

lower cost. To better graft features cross two different types

of models, we design the Cross-Model Grafting Module

(CMGM) based on the attention mechanism and propose

the Attention Guided Loss to further guide the grafting.

Considering that supervised deep learning method requires

a large amount of high quality data, we have provided a 4K

resolution SOD dataset (UHRSD) with the largest number

to date in an effort to promote future high-resolution salient

object detection research.

Our major contributions can be summarized as follows:

• We propose the first one-stage framework named

PGNet for high-resolution salient object detection,

which uses staggered connection to capture both con-

tinuous semantics and rich details.

• We introduce the Cross-Model Grafting Module to

transfer the information from transformer branch to

CNN branch, which allows CNN to not only inherit

global information but also remedy the defects com-

mon to both. Moreover, we design the Attention

Guided Loss to further promote the feature grafting.

• We contribute a new challenging Ultra High-

Resolution Saliency Detection dataset (UHRSD) con-

taining 5,920 images of various scenes at over 4K

resolution and corresponding pixel-wise salient anno-

tations, which is the largest high-resolution saliency

dataset available.

• Experimental results on both existing datasets and ours

demonstrate our method outperforms state-of-the-art

methods in accuracy and speed.

2. Related work
During the past decades, a large amount traditional meth-

ods have been proposed to solve saliency detection prob-

lem [12, 38, 39]. However, these methods only focus on

the low-level feature and ignore the rich semantic informa-

tion resulting in unstable performance in complex scenar-

ios.More details can be found in [1].

2.1. Deep Learning-Based Saliency Detection

Recently, remarkable progress has been made in saliency

detection due to the application of deep neural network

[18, 33, 36, 37, 44]. Hou et al. [11] and Chen et al. [4] use

deep convolutional networks as Encoder to extract multi-

level features and design various modules to fuse them in

an FPN style. Ma et al. [23] and Xu et al. [37] avoid

semantic dilution while suppressing loss of detail by ex-

perimenting with various feature connection paths. In ad-

dition, Wei et al. [33] generate saliency maps with sharp
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boundary by explicitly supervising edge pixels. The ex-

tensive use of transfomer in vision has also led to new ad-

vances in saliency detection. Liu et al. [20] take use of T2T-

vit as backbone and design a multi-tasking decoder with a

pure transformer architecture to perform RGB and RGB-D

saliency detection. However, these methods are designed

for low-resolution scenes and cannot be directly applied to

high-resolution scenes.

2.2. High-Resolution SOD

Nowadays, focusing on high-resolution SOD methods is

already trending. Zeng et al. [40] propose a paradigm for

high-resolution salient object detection using GSN for ex-

tracting semantic information, and APS guided LRN for

optimizing local details and finally GLFN for prediction fu-

sion. Also they contributed the first high-resolution salient

object detection dataset (HRSOD). Tang et al. [30] propose

that salient object detection should be disentangled into two

tasks. They first design LRSCN to capture sufficient seman-

tics at low resolution and generate the trimap. By introduc-

ing the uncertainty loss, the designed HRRN can refine the

trimap generated in first stage using low-resolution dataset.

However, both of them use multi-stage architecture, which

has led to slow inference, making it difficult to meet some

real-world application scenarios. And a more serious prob-

lem is the semantic incoherence between networks. Thus

we aim to design a one-stage deep network to get rid of the

above defects.

3. UHR Saliency Detection Dataset
Available SOD datasets. The existing common SOD

datasets usually are in low-resolution (below 500 × 500 ).

What’s more, they have the following drawbacks for train-

ing high-resolution networks and evaluating high-quality

segmentation results. Firstly the low resolution of the im-

ages results in insufficient detail information. Secondly, the

quality of the edges of annotations is poor [40] .Lastly, the

finer level of annotations is dissatisfied, especially for hard-

case annotations which are handled perfunctorily as shown

in Fig. 2 (f). The only available high-resolution dataset

known is HRSOD [40]. However, the number of high-

resolution images in HRSOD is limited.

