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Figure 1. We present Point Cloud Color Constancy (PCCC), which is simple, efficient and hardware friendly. (A): Raw RGB-D image.
(B): RGB point cloud generated by (A). (C): Point Cloud with illumination rendered from PCCC. (D) 2D illuminant map extracted from
(C). (E) Color corrected image. (F): Speed, accuracy and parameter number comparison with state-of-the-art color constancy methods.

Abstract
In this paper, we present Point Cloud Color Constancy,

in short PCCC, an illumination chromaticity estimation al-
gorithm exploiting a point cloud. We leverage the depth
information captured by the time-of-flight (ToF) sensor
mounted rigidly with the RGB sensor, and form a 6D cloud
where each point contains the coordinates and RGB intensi-
ties, noted as (x,y,z,r,g,b). PCCC applies the PointNet archi-
tecture to the color constancy problem, deriving the illumi-
nation vector point-wise and then making a global decision
about the global illumination chromaticity. On two pop-
ular RGB-D datasets, which we extend with illumination
information, as well as on a novel benchmark, PCCC ob-
tains lower error than the state-of-the-art algorithms. Our
method is simple and fast, requiring merely 16× 16-size in-
put and reaching speed over 140 fps (CPU time), including
the cost of building the point cloud and net inference.

∗Equal contribution/†Corresponding author. Code & Data: https:
//github.com/xyxingx/Point-Cloud-Color-Constancy

1. Introduction

There are over a billion smartphone cameras capturing
photographs, where the procedure of perceiving true colors
of the real world happens in the ISP pipeline. In general, a
good-looking picture relies on a single CMOS sensor with
a certain color filter array. On flagship smartphones, there
is a trend of leveraging two or more digital sensors to “com-
pute” a higher-quality image. Such cases include {main
camera, tele camera} [2], {main camera, near inferred sen-
sor} [48], and {color camera and time-of-flight (ToF) depth
sensor} [45]. In this work, we proceed in this direction and
use a color camera and a ToF sensor. A ToF depth sensor
has been commonly employed for other applications; e.g.,
auto focus, bokeh effect and 3D face and skeleton scanning.
Here we show a novel task based on combing the RGB and
ToF sensors – RGB-D or point-cloud illumination estima-
tion.

Illumination estimation refers to the task of estimating
the normalized illumination chromaticity given a raw im-
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age, which itself is a core task in computational color con-
stancy. Color constancy is an intrinsic property of the hu-
man eye, which perceives the world independently of illu-
mination color changes. For technical reasons and engineer-
ing benefits, in digital cameras, illumination estimation and
a channel-wise rescaling are combined in the so-called auto-
white balance (AWB), to realize “color constancy” compu-
tationally. An accurate estimation, with proper rescaling
factors than render a neutral surface white.

In common the use-case, illumination estimation only re-
lies on a single raw format image. Here we advocate the use
of depth sensor which casts the task into a 3D regression
problem, which we show delivers more accurate results. We
introduce depth based color constancy for the following rea-
sons: 1. image statistics are steered by depth information
[30]. More specially, the surface geometry, the texture size
and the signal-to-noise ratio varies with depth, which will
influence the performance of illumination estimation algo-
rithm; 2. abrupt depth changes correlate with non-smooth
illumination distribution. Imagine walking from outside to
an indoor room with a tungsten light. In a 2D image, the
depth and illumination change dramatically in the area close
to the door. As shown in Figure 1, the captured RGB-D
images are reprojected to form the colored point cloud, on
which the proposed method estimates the illumination for
each point. Then these point predictions (Figure 1(C)) are
averaged with learnt weights.

In a summary, the contributions of the paper are:
• We formulate the generic problem of illumination esti-

mation in a 3D world, relaxing the over-simplistic as-
sumptions about uniform illumination for a plain 2D
image adopted in prior work .

• We present PCCC architecture, derived from PointNet,
a novel point cloud net for the color constancy task.
We show its superior performance on illumination es-
timation on three color constancy benchmarks. Side
applications, e.g., local AWB is reported as well.

• PCCC operates well on the sparse-sampled thumbnail
point clouds, which allows over 500 frames per sec-
ond (include time of building point cloud) on a Nvidia
V100 GPU and is hardware friendly for a mobile SoC.

