
AME: Attention and Memory Enhancement in Hyper-Parameter Optimization

Nuo Xua,b, Jianlong Changc, Xing Niea,b, Chunlei Huo ∗a,b, Shiming Xianga,b and Chunhong Pana,b

aNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
bSchool of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

cHuawei Cloud & AI, Beijing, China
nuo.xu@nlpr.ia.ac.cn, jianlong.chang@huawei.com, niexing2019@ia.ac.cn, {clhuo, smxiang,

chpan}@nlpr.ia.ac.cn

Abstract

Training Deep Neural Networks (DNNs) is inherently
subject to sensitive hyper-parameters and untimely feed-
backs of performance evaluation. To solve these two dif-
ficulties, an efficient parallel hyper-parameter optimization
model is proposed under the framework of Deep Reinforce-
ment Learning (DRL). Technically, we develop Attention
and Memory Enhancement (AME), that includes multi-head
attention and memory mechanism to enhance the ability
to capture both the short-term and long-term relationship-
s between different hyper-parameter configurations, yield-
ing an attentive sampling mechanism for searching high-
performance configurations embedded into a huge search
space. During the optimization of transformer-structured
configuration searcher, a conceptually intuitive yet power-
ful strategy is applied to solve the problem of insufficient
number of samples due to the untimely feedback. Experi-
ments on three visual tasks, including image classification,
object detection, semantic segmentation, demonstrate the
effectiveness of AME.

1. Introduction
Hyper-Parameter Optimization (HPO) [53] is a crucial

subfield in Automatic Machine Learning (AutoML), which
is formulated as a bi-level optimization problem. Recently,
the rise of deep learning has promoted giant development
of machine learning and computer vision, but it also places
higher requirements on computing resources. The optimiza-
tion of large-scale neural networks often takes days or even
weeks and a large number of GPUs to train, thus manu-
al tuning of hyper-parameters has gradually become expen-
sive. At the same time, the networks are highly sensitive to

∗Corresponding author

Sampling by 

Acquisition Function

(b) Bayesian Optimization

Attentive Sampling by Transformer-structured Configuration Searcher

Configuration Encoder

Decision Making

(c) Attention and Memory Enhancement (Ours)

(a) Random Search

Random Sampling

New Configuration

Search Space

Evaluated Configuration

Figure 1. Comparison of different configuration searchers. (a)
Random Search. The selection of the new configuration is inde-
pendent of other evaluated configurations. (b) Bayesian Optimiza-
tion. Under the given distribution assumption, the new config-
uration is finally obtained by acquisition function which models
the relationship between evaluated configurations. (c) Attention
and Memory Enhancement (AME). The relationship is captured
by attentive sampling without distribution assumptions, and is em-
ployed for the prediction of all types of new configurations.

the choice of hyper-parameters. Improper hyper-parameters
directly lead to the failure of training, e.g., gradient explo-
sion. In addition, when training modern neural networks, a
large number of hyper-parameters are required to be set, in-
cluding architecture hyper-parameters (e.g., network depth
and types), optimization hyper-parameters (e.g., learning
rate, batch size), and regularization hyper-parameters (e.g.,
weight decay), which result in a huge search space. More-
over, the challenge of HPO varies greatly in various sub-
fields of machine learning. In the field of computer vision,
hyper-parameters in detection and segmentation are more
sensitive than classification. Therefore, a practical modern
HPO algorithm must be able to easily handle the selection
of several to dozens of hyper-parameters for different tasks
within an acceptable time.

480



Mainstream HPO algorithms consist of two parts, tri-
al scheduler and configuration searcher. Among them, the
scheduler is responsible for the allocation of computing re-
sources. Specifically, it is capable of judging when to s-
tart a new trial, and whether to suspend or terminate the
trials according to the corresponding performance and run-
ning time. The searcher is in charge of the proposals of
new hyper-parameter configuration. For instance, the sim-
plest case is that the new configuration is in a position
to be obtained by random search [3, 23, 25, 31, 32] (see
Fig. 1(a)), but the trials are independent, i.e., the relation-
ship between each other is not considered, so it is extreme-
ly unstable in the huge search space. Using Bayesian Op-
timization (see Fig. 1(b)) to build an acquisition function
by the evaluated configurations is another type of searcher
[2, 12, 20, 48, 49]. Although this type of searcher select-
s the new hyper-parameter to be evaluated in an informed
manner, it is limited by strong assumptions, e.g., assum-
ing that the distribution obeys the Gaussian Process. Al-
so, the modeling is so complicated that is more suitable
for the optimization with a low-dimensional search space.
In addition, the searcher based on Evolutionary Algorithm-
s [21, 22, 37, 43] is sometimes time-consuming and is not
able to cope with hyper-parameters that can not be inherit-
ed, mutated or hybridized, such as network depth and types.