UHRSD dataset. For supervised learning, training data

is obviously important. Before this, the only available high-

resolution training set was only 1,610 images, and we ex-

perimentally discovered that training only on it was easy to

overfit its data distribution, which significantly impacted the

model’s generalization ability. If the low-resolution datasets

are mixed together for training, a lot of noise will be in-

troduced to affect the performance of the high-resolution

model. To relief the lack of high-resolution datasets for

SOD, we contribute the Ultra High-Resolution for Saliency

Detection (UHRSD) dataset with a total of 5,920 images

(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparison of the results of the different methods.

(a) Comparison of the logarithm of edge pixel amount between

our UHRSD and HRSOD. (b) Comparison of the diagonal length

between our UHRSD and HRSOD [40] (c) Sample from our

UHRSD. (d) Sample from HRSOD. (e) Sample from our UHRSD.

(f) Sample from DUTS-TE. Best viewed by zooming in.

in 4K(3840 × 2160) or higher resolution, including 4,932

images for training and 988 images for testing. A total of

5,920 images were manually selected from websites (e.g.

Flickr Pixabay) with free copyright. Our dataset is di-

verse in terms of image scenes, with a balance of complex

and simple salient objects of various size. Multiple par-

ticipants in the constructing process to ensure accuracy of

salient annotations. Fig. 2 illustrates the superiority of our

UHRSD. As shown in histogram Fig. 2 (a) (b), UHRSD

datset is much larger than HRSOD datset and to the best of

our knowledge is the largest dataset available. The large

scale considerably alleviates the issues mentioned above

when training high-resolution deep neural networks. In ad-

dition, the histogram Fig. 2(b) shows that the size of images

in UHRSD far exceeds that of the existing high-resolution

dataset. Not only that, Fig. 2(a) shows the number of pix-

els at the edges of our images also far surpasses the exist-

ing high-resolution dataset by a large margin, which means

that UHRSD has richer and more challenging edge details.

Lastly, through the comparison among Fig. 2(c)-(f), it’s ev-

ident that UHRSD also has a finer level of annotation for

the hard cases than both existing high-resolution dataset and

low-resolution dataset.
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Figure 3. An overview of proposed Pyramid Grafting Network. Dual branches use Resnet and Swin transformer as encoder respectively.

The DBn is the Decoder block with n input features, and the specific structure are shown on the right side. The two auxiliary supervisions

are used to supervise the RP and SP mentioned in Sec. 4.4.

4. Methodology
4.1. Staggered Grafting Framework

The architecture of proposed network is shown in Fig. 3.

As can be seen, the network consists of two encoders and a

decoder. To better perform the respective tasks of the two

encoders, Swin transformer and Resnet-18 are chosen as en-

coders. This choice of combination was made for the con-

sideration of balancing efficiency and effectiveness. On the

one hand, the transformer encoder is able to get accurate

global semantic information in the low-resolution case, and

the convolutional encoder can get rich detail with the high-

resolution input. On the other hand, variability in the fea-

tures extracted by different models may be complementary

to identify saliency more accurately.

During the encoding process, two encoders are fed with

images of different resolutions in order to capture global se-

mantic information and detailed information respectively in

parallel. The decoding phase can be divided into three sub-

stages, first Swin decoding, followed by grafted feature de-

coding and finally Resnet decoding in a staggered structure.

The feature decoded in the second sub-stage is produced

from Cross-Model Grafting Module (CMGM), where the

global semantic information is grafted from Swin branch to

Resnet branch. Also the CMGM process a matrix named

CAM to be supervised. Reviewing the whole process, we

construct a higher feature pyramid through two lower pyra-

mid using staggered connection structure as shown in Fig. 1.

In other word, the network achieves deeper sampling depth

at low computational cost to adapt to the challenge caused

by high-resolution input.