• We annotated the illumination groundtruth labels for
three popular RGB-D datasets (NYU-v2 dataset [40],
Diode dataset [42] and ETH3D dataset [37]) and col-
lected DepthAWB, a novel RGB-D dataset for the
color constancy task.

2. Related Work

The prior art in computational color constancy falls into
the learning-based and statistics-based groups. In this sec-
tion, we consider the candidate method from a different per-
spective, i.e., the input requirement.

3D CC Depth Seg. CNN based UV Hist. Ours
[30] [19] [11, 25, 29, 43] [8, 9] PCCC

Semantic info. × × X Not explicit X
Depth info. X X × × X
End to End × × X × X
Local AWB × X Some of them × X

Table 1. PCCC - comparision with prior color constancy methods.

Methods relying on a single Image The majority of
color constancy methods belong to this category. Firstly,
there exist a list of traditional methods, including Gray
World [13], White Patch [12], General Gray World [7],
Gray Edge [41], Shades-of-Gray [21], LSRS [22], PCA [16]
and Grayness Index [35], etc. They are easy to be imple-
mented in a ISP chipset and may fail if their assumption is
violated. Secondly, more methods are driven by the avail-
ability of color constancy datasets which provide carefully
annotated illumination groundtruth; [5, 8, 14, 15, 20, 23–26,
39] learn a high-dimensional mapping from the capture raw
data to the sought illumination vector after optimization on
training set. The learning tools behind includes gamut map-
ping, least square minimization, random forest, neural net-
works and so on.

Methods relying on Image(s) and Auxiliary Information
There is a research trend of including more information
else than a single image in design of color constancy meth-
ods, for special purposes. Abdelhamed et al. [2] leveraged
main camera and tele camera simultaneously in a very light-
weight neural network, releasing the discriminative ability
of color filter array correlation. Barron et al. [9] proposed
a Fourier transform-based model (model O in the paper),
learning the model weight from the camera metadata like
aperture and so on. Qian et al. [34, 36] claimed the preced-
ing image sequence benefits the illumination estimation for
the shot image. Yoo et al. [46] explored the AC light source
in a high-speed setting. Ebner et al. [19] firstly estimated
the illumination chromaticity by combing Gray World with
depth map.

Differing from [19], in a end-to-end way, our approach
learns how to use depth for referring illumination from a
sparsely-sampled point cloud. As shown in Table 1, it also
supports semantic info extraction and 3D point-wise AWB.

3. Point Cloud Color Constancy

We describe PCCC in the following order: 1) reformu-
lating the illuminant estimation problem on RGB-D images
(Section 3.1); 2) aligning the RGB images and depth maps
spatially (Section 3.2); 3) generating point cloud with tris-
timulus color values (Section 3.3); 4) explaining our point-
cloud illuminant estimation network (Section 3.4); and 5)
proposing two augmentation tricks based on vibrating cam-
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Figure 2. The PCCC architecture consists of a point-wise feature extraction block - a slight modification of PointNet [31], and the spatial
weighted illuminant estimation block. Given H ×W points as input, PCCC outputs a spatial weighted illuminant, which benefits global
auto white balance, AWB (Section 5.1). With a slight setting change, we can also achieve point-wise illumination estimation (Section 5.4).

era position and illumination chromaticity (Section 3.5).

3.1. Formulation

Given an RGB image I, the image formation can be de-
scribed as follow:

I =

∫
λ

E(λ)S(λ)RRGB(λ)dλ, (1)

where λ is the visible wavelength. E refers to illumi-
nant spectral power distribution, S is the surface reflectance
function, andRRGB refers to the sensor responses. Our aim
in this paper is to get illuminant E =

∫
λ
E(λ)RRGB(λ)dλ

for the captured environment, or even more ideally, for each
point position.

Based on prior works [19, 30] and our observation, with
point clouds (or images with depth information) as inputs,
the color constancy method benefits from the following:
1) explicitly discriminate the ambiguity illuminant through
depth discontinuity; 2) identify the dominant illuminant un-
der different depth; 3) simulate different viewing angle of
the same scenes (Section 3.5 and 5.3) ; and 4) estimate
global illuminant based on spatial illuminant distribution
(Section 3.4, 5.3 and 5.4).