In order to maximize the potential of machine learning
models, and to select appropriate hyper-parameters more
efficiently and stably in the search space, this paper propos-
es a new configuration searcher based on Deep Reinforce-
ment Learning (DRL) [41,46] and Transformer [42,50] (see
Fig. 1(c)). Our searcher enhances the ability to capture the
relationship between different configurations through multi-
head attention and memory mechanism. Combined our
searcher with the parallel trial scheduler ASHA [32], Atten-
tion and Memory Enhancement (AME) is proposed. AME
actively encourages searcher to generate high-performance
configurations, and penalizes configurations that reduce
performance. The main contributions are as follows:
• A transformer-structured configuration searcher is de-

signed under reinforcement learning. Based on the novel
searcher, an efficient parallel HPO model AME is pro-
posed, which is sufficient to optimize all types of hyper-
parameters, without distribution assumptions.

• AME is capable of learning both the short-term and long-
term relationships to achieve attentive configuration sam-
pling, and effectively locating high-performance config-
urations in a huge search space.

• Bootstrap is applied to solve the insufficient number of
samples caused by the difficulty of sample acquisition.
This makes the online training of searcher efficient.

• Experiments demonstrate the efficiency of AME on three
vision tasks, including image classification, object detec-
tion, and semantic segmentation.

2. Related Work

2.1. Hyper-parameter Optimization

There are two mainstream HPO methods, Multi-fidelity
Optimization and Black-box Optimization, optimized for
trial scheduler and configuration searcher respectively.
Multi-fidelity Optimization. This is an optimization tech-
nique aimed at reducing evaluation costs for scheduler, by
obtaining a large number of cheap low-fidelity evaluations
and a small number of expensive high-fidelity evaluation-
s. It mainly includes two methods: Bandit-based Algorith-
m (e.g., SHA [23, 25], Hyperband [31], ASHA [32], BO-
HB [12], BOSS [18]) and Early-stopping Algorithm (e.g.,
median stopping [14], modeling learning curve [9,26]). The
former is a trade-off between exploration and exploitation,
while the latter terminates the trials with poor performance
in time. In addition, TSE [17] learns the low-fidelity correc-
tion predictor efficiently by linearly combining a set of base
predictors. AABO [39] adopts BOSS in detection for adap-
tively searching for the optimal setting of anchor boxes.
Black-box Optimization. This is a way to learn the map-
ping f : x → y between input x and output y, ignoring the
internal mechanisms. The easiest way is Grid Search [51],
i.e., exhaustive search, which is only suitable for a small
search space. Overall, there are four methods suitable for
modern neural networks: Model-free Methods (e.g., Grid
Search, Random Search [3, 23, 25, 31, 32], OATM [57]),
Bayesian Optimization (e.g., BO-GP [48, 49], SMAC [20],
BO-TPE [2], BOHB [12], distBO [30], AHGP [35], Drag-
onfly [24]), Evolutionary Algorithms (e.g., PBT [22], P-
B2 [43], GA [21], PSO [37]) and Gradient-based Meth-
ods [1, 38, 40, 44, 47]. The advantages and disadvantages
of the first three have been discussed in Sec. 1. Recent-
ly, Gradient-based Methods have shown better efficien-
cy. However, they only enable the differentiable hyper-
parameters to update, such as weight decay, and can not
directly update non-differentiable ones, such as batch size.

2.2. Deep Reinforcement Learning

DRL emphasizes how the agent acts based on the en-
vironment to obtain the maximum cumulative reward. As
a pioneering work, PPO [46] surpasses other existing al-
gorithms in performance. Recently, GTrXL [42] employs
the transformer-structured agent to capture long-term and
short-term memory for the first time. Other DRL-based Au-
toML methods generally learn the configuration in their re-
spective tasks, e.g., network architecture [61], compression
rate [16], and augmentation strategies [7], directly from in-
put images. Learning from the original images with sparse
knowledge is expected to result in inefficiency. Our AME
learns the relationship between evaluated configurations to
select new ones. In addition, AME overcomes the problem
of insufficient samples with the help of bootstrap.

481



2.3. Vision Tasks

In this paper, three vision tasks are set up for experi-
ments: image classification, object detection, semantic seg-
mentation. Currently popular networks for image classifi-
cation mainly include ResNet [15], ResNeXt [52], ResNeSt
[55], and so on. These networks serve the backbones of
other visual tasks. The goal of object detection is to find all
the objects of interest in the image and determine their lo-
cation and size. Mainstream detectors include FasterRCN-
N [45], CascadeRCNN [4], RetinaNet [34], RepPoints [54],
FoveaBox [27], FSAF [60], ATSS [56]. Semantic segmen-
tation is pixel-level classification, which understands im-
ages from pixels. Popular segmentors include PSPNet [58],
PSANet [59], CCNet [19], DANet [13], DeepLabv3+ [6],
FCN [36], GCNet [5]. In both detection and segmentation,
the choice of head is crucial. Different heads have varying
sensitivity to hyper-parameters, e.g., learning rate, so it is
challenging to comprehensively consider the full configura-
tions to optimize.