4.2. Feature Extractors

Countering the massive computational consumption and

memory usage generated by high-resolution input, we

choose Resnet-18 [10] and Swin-B [22] as our backbones

to balance performance and efficiency. For Resnet-18 en-

coder, five feature maps will be generated, which we denote

the set as R. The feature map extracted by top 7 × 7 layer

offers limited performance gains but consume huge compu-

tational effort, especially for high-resolution input. Thus the

utilized features in R can be denoted as {Ri|i = 2, 3, 4, 5}.

Due to the down-sampling in every stage, for input size

H × W , the size of feature Ri is H
2i × W

2i × (C × 2i−1),
where (C × 2i) is the channel of features. We remove

the last stage while adopt the patch embedding feature of

Swin transformer, which generates 4 features denoted as

{Si|i = 1, 2, 3, 4}. Due to the nature that the embedding

dim is fixed in transformer, the input size is 224 × 224
and the feature size in S is

{
56

2i−1 × 56
2i−1 × (64× 2i)

}
for

i = 1, 2, 3 and 14×14×512 for S4. The spatial size of R5

is close to S2, hence we chose to graft the features here.
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Figure 4. Examples of error elimination through CMGM. (a)(b)

are the images and ground truth masks. (c) and (d) are thee salient

error map generated from Transformer branch and Resnet branch

respectively. (e) shows the error map generated from CMGM.

4.3. Cross-Model Grafting Module

We propose Cross-Model Grafting Module(CMGM) to

graft the feature fR5 and fS2 extracted by two different en-

coders. For feature fS2
, due to the transformer’s ability to

capture information over long distances, it has global se-

mantic information that is important for saliency detection.

In contrast, CNNs perform well at extracting local informa-

tion thus fR5 have relatively rich details. However, due to

the contradiction between feature size and receptive field,

in fR5
there will be many noises in the background. For a

salient prediction of a certain region, the predictions gener-

ated from different features can be roughly summarized as

three cases: (a) Both right, (b) Some of them right and (c)

Both wrong. Existing fusion method using element-wise

operation such as addition and multiplication may work

for the first two cases. However, the element-wise oper-

ation and the convolutional operation focus on only lim-

ited local information, resulting fusion methods hardly rem-

edy for common errors. Compared with the feature fu-

sion, CMGM re-calculates the point-wise relationship be-

tween Resnet feature and Transformer feature, transferring

the global semantic information from Transformer branch

to Resnet branch so as to remedy the common errors. We

calculate the error map by E = |G − P | ∈ [0, 1],where G
is the ground truth and P is the salient prediction map gen-

erated by different branchs or CMGM. As shown in Fig. 4,

the CMGM remedy the common error as expected.

Specifically, in CMGM it first flatten the fR5
∈

υH×W×C to f ′
R ∈ υ1×C×HW , and do the same to fS2

to get f ′
S . Inspired by the multi-head self-attention mech-

anism, we apply layer normalization and linear projection

on them respectively to get fq
R, f

v
R and fk

S . We obtain Z
by matrix multiplication, the process can be expressed as

Figure 5. Architecture of Cross-Model Grafting Module.

follows:

Y = softmax(fq
R × fk

S

T
), (1)

Z = Y × fv
R, (2)

then we input Z to the linear projection layer and reshape it

back to size of υH×W×C before feeding into convolutional

layer. Two shortcut connections were performed in the pro-

cess as shown in Fig. 5. In addition, during the cross atten-

tion process, we generate Cross Attention Matrix based on

Y , which can be expressed as :

CAM = ReLU(BN(Conv(Y + Y T))), (3)

The detailed usage of CAM can be found in Sec. 4.4.