3.2. Alignment between RGB and Depth Map

RGB images and depth maps are captured by different
sensors separately, thus alignment is needed. The process
of alignment follows as: 1) calibration two cameras’ intrin-
sics and extrisics using Zhang et al. [49]; 2) calculate the
rigid transformation from coordination of RGB camera to
the coordination of depth camera, and 3) colorize the depth
map using the corresponding RGB intensities. Since the
rigid connection of two sensors holds when mounted, the
transformation matrix is pre-computed before dataset col-
lection.

3.3. Point Cloud with Tristimulus Values

Given an RGB image I = [Ir, Ig, Ib] ∈ RU×V×3 and its
corresponding depth map D ∈ RU×V×1, we aim to build a
colored point cloud denoted as P = {pi|i ∈ 1, , , n}. Each
point pi, as a vector of (x,y,z,r,g,b) values, is computed as:

pi = (
(u− cx)d

fx
,

(v − cy)d

fy
, d, r, g, b), (2)

where u,v are the 2D coordinates in I for the ith pixel, d is
the depth value, {fx,fy} represent the focal lengths, (cx, cy)
the principal point. {r, g, b} refer to the color channels in I.

Comparing to 2D images, the colored point clouds carry
more rich information of inputs such as spatial distance be-
tween objects, spatial color transformation, and explicit ge-
ometric structure. Unless explicitly stated otherwise, “point
cloud” in this paper denotes colored point cloud.

3.4. Illumination Regressor on Point Cloud

Given a dataset of N point clouds, P =
{P1,P2, ...,PM} and the corresponding global illumi-
nation label E = {E1,E2, ...,EM}, we then can train
a neural network Given a dataset of N point clouds,
fθ : P → E

Êi = fθ(Pi), (3)

where Ê is the predicted illumination vector.
To estimate the dominant illuminant E, we 1) extract the

lighting feature out of the point set; 2) obtain the approxi-
mately illuminant distribution, and 3) estimate the dominant
illuminant from the spacial distribution.

Feature extraction Point clouds are spatial sparse and
disorderly. Traditional CNN architectures are designed for
2D images (which are in regular format) and may not fit
the task. We employ PointNet [31] as our feature extraction
module, which is designed for the point cloud-based classi-
fication task. PointNet subtly overcomes the unordered is-
sue with an architecture that consists of several multi-layer
perceptrons (MLP) and max pooling as its basic layers.
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To feed MLP, P is converted to an unordered sequen-
tial of N points, Ps ∈ RN×6, where 6 channels represent
the camera spatial coordinate {X,Y, Z} and corresponding
color values {R,G,B} for each point. Firstly, MLP trans-
forms the Ps of 6 channels into Pfeat of 1024 channels,
while N remains the same. Then, max pooling aggregates
Pfeat with N points into one single global feature Pglobal.

Spatial weighted illuminant estimation Technically,
the MLP can decrease the channel of global feature Pglobal
from 1024 to 3, yielding the final prediction, which is sim-
ple but loses local estimates. Inspired by [25], we devise
a spatially weighted estimation module, by introducing the
point-cloud weight matrix Ws in stage of network inferring.

To include more local information, feature extrac-
tion is boosted by aggregating the global feature Pglobal
and the intermediate output from first MLP group to be
Plocal ∈ RN×1088. Then Plocal is reduced to Pillums =
[Pillum,Ws] ∈ RN×4 by MLP, where Pillum ∈ RN×3 rep-
resents the illumination estimation of each point, and spatial
illuminant matrix Ws ∈ RN×1. Mathematically global il-
luminant Êglobal ∈ R1×3 can be achieved by :

Êglobal =
∑
R,G,B

(softmax(Ws) · Pillum), (4)

where softmax normalizes Ws into {0,1} as a probability
mask. The global illuminant is employed for global color
constancy. The probability mask and local illuminant can
later be leveraged for the trial in local AWB.

Loss Function Similar to the prior arts, we use the re-
covery angular loss Lang as our loss function:

Lang(Ê,E) = arccos(
Ê · E

||Ê|| · ||E||
), (5)

where Ê is the predicted illumination vector and E is the
ground truth illumination label. With the loss, our net con-
verges in an end-to-end way.