3. Attention & Memory Enhancement in HPO
3.1. Hyper-Parameter Optimization

Before introducing our approach, we first briefly review
HPO. In HPO, both parameters ω and hyper-parameters h
need to be optimized, with the non-differentiable nested re-
lationship between them. Therefore, HPO is formulated as
a bi-level optimization problem:

min
h
L(h, ω∗,Dval)

s.t. fh(ω
∗)← fh(ω

0,Dtrain), h ∈ H.
(1)

where L is the objective function, ω0 and ω∗ are the initial
and final parameters of this network, Dtrain and Dval are
the training and validation dataset, h is one hyper-parameter
configuration sampled from the search space H, and fh is
the neural network with hyper-parameter set to h. The sim-
plest Grid Search is to train networks with the complete set
of hyper-parameters to converge, and then select the opti-
mal. Due to the low efficiency, how to accelerate the search
process becomes the most significant issue in HPO. The
mainstream research direction is to improve the two com-
ponents of HPO, trial scheduler and configuration searcher.
Trial Scheduler. Trial scheduler is in charge of the alloca-
tion of resources (see Fig. 2(a,b)). It is capable of judging
whether to terminate or start trials according to the corre-
sponding performance. For example, ASHA [32] divides
the training process of each trial into multiple rungs t, which
is adopted by our AME:

{ωt|t = 0, 1, · · · , blogη (R/r)c} (2)

whereR and r are the maximum and minimum budget (e.g.,
epoch or iteration) for one trial, and η is the reduction factor.

As long as the evaluation indicator of one trial in a certain
rung t is greater than the dynamically updated threshold,
this trial is promoted to the next rung for training. Besides,
trials with poor performance are required to be terminated
in time. Therefore, the total number of trials starts from n
and gradually declines in the ratio of 1/η in each rung.
Configuration Searcher. Configuration searcher chooses
better hyper-parameter configurations for network training
(see Fig. 2(a,c)) by building a sampling function g(·):

hnew = g({ĥi|i =1, 2, · · · , k}),

ĥi ∈ H × R1, hnew ∈ H.
(3)

where hnew is the new hyper-parameter configuration to be
evaluated, ĥi refers to the configuration with evaluation in-
dicator, and k is the number of input configurations. The
suggestion of new configurations is a notoriously hard prob-
lem, mainly owing to the following two difficulties:
• The search space H is huge, and relationships between

the configurations {ĥi} are difficult to be captured.
• The evaluation is time-consuming, i.e., the evaluated con-

figurations {ĥi} are difficult to be obtained.
Although random search is fast, it is unstable because
it ignores these difficulties. Bayesian-optimization-based
algorithms require prior strong distribution assumptions.
Evolutionary-algorithm-based and gradient-based method-
s are only able to deal with specific hyper-parameters.
Reinforced HPO. The recommendations for selecting
hyper-parameters are able to be modeled under the frame-
work of reinforcement learning, since DRL is naturally
suitable for decision-making without explicit annotations.
Searcher is equivalent to the agent, whose task is to learn
a series of state-to-action mappings (see Eq. (3)) based on
the reward. State (S) refers to the combination of evaluated
configurations {ĥi}, action (A) refers to the new configu-
ration hnew that the agent picks from search space, and re-
ward (R) is the evaluation of action. However, Reinforced
HPO is still subject to the two difficulties that HPO has.
Our Attention and Memory Enhancement (AME) captures
the relationships with the help of attentive sampling, and
applies bootstrap to solve the problem of lack of samples.

3.2. AME via Attentive Sampling

Fully Connected network (FC) with weak learning abili-
ty is not able to generalize the relationship between config-
urations well. Therefore, multi-head attention and memory
mechanism are introduced to enhance training through at-
tentive sampling. Intuitively, there is uniform continuity in
the mapping between the search space and the correspond-
ing evaluation indicators, i.e., the configurations around
the configuration with high performance tend to be high-
performance. For example, PBT [22] applies small distur-
bances generated by random noise to find a better config-
uration. The application of multi-head attention predicts

482



(b) Trial Scheduler

Rung

0th

Hyper-parameter Configurations Performance (low-high)

1th

2th

3th

Termination

Trial 1

Termination

Trial 2

Termination

Trial 3 Trial 4

(c) Configuration Searcher

Actor

New Memory

Memory

Critic

E
m

b
ed

d
in

g

Layer Norm

Gating Layer

Layer Norm

Gating Layer

Multi-Head 

Attention

Feed Forward

N×

(a) Overall Structure

New 

Conf.

Trial Scheduler Configuration SearcherTrial Queue

Suggest New Conf.

Provide Evaluated Conf.

Evaluated 

Conf.

Add Trial with New Conf.