4.4. Attention Guided Loss

In order for CMGM to better serve the purpose of trans-

ferring information from the Transformer branch to the

Renset branch, we design the Attention Guided Loss to su-

pervise the Cross Attention Matrix explicitly. We argue that

the Cross Attention Matrix should be similar to the attention

matrix generated from ground truth, because the salient fea-

tures should have a higher similarity, in other words the dot

product should has a larger activation value. As shown in

Fig. 6 given a salient map M with size H × W , we first

flatten it to M ′ with size 1 × HW . Then we apply ma-

trix multiplication on M ′ to obtain corresponding attention

matrix Ma. The process can be denoted as Ma = F (M)
and the value of Ma

xy can be expressed as

Ma
xy = M ′T

x ×M ′
y, (4)

Then we use the transformation F(·) to construct

Ga, RP a, SP a, where G is the ground truth map, RP and

SP are salient prediction map generated from feature R5

and S2 respectively. We propose the Attention Guided

Loss based on weighted binary cross entropy (wBCE) to

supervise the Cross Attention Matrix CAM generated from

CMGM shown in Fig. 5. The BCE [6] can be written as:
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Figure 6. The construction of attention matrix. The operation is

used to create the target and weights for proposed AGL.

�bce(Gxy, Pxy) =

{
log(Pxy) Gxy = 1

log(1− Pxy) Gxy = 0
, (5)

where Gxy is the ground truth label of the pixel (x, y), and

Pxy is the predicted probability in predicted map and both

of them are in range[0, 1]. Then our LAG can be expressed

as:

LAG = −

H∑
i=1

W∑
j=1

(1 + βωij) · �bce(Ga
ij ,CAMij)

H∑
i=1

W∑
j=1

(1 + βωij)

, (6)

where β is a hyperparameter to adjust impact of the weight

ω Eq. (7). In the Eq. (6), the �bce on each pixel is assigned

with a weight βωij . The use of weight ω serves two pur-

poses: (1) The degree of positive and negative sample im-

balance is squared due to the matrix multiplication.(2) As

described in Sec. 4.3, we want to remedy the errors com-

mon to both of branches. When βω equals 0, the Eq. (6)

becomes usual binary cross entropy loss Lbce. The weight

ω can be calculated by:

ωij =
1

2
(| (Ga

ij −RP a
ij) | + | (Ga

ij − SP a
ij) |) + 1, (7)

where RP a and SP a are the attention matrix of RP and

SP defined above.

What’s more, we also apply the widely-used IoU loss

[24] to pay more attention to the global structure of the im-

age as suggested by [27]. The IoU loss Liou can be referred

to supplementary materials. In the end, our total loss can be

expressed as follow:

Ltotal = LP
b+i + LAG +

1

8
(Lauxiliary

b+i ), (8)

where Lb+i = Lbce + Liou, and Lauxiliary
b+i is Lb+i applied

on the RP and SP .

5. Experiments

5.1. Datasets and Evaluation Metrics

High-Resolution Datasets. The high-resolution

datasets available are UHRSD (4,932 images for training

and 988 for testing) , HRSOD [40] (1,610 images for train-

ing and 400 for testing). Followed by [30, 40], we also use

the DAVIS-S for evaluation.

Low-Resolution Datasets. DUTS-TR [31] is used to

train the model. In addition, we also evaluate our method on

widely-used benchmark datasets: ECSSD [38] with 1,000

images, DUT-OMRON [39] with 5,168 images, PASCAL-

S [17] with 850 images, DUTS-TE [31] with 5,019 images

and HKU-IS [16] with 4,447 images.

Evaluation Metrics. We use following metrics to eval-

uate the performance of all methods. Firstly, Mean Ab-

solute Error (MAE), defined as Eq. (9) where P is the

prediction map and G is the ground truth. The second

is Max F -measure (FMax
β ), which can be calculated by

Fβ = (1+β2)·precision·recall

β2·precision·recall
, where β2 is set to 0.3 as sug-

gested in [2]. Then we adopt Structural similarity Mea-

sure (Sm) [7] and E-measure(Eξ) [8] as many other meth-

ods [23, 32]. At last, to better evaluate the boundary qual-

ity which is important in High-resolution Saliency Detec-

tion [30, 40], we adopt the Boundary Displacement Error

(BDE) to evaluate the result of high-resolution datasets,

where lower values means better boundary quality.