Discussion Theoretically, any network that design for
point clouds [28, 33] or for RGB-D input can be employed
to replace the PointNet-based net here. However, due to
the nature of the color constancy problem, we argue that an
ideal point cloud color constancy network should 1) have a
simple but effective structure that keeps good trade-off be-
tween accuracy and running speed; 2) be not sensitive to
the noise and sparse sampling rate and 3) in default work-
ing with thumbnail-size input, which is usually provide by
specialized ISP hardware node. Quantitative experiments to
the mentioned properties of our design are in Section 5.3.

3.5. Point Cloud Augmentation

Point cloud allows us to augment data from a 3D
prospective. We propose two augmentation methods based
on our observation that illumination on a point is roughly

Camera Pose 1
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Figure 3. We use two augmentation approaches: (A) camera pose
augmentation simulates images capture from a different viewing
angle. (B) light intensity augmentation generates new pixel-wise
illumination field under the same illuminant.

invariant to mild camera pose jittering and light intensity
changes. These methods rely on separating a point cloud
into two parts 1) coordination value Pxyz and 2) color value
PRGB , considering the order of point cloud is fixed during
our augmentation period. We can augment the camera po-
sition and light intensity separately as following.

Camera Pose Augmentation is inspired by that small
rotation does not affect the decision of the dominant illumi-
nation color. As shown in Figure 3, we sample a rotation
matrix R ∈ SO(3) to simulate the scenarios where we take
images from different perspectives.

Light Intensity Augmentation is inspired by luminance
can be changed when the relative distance of the illuminated
objects and the light source changes. Based on this, we
use an intensity scaling factor L to realize luminance-based
augmentation.

Considering both augmentation ways, the new point
cloud P

′
is:

P
′

= RPxyz ⊕ LPRGB , (6)

where R is the sampled rotation matrix, L is a scalar from
a normal distribution N (1, 0.152), and ⊕ is channel-wise
concatenation.

4. Dataset Preparation
To train PCCC, the pairs of the point sets (from RGB-

D images) and the corresponding illumination labels are
needed. However, to our knowledge, there are no such
datasets publicly available. To evaluate our method, we
first present in Section 4.1 reannotating the commonly used
depth datasets NYU-v2 [40] and Diode [42]. Then in Sec-
tion 4.2 we relabel the ETH3D dataset [37], which includes
sensor raw files. Finally and the most importantly, we show
the collection of our point cloud illumination dataset using
a single lens digital camera and an accompanied Intel laser
depth sensor.
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4.1. Annotating NYU-v2 & Diode Depth Dataset

NYU-v2 [40] is a classical RGB-D dataset, with hun-
dreds of indoor scenes captured by Microsoft Kinect. Diode
[42] is a latest RGB-D dataset released by Toyota Tech-
nological Institute at Chicago, this dataset contains more
than 20 scenes include indoor and outdoor scenes. Affected
by the illuminant and position, there are numbers of AWB-
biased images in these datasets (See supplement material).
We found these images are suitable for us to label the cor-
rect illumination according to the neutral surfaces and vali-
date the color constancy algorithm.

Images from these two datasets are in sRGB. To label the
ground truth illuminant, we process images by the following
steps: 1) switch sRGB to LRGB using inverse gamma op-
eration [6,18]; 2) remove the tuning operation using a 3× 3
matrix as suggested in [3]; and 3) label out the neutral sur-
face area (which is deemed as neutral without doubt, like
white printed paper) and calculate the illumination vector
(Details in supplement materials). The steps can be formu-
lated as:

Elabel = Γ(M−1 × I1/γsRGB), (7)

where Γ(·) represents the area selection and illuminant cal-
culation. Elabel is the labeled ground truth illumination, M
is the tuning matrix of images.

After the preprocessing steps, we obtain linearization
images with labels from two datasets. These images contain
indoor and outdoor scenes, with diverse label distribution.

Discussion We acknowledge that relabeled illumination
on sRGB images may not be as accurate as that in raw
LRGB images, and our transformation can not really trans-
form the sRGB to LRGB, which is a rough operation and
may bring nosie to the images. Since all color constancy
methods will surfer the same bias on the datasets, we argue
that these data are of experimental value for us to test our
method (See Section 5 for more experimental details).