Terminate Trial

Report Evaluation Results

Configuration Encoder

Figure 2. Pipeline of our AME. (a) Overall Structure. Trial Scheduler is responsible for the start, termination and suspension of trials, and
collects the evaluation results. Configuration Searcher is in charge of proposing new configurations (conf.). (b) Trial Scheduler. This is an
example of vanilla ASHA. A total of n trials are required to be run on limited hardware devices in turn. Every trial is evaluated in each
rung, with the low-performance ones terminated. In the sequential mode, the selection of candidates in each rung does not start until the
training and evaluation of all trials are completed; in the parallel mode, they are carried out simultaneously. (c) Configuration Searcher.
Gated Transformer-XL (GTrXL) is employed to model the relationship between different configurations for attentive sampling. Multi-head
attention and memory mechanism capture the short-term and long-term relationships between evaluated configurations, respectively. After
each new configuration is evaluated, configuration searcher will be trained, i.e., it is a process of online training, which is parallel to the
training of trials. With continuous training, searcher gives more and more reliable suggestions.

the new configuration by weighting the evaluated config-
uration. The weighting of configurations is able to gener-
ate new configurations by assigning higher weights to high-
performance configurations, and explore the search space
through other configurations at the same time. The intro-
duction of the memory mechanism allows current predic-
tion to influence subsequent ones, so that getting the sug-
gestion of new configuration not limited by current input.
Network Structure. In order to capture the relation-
ships between evaluated configurations and better choose
new configurations, Gated Transformer-XL (GTrXL) [42]
is chosen as the searcher. GTrXL stabilizes training with a
reordering of the layer normalization coupled with the ad-
dition of a gating mechanism. Under this new architecture
(Fig. 2(c)), the searcher is in a position to simultaneously
capture both the long-term and short-term relationships Yl
by memory mechanism and multi-head attention to achieve
attentive sampling hnew = gag({ĥi}) (Eq. (3)):

X0 = Concat({Embedding(ĥi)|i = 1, 2, · · · , k}),
Xc
l = LN(Xl), X

cm
l = Concat(Xc

l , X
m
l ),

Yl =MHAttention(Xc
lW

Q, Xcm
l WK , Xcm

l WV ),

Xl+1 = GRUGating(Yl, Xl), l = 0, 1, · · · , N − 1,

hnew = Actor(XN ), A = Critic(XN ).

(4)

where N refers to the total number of multi-head attention
blocks, WQ, WK , WV are learnable matrixes, Xm

l is the
memory matrix, and A is the advantage value administered
to assist the training of actor. Transformer-XL [8] intro-
duces the memory mechanism to give configuration encoder

the ability to capture long-term dependence, which is sim-
ilar to the hidden state in RNN. The initial value of the
memory matrix Xm

l is zero, and it is updated in the form
of Xm

l = Xl+1. The adoption of gating layer is for stabi-
lizing the training of DRL [42]. Actor-Critic architecture is
performed for decision making.
Feature Extraction. The features of discrete hyper-
parameters are extracted as one-hot vectors, while contin-
uous hyper-parameters need to be discretized first, and then
represented by one-hot vectors. The features extracted from
different kinds of hyper-parameters are concatenated to-
gether to form hyper-parameter configurations h. In addi-
tion, indicators to measure the performance of models (e.g.,
Accuracy, mIoU, mAP. Normalized to [0, 1]) need to be
added to the features as the last dimension. Each time a
fixed number of evaluated configurations ĥ are input for de-
cision making. After input to the Embedding layer, they are
converted from discrete vectors to continuous ones.

3.3. Optimization by Bootstrap

Deep Reinforcement Learning requires a large number
of training samples to drive. Since the training of each trial
is time-consuming and the feedback of evaluation results is
not timely, there is a lack of samples for training, which is
the reason why DRL is rarely adopted in HPO. It is ineffi-
cient to learn one-to-one mapping between images and con-
figurations by imitating NAS [61], which is limited by the
efficiency of sampling. Learning the many-to-one mapping
from modeling the relationship between different configura-
tions to propose suggestions is another more efficient way

483



(see Eq. (3)). The combination of multiple configurations
makes the application of bootstrap natural and reasonable.
Bootstrap and Random Strategy. Bootstrap is a uniform
sampling with replacement from the given dataset, which
generates enough configurations for training from a small
number of evaluated configurations. Since training the a-
gent is inseparable from a lot of trials-and-errors, bootstrap
increases the number of attempts and better overcomes the
high variance problem in DRL [46]. On the other hand, dur-
ing the training, generating a new configuration by agent
does not return the validation in time because the new con-
figuration may not have been evaluated. Random strategy
is used to solve this problem. As the name implies, the ac-
tion is not given by the agent network, but is selected from
the evaluated configurations randomly, just like any config-
uration in the state. The number of samples is increased by
bootstrap and random strategy on another level.
Reward Function. The design of reward is related to the
evaluation results of each trial. Evaluation indicators of the
same trial in different rungs are unequal, so it may not be
appropriate to directly employ indicators as reward. The d-
ifference between evaluation indicators is performed to con-
struct reward function:

R = clip(PA −max{Ps|s ∈ S},−M,M). (5)

where PA is the evaluation indicator (Normalized to [0,
100]) to the new configuration in action, max{Ps|s ∈ S} is
the maximum evaluation indicator to the configurations in
state, and M is a constant threshold to prevent reward from
being too large or too small. Note that the configurations
disseminated to combine (S, A) are sampled from the eval-
uated configurations set in the same rung. Reward function
encourages the agent to actively generate new configura-
tions that exceed all input configurations in performance,
and inhibits generation of low-performance ones.
Online Training. Analogous to Bayesian Optimization,
Reinforced HPO can also be modeled as a process of on-
line training. Once trial scheduler gets the evaluation re-
sults, configuration searcher updates its parameters based
on the new evaluated configurations. It is worth mentioning
that the suggestions of the new configuration are able to be
carried out at the same time as the training of agent. In or-
der to strike a balance between exploration and exploitation,
the choice of configurations is random during inference and
training. The way of taking the top-k to predict leads to in-
sufficient exploration. During training, the loss function of
the agent Lag adopts the form of PPO [46]:

Lag =
1

N

N∑
i=1

[min(riAi, clip(ri, 1− ε, 1 + ε)Ai)] . (6)

where ri =
π(Ai|Si)
πold(Ai|Si) andAi = A(Si,Ai), ε is a constant,

and Ai is the advantage value, calculated by the critic. PPO

Algorithm 1 Attention and Memory Enhancement (AME)

Input: Configuration Search Space H, Evaluated Config-
uration Set HE , Unevaluated Configuration Set HU ,
Configuration with Evaluation Indicator ĥ.

Output: New Configuration h
1: function CONFSEARCHER(·) // Reward R, Action A,

State S, The number of input conf. k, A constant ρ.
2: if Need a new configuration then
3: if |HE | ≤ ρk (ρ ≥ 1) then
4: Randomly sample h fromH. Add h toHU .
5: else
6: Randomly sample ĥ1, ĥ2, · · · , ĥk fromHE .
7: h = gag({ĥ1, ĥ2, · · · , ĥk}). Add h toHU .
8: end if
9: else if Get an evaluated conf. & |HE | > ρk then

10: Randomly sample ĥ0, ĥ1, · · · , ĥk fromHE .
11: CalculateR with h0 as A, ĥ1, ĥ2, · · · , ĥk as S.
12: Training Agent with loss Lag .
13: end if
14: end function

hopes to ensure the monotonic improvement of strategy π
after the network parameters are updated with a few batch-
es, while keeping the difference in the probability distribu-
tion of the old and new strategies within a certain range.

3.4. Implementation Details

AME is an asynchronous algorithm that combines Deep
Reinforcement Learning with ASHA (see Alg. 1). For each
trial, trial scheduler sends it to different trial queues accord-
ing to its current stage. If the hardware device is idle, trial
scheduler will select a configuration from the unevaluated
configuration set HU to run. When the trial has been e-
valuated, trial scheduler decides whether to terminate it ac-
cording to evaluation result. There is no need to wait for
all trials to end training and evaluation in the current rung
to start training in the next rung, i.e., training and evalu-
ation in different rungs are parallel. As for configuration
searcher, generating a new configuration is the inference of
agent, and the acquisition of each evaluated configuration
promotes online model training. If the number of evaluated
samples is insufficient, a random strategy will be adopted
to generate a new configuration instead of model selection.
During the training, bootstrap and random strategy are ap-
plied to solve the problem of insufficient training samples.
Training samples are not limited to those in the first rung,
as long as new configurations are still needed. Since reward
function (see Eq. (5)) is based on the difference of two indi-
cators, samples obtained in different rungs are enabled to be
performed to train the same agent. Note that configurations
in each combination must be sampled from the same rung.

484



Vision Task Head Learning Rate Backbone Batch Size Optimizer Weight Decay

Classification - {0.001, [0.005:0.005:0.1]} ResNet18, 34, 50 [8:4:64]
SGD,
Adam,

Adamax,
Adagrad,
Adadelta

Detection
CascadeRCNN [4], FoveaBox [27], RetinaNet [34],

FasterRCNN [45], RepPoints [54], ATSS [56], FSAF [60]
[0.001:0.001:0.025] ResNet50 [15],

ResNeXt50 [52],
ResNeSt50 [55]

[4:2:12]
{1e-5, [0:5e-5:0.001]}

Segmentation
GCNet [5], DeepLabv3+ [6], DANet [13],

CCNet [19], FCN [36], PSPNet [58], PSANet [59]
[0.001:0.001:0.020]

Table 1. Search Space. The continuous hyper-parameters are discretized into the form of [start:step:end]. In the 100, 000-level search
space, finding the optimal hyper-parameter configuration under limited resources is an extremely difficult problem.

Method
Task

CIFAR-10 (Cls.) CIFAR-100 (Cls.) Stanford Cars (Cls.) VOC (Det.) VOC (Seg.)