MAE =
1

H ×W

H∑

i=1

W∑

j=1

|Pij −Gij |. (9)

5.2. Implementation Details

We use Pytorch [25] to implement our model and two

RTX 2080Ti GPUs are used for accelerating training. We

choose Resnet-18 [10] and Swin-B 224 [22] as the back-

bone for convolutional branch and transformer branch re-

spectively. The whole network is trained end-to-end by

using stochastic gradient descent (SGD). We set the max-

imum learning rate to 0.003 for Swin backbone and 0.03

for others. The learning rate first increases then decays

during the training process, what’s more Momentum and

weight decay are set to 0.9 and 0.0005 respectively. Batch-

size is set to 16 and maximum epoch is set to 32. For data

augmentation, we use random flip, crop and multi-scale

input images [27, 30, 44]. In order to make fair compar-

isons and fully demonstrate the attributes of our UHRSD,

we take three combinations of available datasets to train

our model: (1) DUTS-TR (2) DUTS-TR+HRSOD-TR (3)

UHRSD-TR+HRSOD-TR. During testing, each image is

resized to 1024× 1024 and then fed into the network with-

out any post-processing(e.g. CRF [15]).
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Table 1. Quantitative comparisons with state-of-the-art SOD models on five benchmark datasets in terms of max F-measure, MAE , E-

measure, S-measure and BDE. The best two results are shown in red and green, respectively. D: trained on DUTS-TR, HD: trained on

DUTS-TR and HRSOD-TR, UH: trained on UHRSD-TR and HRSOD-TR . The best two results are in red and green fonts.

HRSOD-TE DAVIS-S UHRSD-TE DUT-OMRON DUTS-TE
Method

FMax
β MAE Eξ Sm BDE FMax

β MAE Eξ Sm BDE FMax
β MAE Eξ Sm BDE FMax

β MAE Eξ Sm FMax
β MAE Eξ Sm

CPD19 .867 .041 .891 .881 62.066 .871 .029 .921 .893 33.971 .894 .055 .884 .878 32.587 .797 .056 .866 .825 .865 .043 .887 .869

SCRN19 .880 .042 .887 .888 75.696 .893 .027 .911 .902 46.592 .904 .051 .880 .887 40.176 .811 .056 .863 .837 .888 .040 .888 .885

DASNet20 .893 .032 .925 .897 69.310 .902 .020 .949 .911 26.761 .914 .045 .892 .889 35.044 .827 .050 .877 .845 .895 .034 .908 .894

F3Net20 .900 .035 .913 .897 65.757 .915 .020 .940 .914 44.760 .909 .046 .887 .890 39.612 .813 .053 .871 .838 .891 .035 .902 .888

GCPA20 .889 .036 .898 .898 74.900 .922 .020 .934 .929 39.160 .912 .047 .886 .896 35.947 .812 .056 .860 .839 .888 .038 .891 .891

ITSD20 .896 .036 .912 .898 87.946 .899 .022 .922 .909 68.256 .911 .045 .895 .897 41.174 .821 .061 .863 .840 .883 .041 .895 .885

LDF20 .904 .032 .919 .904 58.714 .911 .019 .947 .922 35.447 .913 .047 .891 .888 33.775 .820 .051 .873 .838 .898 .034 .910 .892

CTD21 .905 .032 .921 .905 63.907 .904 .019 .938 .911 42.832 .917 .043 .898 .897 33.835 .826 .052 .875 .844 .897 .034 .909 .893

PFS21 .911 .033 .922 .906 63.537 .916 .019 .946 .923 30.612 .918 .043 .896 .897 37.387 .823 .055 .875 .842 .896 .036 .902 .892