4.2. Annotating ETH3D Depth Dataset

ETH3D dataset [37] is a stereo RGB-D dataset with 13
different scenes with indoor and outdoor, the RGB images
are captured by a Nikon D3 camera, and the depth maps are
from a radar. The dataset provides the raw format of images.
We can process the images using LibRaw, and obtain the
raw linear RGB images, which makes them closer to the
images we used in camera auto white balance pipeline.

We use the similar label method as Section 4.1 to obtain
the illuminant. Considering we already have raw DSLR im-
ages IRaw, the labeled illuminant Elabel can be obtained by:

Elabel = Γ(IRaw). (8)

(F) Depth Map(E) Image w/o Color Checker(D) Image w/ Color Checker

(B) Illuminant distribution on ETH3D (C) Illuminant distribution DepthAWB(A) Illuminant distribution on NUS-600D 

R/G R/G R/G

B
/G

B
/G

B
/G

Figure 4. (A)-(C): Illumination distribution of NUS-600D dataset,
our relabel ETH3D dataset and propose dataset. (D), (E) a pair of
images we captured sequentially. We use (D) with color checker
for labelling and (E) for training and testing. (F) ToF depth map.

4.3. DepthAWB – Real Color Constancy Dataset
with Depth

Despite we have the annotated dataset on raw images,
still the ground truth illuminants have biases, since we can
not really know the accurate color. Therefore, an RGB-
D dataset with raw images and color checker labeled il-
luminants is needed. Following prior works on RGB-D
datasets collection [40] and color constancy dataset collec-
tion [23], we collected our own depthAWB dataset, which
to our knowledge is the first RGB-D dataset with labeled
illuminant. Our dataset preparation steps are as following:

Data collection: Since RGB-D camera like Kinect-V2
does not provide the raw images, therefore, following [37],
we use LUMIX GH5S camera 1 to capture the DSLR RGB
images and Intel Resense L515 to capture the depth maps.
Our data capture setup is presented in supplement material.

Data calibration: Calibration is a fundamental opera-
tion, as introduced in Section 3.2, we first capture several
images from RGB camera and depth camera, by tilting the
a checker board with checker size 30 millimeter vertically
and horizontally; then we calculate the transformation ma-
trix using the Caltech camera calibration toolbox [1].

Illumint annotation: Since we obtain the raw images
in data collection, we demosaic the raw images similar as
Section 4.2, and we directly annotated the ground truth on
the xrite color checkerboard.

4.4. Illumination distribution

In Figure 4 (A)-(C), we compare the illumination distri-
bution of our labeled ETH3D dataset, our collected Depth
AWB dataset to the commonly used NUS dataset [16] Can-
non 600D subset (NUS-600D). Our datasets cover a wide
range of illuminant values, and share the same trend in illu-
minant distribution as NUS-600D.

1We fixed focal length and set camera aperture as f/8.0, while extend
the shutter speed, details discussed in supplement.
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Method Angular Error (NYUv2&Diode) Angular Error (ETH3d RAW) Angular Error (DepthAWB) Training Test
Mean Med. Tri. B25% W25% Mean Med. Tri. B25% W25% Mean Med. Tri. B25% W25% time (s)1 time (ms)