Search Time Retrain Search Time Retrain Search Time Retrain Search Time Retrain Search Time Retrain
(Acc) (day) (Acc) (Acc) (day) (Acc) (Acc) (day) (Acc) (mAP) (day) (mAP) (mIoU) (day) (mIoU)

PBT [22] 93.5 ± 0.6 1.8 94.3 75.1 ± 0.4 1.8 75.6 87.3 ± 0.5 2.9 88.1 79.1 ± 0.5 4.4 79.6 74.7 ± 0.4 3.1 75.3
PB2 [45] 93.8 ± 0.4 2.1 94.3 75.6 ± 0.3 2.0 76.1 87.4 ± 0.4 3.2 87.8 79.4 ± 0.3 4.7 79.9 74.9 ± 0.3 3.2 75.2
BayesOpt [43] 94.1 ± 0.5 1.0 94.8 75.5 ± 0.3 1.1 75.8 87.0 ± 0.4 1.6 87.6 79.3 ± 0.4 2.5 79.7 75.2 ± 0.5 1.5 75.9
Dragonfly [24] 94.5 ± 0.4 1.4 95.1 76.8 ± 0.4 1.4 77.4 88.1 ± 0.4 2.6 88.5 80.1 ± 0.3 3.5 80.5 75.7 ± 0.3 2.1 76.2
ZOOpt [36] 94.6 ± 0.3 1.1 95.1 76.5 ± 0.2 1.2 76.8 88.3 ± 0.3 1.8 88.7 80.5 ± 0.3 2.6 81.0 75.9 ± 0.3 1.7 76.3

BO-TPE [2] 93.0 ± 0.7 1.1 93.6 75.4 ± 0.5 1.1 75.9 87.0 ± 0.6 2.1 87.6 79.6 ± 0.6 2.7 80.2 74.7 ± 0.5 1.7 75.2
SMAC [20] 93.3 ± 0.6 1.2 94.0 75.8 ± 0.4 1.2 76.2 87.3 ± 0.5 2.2 88.0 79.8 ± 0.5 2.7 80.3 75.1 ± 0.4 1.8 75.8
Hyperband (HB) [31] 93.2 ± 0.9 2.4 94.2 74.4 ± 1.0 2.4 75.3 86.4 ± 0.9 2.8 87.5 80.2 ± 0.8 4.0 81.2 75.0 ± 0.7 3.3 75.9
BOHB [12] 93.1 ± 0.8 2.3 94.0 76.6 ± 0.5 2.3 77.3 87.1 ± 0.7 2.7 87.9 80.4 ± 0.7 4.2 80.9 75.2 ± 0.6 3.4 75.8
ASHA [32] 93.8 ± 1.0 0.9 94.5 75.5 ± 0.8 1.0 76.3 87.7 ± 0.7 1.8 88.5 79.9 ± 1.0 2.4 80.8 75.5 ± 0.8 1.5 76.5
AME (Ours) 95.5 ± 0.3 1.1 95.9 77.8 ± 0.2 1.1 78.1 89.5 ± 0.3 2.0 89.9 81.2 ± 0.3 2.6 81.8 76.7 ± 0.3 1.6 77.1

Table 2. Performance comparison of different searchers. Since PBT, PB2, BayesOpt, Dragonfly, ZOOpt are not able to optimize discrete
hyper-parameters (e.g., head, backbone, optimizer and batch size), only the continuous selections of learning rate and weight decay are
considered under the default setting of other hyper-parameters (the best configuration given by AME). The average performance and time
of search results are shown in Search and Time, respectively. The results after retraining with the optimal hyper-parameters are shown in
Retrain. The experiments are set on three tasks: image classification (Cls.), object detection (Det.) and semantic segmentation (Seg.).

4. Experiments

4.1. Datasets and Settings

Datasets. In order to verify the effectiveness of AME, the
experiments of image classification are set up on CIFAR-
10/100 [29] and Standford Cars [28], with the average Ac-
curacy (Acc Top-1) as the evaluation indicator. CIFAR-
10/100 consists of 50,000 training images and 10,000 test
images in 10/100 classes, and Standford Cars contains
8,144 training images and 8,041 test images in 196 classes.
The experiments of object detection and semantic segmen-
tation are set up on PASCAL VOC [10, 11]. As for detec-
tion, VOC0712 consists of 16,551 training images, 4,952
test images in 20 classes, with the mean Average Precision
(mAP) as the evaluation indicator. As for segmentation,
VOC2012+Aug consists of 13,495 training images, 1,449
test images in 20 classes, with the mean Intersection over
Union (mIoU) as the evaluation indicator.
Settings. Our experiments are implemented based on Ray
Tune [33], which is a python library for hyper-parameter
tuning. Eight Nvidia Tesla V100 GPUs are used in experi-
ments. All experimental results are averaged after repeating
several times. For classification, the maximum number of
configurations n is set to 500, and the maximum budget R
is set to 200 epoches in Sec. 3.1 and Eq. (2). For detection,
n is set to 80 and R is set to 20. For segmentation, n is set
to 80 and R is set to 36. Besides, reduction factor η is set to
2 in Eq. (2), the minimum budget r is set to 1 epoch in E-
q. (2), the number of input configurations k is set to 10 in E-
q. (3) and Alg. 1, the number of multi-head attention blocks