HRSOD-DH19 .905 .030 .934 .896 88.017 .899 .026 .955 .876 44.359 - - - - - .743 .065 .831 .762 .835 .050 .885 .824

DHQSOD-DH21 .922 .022 .947 .920 46.495 .938 .012 .947 .920 14.266 - - - - - .820 .045 .873 .836 .900 .031 .919 .894

Our PGNet

Ours-D .931 .021 .944 .930 46.923 .936 .015 .947 .935 34.957 .931 .037 .904 .912 32.300 .835 .045 .887 .855 .917 .027 .922 .911

Ours-DH .937 .020 .946 .935 45.292 .950 .012 .975 .948 14.463 .935 .036 .905 .912 32.008 .835 .046 .887 .858 .919 .028 .925 .912

Ours-UH .945 .020 .946 .938 57.147 .957 .010 .979 .954 12.725 .949 .026 .916 .935 30.019 .772 .058 .884 .786 .871 .038 .897 .859

Image GT Ours-UH CPD CTD DASNet F3Net GCPA ITSD LDF PFS SCRN 

Image GT Ours-UH DHQSOD HRSOD CPD CTD DASNet F3Net GCPA ITSD LDF 

Figure 7. Visual comparison between our method and SOTA methods. The first four lines are from our UHRSD-TE and the next two lines

are from HRSOD-TE. Best viewed by zooming in.

5.3. Comparison with the State-of-the-arts

We compare our proposed PGNet with 11 SOTA meth-

ods, including CPD [34], SCRN [35], DASNet [43], F3Net

[32], GCPA [4], ITSD [46], LDF [33], CTD [45], PFS [23],

HRSOD [40], DHQSOD [30], where HRSOD and DHQ-

SOD are designed for high-resolution salient object detec-

tion. All of the above methods use Resnet-50 [10] as the

backbone except for HRSOD which uses VGG16 [28]. And

all of them are trained on DUTS-TR [31] dataset, except

for the marked ones like HRSOD-DH and DHQSOD-DH,

which are trained on the mixed dataset (HRSOD [40] and

DUTS-TR). For a fair comparison, we use either the avail-

able implementations or the saliency maps provided by the

authors. It’s worth noting that the vacant lines in Tab. 1 are

caused by the fact that one of them is not available so far and

the other not being consistent with our test environment.
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Table 2. Comparison of different architectures and compositions.

Composition
HRSOD-TE

FMax
β MAE Eξ Sm

baseline Resnet-18 .878 .051 .875 .871

baseline Swin .915 .027 .937 .921

baseline R+S+CMGM .940 .023 .944 .936

baseline R+S+CMGM+AGL .945 .020 .946 .938

Quantitative Comparison. As mentioned above, for

fair comparison we use three settings of train set. As can

be seen in Tab. 1, the results of training on either only

DUTS-TR or mix of DUTS-TR and HRSOD-TR exceed the

SOTA by a large margin on both high-resolution and low-

resolution test sets. When using the mixed dataset DUTS-

HRSOD, our method has significantly improved on high-

resolution datasets. There may be discrepancy between

the distribution of high-resolution and low-resolution data.

This is further supported by the results of training on the

UHRSD-HRSOD mixed dataset, where the performance of

the high-resolution dataset is significantly improved, espe-

cially for UHRSD-TE. This demonstrates that the anno-

tation bias of high-resolution datasets differing from low-

resolution datasets has a promotional effect on supervised

high-resolution saliency detection method, which is the rea-

son why high-resolution training data with high-quality an-

notation is in great demand.

Visual Comparison. To exhibit the characteristics of

high-resolution dataset and the superiority of our method

on it, Fig. 7 shows representative examples of visual com-

parison of ours with respect to others. As can be seen, our

method can capture details well and produce clear bound-

ary (row 1 and 2). More than the high quality boundary, an-

other significant aspect of high-resolution SOD is the abil-

ity to segment objects with small sturctures that are easily to

overlook in low-resolution cases (row 3, 5 and 6). This also

demonstrates the superiority that our method makes the pro-

cess one-stage. What’s more, our method works well even

in some extremly complex scenarios such as row 4.