GrayWorld [13] 5.39 3.83 4.37 1.23 11.81 3.18 2.87 2.95 1.00 5.70 6.03 5.23 5.40 3.48 9.75 - 10.00
WhitePatch [12] 6.37 5.53 5.59 3.77 10.46 6.28 6.41 6.49 1.20 13.09 11.77 12.51 12.23 3.74 18.80 - 7.83
1stGrayEdge [41] 4.02 2.71 2.96 0.82 9.43 7.81 5.44 6.49 1.06 17.09 6.56 6.13 6.06 1.52 12.83 - 34.00
2ndGrayEdge [41] 4.15 2.90 3.10 0.78 9.81 8.02 5.30 6.38 1.21 18.20 7.12 6.91 6.97 1.87 13.07 - 42.50
Shade of Gray [21] 3.69 2.68 2.90 0.61 8.59 7.25 5.02 6.23 0.95 15.59 5.84 4.59 5.11 1.22 11.82 - 320.00
APAP (GW) [4] 3.47 2.31 2.61 0.67 7.78 2.71 2.53 2.54 0.82 4.69 3.69 2.69 3.08 1.70 6.50 16 16.00
Shen et al. [38] 5.55 3.61 3.88 1.03 13.39 3.90 3.12 3.31 1.08 7.54 5.05 3.19 3.80 0.77 11.85 - 37.00
GI [35] 4.28 3.01 3.27 0.85 9.81 3.26 2.02 2.19 0.49 7.35 3.91 2.09 2.58 0.49 10.23 - 109.00
Bayesian [23] 9.64 10.01 9.59 3.61 15.68 7.32 5.31 6.02 1.70 15.42 5.97 5.09 5.24 1.91 11.20 35 2134.42
Cheng et al. [17] 3.11 2.02 2.27 0.59 7.39 3.44 1.71 2.06 0.44 9.43 1.89 1.15 1.24 0.22 4.71 63 331.20
Quasi U CC [10] 3.76 2.20 2.54 0.45 9.28 3.90 3.29 3.43 0.85 7.58 4.45 3.80 3.90 1.04 9.03 - 345.13
FC4 [25] 2.49 1.61 1.79 0.47 6.03 1.19 0.90 0.98 0.32 2.46 1.34 0.98 1.04 0.24 3.08 13000 38.21
FFCC (Model J) [9] 2.82 1.87 2.00 0.51 6.82 1.16 0.91 0.99 0.31 2.43 1.32 0.76 0.88 0.27 3.21 67 29.00
FFCC (Model Q) [9] 2.75 1.90 2.01 0.48 6.63 1.08 0.88 0.91 0.26 2.26 1.40 0.81 0.93 0.29 3.40 51 1.10

Ours (16 Points, w/o depth) 2.96 1.82 2.12 0.63 6.91 1.58 0.98 1.09 0.22 3.82 2.60 2.11 2.20 0.50 5.72 1700 4.00
Ours (16 Points) 2.23 1.67 1.74 0.40 5.16 1.12 0.75 0.78 0.14 2.79 1.64 0.95 1.05 0.17 4.30 1700 4.00
Ours (256 Points, w/o depth) 2.80 1.89 2.22 0.57 6.39 1.42 1.02 1.08 0.33 3.11 2.39 1.75 1.90 0.42 5.50 3120 7.03
Ours (256 Points) 2.20 1.42 1.58 0.34 5.30 0.88 0.53 0.62 0.17 2.15 1.05 0.37 0.55 0.09 3.02 3120 7.03
Ours (4096 Points) 2.18 1.30 1.54 0.33 5.39 0.78 0.42 0.51 0.11 1.97 0.99 0.28 0.50 0.08 2.94 5700 47.12
1 Since we have multi-scale datasets, the train time is for the DepthAWB dataset.
2 The profiled time for PCCC includes the time slot for aligning RGB image and depth image, building point cloud and also network inferring.

Table 2. Quantivate comparison of our reannotated NYU-v2 [40], Diode [42], ETH3D [37] datasets and our collected dataset, respectively.
We highlight top two performers in each metric with pink and yellow background, respectively. All test time are CPU time.

BackBone Image Train FPS NYUv2&Diode ETH3d RAW DepthAWB
Scale time Mean Med. Tri. W25% Mean Med. Tri. W25% Mean Med. Tri. W25%

PointCNN [28] 16*16 ∼ 2 ∼ 20 2.41 1.68 1.83 5.58 1.55 1.33 1.35 3.09 2.59 1.78 1.95 5.92
PointCNN [28] 64*64 > 24 ∼ 5 2.19 1.55 1.69 5.02 1.30 1.02 1.11 2.72 1.31 0.91 0.97 3.00
PointNet++ [33] 16*16 ∼ 3 ∼ 100 2.69 2.87 3.76 3.59 1.44 1.50 1.52 1.93 1.61 1.56 1.57 2.39
PointNet++ [33] 64*64 > 24 ∼ 3 2.98 1.98 2.20 7.04 1.66 1.25 1.34 3.39 1.91 2.02 1.99 2.57
Ours 16*16 ∼ 0.5 ∼ 530 2.35 1.58 1.80 5.37 1.08 0.78 0.87 2.43 1.05 0.37 0.55 3.02
Ours 64*64 ∼ 1.5 ∼ 495 2.20 1.30 1.57 5.53 0.87 0.52 0.61 2.13 0.99 0.28 0.50 2.94

Table 3. Quantitative results of point cloud based backbones. We test three different backbones on three datasets, with two different input
scales respectively. Training time in hours. FPS is from GPU. Color setting as in Table 2.