N is set to 2 in Fig. 2 and Eq. (4), M is set to 5 in Eq. (5),
ε is set to 0.2 in Eq. (6), and ρ is set to 1.5 in Alg. 1. As
shown in Tab. 1, there are five kinds of hyper-parameters in
the search space of classification: backbone, learning rate,
optimizer type, weight decay and batch size. The hyper-
parameter that is required to be searched in detection and
segmentation also includes the head of the network.

4.2. Performance Analysis

The foremost novelties of this paper are to propose a new
type of configuration searcher and an efficient training strat-
egy for it. For fair comparison, the performances of various
types of searchers are shown in Tab. 2, Fig. 3 and Fig. 4.
Adaptability to Diverse Tasks. As revealed by Tab. 2,
AME shows better performance than other HPO algorithm-
s in all three vision tasks. Specifically, the performances of
AME reached 95.5%, 77.8%, 89.5% in image classification,
81.2% in object detection, 76.7% in semantic segmentation,
which are significantly higher than other HPO algorithm-
s. Compared with object detection and semantic segmen-
tation, gradient back-propagation in the training process of
classification is more stable attributable to the simpler opti-
mization goal. This also indicates that the performances of
networks in detection and segmentation are more sensitive
to the choice of hyper-parameters during the training pro-
cess. The improvement brought by our algorithm in detec-
tion and segmentation does not exceed that in classification.
The reason lies in that the value of n in detection and seg-
mentation is smaller, which will be analyzed in Sec. 4.3. In
short, our algorithm is in a position to be effectively applied

485



0 5k
79

97

1k 2k 3k 4k

82

85

88

91

94

round of performance reports

va
lid

at
io

n
to

p-
1

ac
cu

ra
cy

(a) CIFAR-10 (Cls.)

HB
BOHB
ASHA
AME

0 5k
61

79

1k 2k 3k 4k

64

67

70

73

76

round of performance reports
va

lid
at

io
n

to
p-

1
ac

cu
ra

cy

(b) CIFAR-100 (Cls.)

HB
BOHB
ASHA
AME

0 400
67

82

100 200 300

70

73

76

79

round of performance reports

va
lid

at
io

n
m

A
P

(c) VOC (Det.)

HB
BOHB
ASHA
AME

0 800
58

79

200 400 600

61

64

67

70

73

76

round of performance reports

va
lid

at
io

n
m

Io
U

(d) VOC (Seg.)

HB
BOHB
ASHA
AME

Figure 3. Performance comparison of four algorithms in three vision tasks. The abscissa represents time-related round of performance
reports, and the ordinate represents performance. Total number of rounds is simultaneously affected by the maximum number of configu-
rations to be evaluated n and the maximum number of rungs blogη (R/r)c (see Eq. (2)).

to visual tasks with various sensitivity levels.
Comparison to Other Algorithms. Although random-
search-based methods, e.g., ASHA, are fast, they are un-
stable (Tab. 2). They have 2.3% (Hyperband) and 1.7%
(ASHA) lower in accuracy than AME on classification tasks
(CIFAR-10). The reason for the poor performance lies in
the fact that the relationship between different configura-
tions is not considered when suggestions of new configu-
rations are given. As a representative of Bayesian Opti-
mization, BOHB (93.1%, 76.6%, 87.1%, 80.4%, 75.2%)
only achieves similar performance with random methods,
such as Hyperband (93.2%, 74.4%, 86.4%, 80.2%, 75.0%),
even if the relationship between configurations is consid-
ered. This situation is because of the strong assumptions in
Bayesian optimization that have restrictions on the search s-
pace. Evolutionary algorithms, including PBT and PB2, are
2.0% and 1.7% lower than AME in accuracy (CIFAR-10),
even if the search space is limited, i.e., only learning rate
and weight decay are required to be searched.
Efficiency. The performance comparison curves of four
methods are plotted in Fig. 3. In terms of speed, the par-
allel methods (ASHA, AME) are faster than the sequential
ones (BOHB, Hyperband). It can be observed that random-
search-based ASHA is the fastest in three tasks, followed by
AME. This fact proves that the use of bootstrap and random
strategy is able to effectively accelerate the training process
of reinforcement learning. Moreover, the curve of ASHA
fluctuates and the performance is unstable (see, Fig. 3(d)),
so ASHA may not be able to search for the optimal config-
uration. In AME, the introduction of attentive sampling has
brought a stable performance improvement.
Average Quality of Configurations. The performance of
the four algorithms at each rung is visualized in Fig. 4. In
order to better focus on the performance difference, a rela-
tive form is adopted instead of an absolute form to visualize.
It can be seen that the configurations selected by AME have
the relatively highest average performance among all rungs.
This shows that our proposed transformer-structure agent is
capable of locating the high-performance hyper-parameter
configurations in a huge search space, by learning the re-