5.4. Ablation Study

To better illustrate the nature of proposed method for

high-resolution images, the ablation studies are based on the

settings of Ours-UH, which is trained on the mixed dataset

UHRSD-TR and HRSOD-TR.

Ablation Study for Compositions. To prove the ef-

fectiveness of proposed feature grafting method including

the CMGM and AGL, we report the quantitative perfor-

mance in Tab. 2. The baseline Resnet-18 and baseline Swin

represent the widely-used U-shape network with Resnet-18

backbone and Swin backbone respectively. As can be seen

in row 3, our proposed staggered architecture and Cross-

Table 3. Performance with the different grafted features. Ri de-

notes the ith feature of R defined in Sec. 4.2, and Si is similar.

Feature Pair
HRSOD-TE UHRSD-TE

FMax
β MAE Eξ FMax

β MAE Eξ

R5 − S4 .913 .029 .922 .935 .031 .907

R5 − S3 .939 .022 .937 .947 .026 .912

R5 − S2 .945 .020 .946 .949 .026 .916

R5 − S1 .937 .022 .935 .947 .026 .910

Model Grafting Module inherits the strengths of both mod-

els. What’s more, under the guiding role of AGL, perfor-

mance has been further improved.

Ablation Study for Grafting Position. To investigate

the impact of grafting position on the network performance,

we conduct a series of experiments with different grafting

feature pairs. As shown in Tab. 3, starting with the align-

ment of the last stage of two encoders, the performance

gradually improves as the number of staggered layers in-

crease until reaching the best at the pair R5−S2. This may

be due to the spatial size of feature maps. When the sizes

are close, the spatial information in the features extracted

from two models corresponds to each other, which in turn

promotes the feature grafting.

6. Limitation
Our method is simple and fast for one-stage high-

resolution saliency detection, but the training process is

still quite demanding on GPU memory usage, resulting in

a high cost of training. What’s more, though our method

has already a superior input resolution compared to previ-

ous SOD methods, the input resolution is not unlimited. For

excessive resolution such as 4K, images need to be down-

sampled first before input.

7. Conclusion
In this paper, we propose the Pyramid Grafting Network

for one-stage high-resolution salient object detection. The

proposed staggered grafting patterns effectively exploit the

advantages of each of the two existing different encoder. In

addtion the proposed Cross-Model Grafting Modules and

Attention Guided Loss cooperate with each other to inherit

the advantages and remedy the common defects of the CNN

and transformer. It is worth noting that we contribute the

first 4K resolution SOD dataset for advancing future stud-

ies in high-resolution SOD. Extensive experiments demon-

strates that our method not only outperforms the state-of-

the-art methods but also is able to produce high-resolution

saliency predictions fast and accurately.
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[15] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In Ad-
vances in neural information processing systems, pages 109–

117, 2011. 6

[16] Guanbin Li and Yizhou Yu. Visual saliency based on multi-

scale deep features. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5455–

5463, 2015. 6

[17] Yin Li, Xiaodi Hou, Christof Koch, James M Rehg, and

Alan L Yuille. The secrets of salient object segmentation.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 280–287, 2014. 6

[18] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 2

[19] Jiang-Jiang Liu, Qibin Hou, and Ming-Ming Cheng.

Dynamic feature integration for simultaneous detection

of salient object, edge and skeleton. arXiv preprint
arXiv:2004.08595, 2020. 1

[20] Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei

Han. Visual saliency transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 4722–4732, 2021. 3

[21] Nian Liu, Wangbo Zhao, Dingwen Zhang, Junwei Han, and

Ling Shao. Light field saliency detection with dual local

graph learning and reciprocative guidance. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4712–4721, 2021. 1

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,

Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-

former: Hierarchical vision transformer using shifted win-

dows. arXiv preprint arXiv:2103.14030, 2021. 4, 6

[23] Mingcan Ma, Changqun Xia, and Jia Li. Pyramidal feature

shrinking for salient object detection. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages

2311–2318, 2021. 2, 6, 7
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