5. Experiments
We evaluate PCCC and a large list of prior methods

on three public RGB-D datasets (relabeled by us, Section
4.1 and 4.2) and a newly-collected RGB-D dataset (Section
4.3). The dataset overview is as follows:

• NYU-v2 & Diode Dataset: 324 linearized RGB im-
ages and their corresponding depth map from NYU-
v2 [40] and Diode datasets [42].

• ETH3D Dataset: 195 reprocessed Raw RGB im-
ages and their corresponding depth map from ETH-3D
datasets [37].

• DepthAWB Dataset: 185 DSLR RGB images cap-
tured by LUMIX GH5S and depth maps by Intel Re-
alsense L515.

Training: We use Pytorch to build and train our method
on NVIDIA V100 (Tesla) GPU, Adam [27] is employed as
the optimizer. The learning rate is 0.0003. The epoch is set
to 10k.

Metrics: Similar as prior color constancy tasks [43, 44,
47], we report the mean, median (Med.), trimean (Tri.), best
(B) and worst (W) 25% of angular error (Eqution (5)). To
validate our method’s time efficiency, we also present the

time cost during training (for the learning-based methods)
and testing (for all).

5.1. Quantitative Results

Table 2 presents the quantitative results of PCCC and a
large selection of prior arts on three RGB-D color constancy
datasets. In overall, the proposed PCCC (with 4096 points)
leads three leaderboards, obtaining the lowest error in al-
most all statistics. Shrinking the input size to 256 points2,
PCCC also performs steadily better than the state-of-the-
art learning based methods [9, 25] by a large margin, again
showing the advantage of PCCC. To our a bit surprise, the
PCCC model with 16-points input still delivers meaningful
results, demonstrating the net learns the illumination from
the 96 float values w.r.t. image.

From a multiview point of view, 3D point cloud can
be rendered to 2D images, as done in [32], which forms
a projection-based augmentation boosting the task perfor-
mance.

It worth mentioning that all PCCC variants provide an
over-realtime inference time, nearly 7 mini-seconds (equals

2This equals to a 16× 16 RGB image plus a same-size depth map.
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Module Angular Error (16x16) Angular Error (64x64)
CPA LIA SW Mean Med Tri. W25% Mean Med Tri. W25%

- - - 1.32 0.81 0.90 3.35 1.33 0.75 0.90 3.61
- - X 1.23 0.79 0.88 3.14 1.18 0.53 0.70 3.19
- X X 1.14 0.57 0.72 3.13 1.04 0.43 0.60 2.95
X - X 1.19 0.50 0.72 3.32 1.10 0.42 0.63 3.16
X X X 1.05 0.37 0.55 3.02 0.99 0.28 0.50 2.94

Table 4. PCCC ablation study. On the DepthAWB dataset, for
we two resolutions of the point cloud – 16x16 (left) and 64x64
(right). CPA - camera pose augmentation, LIA - light intensity
augmentation; both described in Section 3.5. SW - refers to the
spatial weighting, see Section 3.4. Color setting as in Table2.

to 140 frames per second) on CPU. Considering the tiny
input size, we believe it is a viable solution for smartphone
photography.

Figure 6 shows a qualitative comparison of PCCC and
our selected well-performing methods. Among all choices,
the proposed method obtains the lowest error and delivers
the most neural appearance, for both outdoor and indoor
scenarios. Please see supplement for more visual results.

Notice All learning-based methods and their hyper-
parameters are from their official implementations or care-
fully tuned. All test time are the CPU time.

5.2. What Depth Brings

In Table 2, we also report the results when PCCC is
not given depth (in practice, it is done by initializing the
depth as 1 uniformly). We observe that, for 16-points and
256-points models, the accuracy degenerates by a notice-
able gap, proving the contribution of the depth. On ETH3d
and DepthAWB datasets, the PCCC variant without depth
still performs over the majority of learning-based methods,
showing that it learns to infer illumination chromaticity well
from a “flatten” point cloud. Empirically, we deduce that
depth itself contains color information but provides geomet-
ric clue for PCCC to tell how the illumination varies from
one location to another in a 3D space.

Figure 5 visualizes the illumination certainty map to
evaluate the importance of depth information. With depth,
PCCC can aggregate feature more from the area which is of
more “achromatic” surface and meaningful depth.

5.3. Ablation Study

Point Cloud Processing Backbone As discussed in
Section 3.4, there are obviously many selections for point
cloud based net that can be employed as the backbone of
the proposed method. We replace the PointNet backbone
by different point cloud nets (e.g., PonitCNN [28], Point-
Net++ [33]) and test their performance in our task.

Table 3 proves that given the input of same size, Point-
Net backbone gives better mean angular error compared to
PointCNN and PointNet++ backbones, while costs much
less time (∼ 1/80 times). As PointNet backbone achieves

0
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Figure 5. Illustration of how the depth affects the final deci-
sion. Depth information helps PCCC to estimate illumination from
more meaningful information (building wall) instead of noisy in-
formation (bright sky with disturbing color).

a good trade-off between accuracy and efficiency, we adopt
PointNet as our default backbone. For fair comparison, only
the backbone is switched while other modules are the same.

Point Set Size and Augmentation We investigate the
influence of three proposed modules: camera pose augmen-
tation (CPA), light intensity augmentation (LIA), and spa-
tial weight distribution (SW), using two different size point
clouds 16× 16 and 64× 64 respectively.

Results are shown in Table 4. Compared to using a very
sparsely-sampled point cloud (256 points), the 4096-point
point cloud obtains better results on each metric. By deac-
tivating each devised module (CPA, LIA, SW) one by one,
we notice a gradual performance drop, which validates the
benefit of each module.

5.4. Beyond Global Illumination Estimation

Considering that in PCCC illumination-related feature is
deduced point-wisely, it is straight-forward to explore its
potential application in point-wise AWB (or referred as lo-
cal AWB).

As introduced in Section 3.4, we can achieve point-wise
illumination distribution (later weighted by a weight matrix
and fused into the global illuminant). If we take this in-
termediate feature as our final output, we obtain a N × 3
illumination tensor, where N is the point number. The il-
lumination tensor can be visulized as a colored point cloud
(Figure 7, 2nd row), and, if projected to pixel coordinate
system, as a 2D illumination map (Figure 7, 3rd row).

With 2D illumination map, getting the reciprocals for
each point’s vector yields its AWB gain. We apply the AWB
gain pixelwisely and visualize in Figure 8. Comparing the
image intensities recovered by both solutions, we can find
the local one more accurately estimate the dual illumination.
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Figure 6. Quantitative global illuminant estimation results on the relabeled ETH3d dataset [37] and the new DepthAWB dataset. (A) and
(G) are Raw linear RGB images and images corrected by ground truth illuminants, respectively. From (B) to (F): images with estimated
illuminants from Quasi [10], Gray Index [35], FC4 [25], FFCC [9], and PCCC, respectively.
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Figure 7. Illustration of illumination distribution over 3D point
clouds and the corresponding 2D illumination maps.

6. Conclusion

We develop a point set-based regression net, PCCC, for
the color constancy task. By leveraging the geometry in-
formation and extensive point-wise augmentation, it de-
duces the global illumination chromaticity accurately, even
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Figure 8. Visualization of Global AWB result and Local AWB
result. We use yellow and cyan bonding box to indicate the lower
and higher correlated color temperature (CCT), respectively.

in challenging mixed-lighting environments. On two popu-
lar RGB-D datasets which we added illumination informa-
tion to, and on the novel DepthAWB benchmark, PCCC ob-
tains lower error than over the state-of-the-art, reaching the
mean angular error equals of 0.99 degree on DepthAWB.
Its side applications like local AWB is also discussed. The
PCCC method is efficient, using just 16×16-size input, and
fast, reaching ∼ 140 fps on CPU. In future work, we would
like to study more specific point cloud-based operator for
color processing task and its interpretability.

Limitations: The quality and quantity of datasets can be
further improved, including add Local AWB labels.
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