-3.5 

-2.5 

-1.5 

-0.5 

0.5 

1.5 

2.5 

3.5 

0 / 1 1 / 2 2 / 4 3 / 8 4 / 16 5 / 32 6 / 64 7 / 128

Rung / Epoch

AME

ASHA

BOHB

HB

Average

-3.0 

-2.0 

-1.0 

0.0 

1.0 

2.0 

3.0 

0 / 1 1 / 2 2 / 4 3 / 8 4 / 16 5 / 32

(a) CIFAR-10 (Cls.)

(b) VOC (Det.) (c) VOC (Seg.)
P

er
fo

rm
an

ce

-2.0 

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

0 / 1 1 / 2 2 / 4 3 / 8 4 / 16

Figure 4. Performance comparison of four algorithms in each
rung. Each bar means the average performance of all trials of the
corresponding algorithm in the current rung. The zero line refers
to the average performance of the four algorithms. The bar charts
represent the difference of each algorithm relative to the average.

lationship between configurations. It is worth mentioning
that the earlier rung during the training process, the greater
the advantage of AME, which means that our AME is con-
ducive to the rapid screening of high-performance configu-
rations in the early stage.

4.3. Ablation Study

Several ablation experiments are set up on image classi-
fication for in-depth analysis of AME, as shown in Fig. 5.
Components of Configuration Searcher. In order to veri-
fy the effectiveness of GTrXL in our AME, the components
of the configuration searcher are disassembled for experi-
ments, as can be seen in Tab. 3. Experiments prove that the
attention module and the memory module improve the accu-
racy rate of 0.8% and 0.7%, respectively. The experimental
results demonstrate that capturing long-term and short-term
relationships together facilitates searcher to provide more
high-performance configurations for trial scheduler.
Different Configuration Searcher. As shown in Tab. 4, in
order to remove the influence of the scheduler, the trained
searchers (GTrXL in AME, TPE in BOHB) are taken out
separately for comparative experiments with the same in-
put. Although random search does not depend on the input,

486



Components of Searcher Scheduler C10 C100 Cars
Naive FC Attention Memory

3 7 7 ASHA 94.1 76.3 87.9
3 3 7 ASHA 95.1 76.9 88.7
3 3 3 ASHA 95.5 77.8 89.5
3 3 3 HB 95.4 77.4 89.3

Table 3. Experiments on model structure of AME. C10: CIFAR-
10. C100: CIFAR-100. Cars: Standford Cars. HB: Hyperband.

Different Searchers C10 C100 Cars

Input 76.8 60.6 71.5

GTrXL (AME) 87.2 70.5 81.4
TPE (BOHB) 85.9 68.0 79.7
Random 76.1 60.9 71.0

Table 4. Experiments on different searchers with the same input.

Clip Calculation C10 C100 Cars

7 Max 95.2 77.7 89.3
3 Max 95.5 77.8 89.5
3 Mean 94.4 76.8 88.7

Table 5. Experiments on reward function in AME.

Number of Input Conf. k = 5 k = 10 k = 20

CIFAR-10 95.3 95.5 94.9
CIFAR-100 77.2 77.8 77.0
Standford Cars 88.9 89.5 89.0

Table 6. Experiments on number of input configurations in AME.

it is also selected as a benchmark. In the average results of
multiple experiments, it can be found that both AME and
BOHB can effectively and stably select better new configu-
rations, and AME is higher than BOHB in accuracy.
Different Trial Scheduler. The new searcher proposed in
this paper can not only be combined with ASHA, but also
with other schedulers (see Tab. 3), e.g., Hyperband. Hyper-
band is a two-layer loop, one layer is to choose different
combinations of (n, r), and the other is to perform SHA
for each combination. As a sequential method, AME (Hy-
perband) also achieves comparable performance to AME
(ASHA), but the speed is not as fast as AME (ASHA).
Indicator Calculation in Reward Function. The de-
sign of the reward function in Eq. (5) is crucial. There-
fore, an ablation experiment on the indicator calculation of
{Ps|s ∈ S} is set, revealed by Tab. 5. Experimental re-
sults show that using the maximum is better than the mean
of 1.0% accuracy, i.e., if the reward function is designed to
be more demanding, it has more accurate guidance on cap-
turing the relationship for attentive sampling. The strong
restriction with the maximum as threshold on reward func-
tion suppresses the negative effects of poor initialization.
Whether to Clip in Reward Function. Although the ap-
plication of bootstrap and random strategy helps the agent
train efficiently, it also makes the training samples noisy.
The setting of M in Eq. (5) is to prevent reward from being
too large or too small from negatively affecting the training.
The experimental results in Tab. 5 tell us that such trunca-
tion is useful. The clip operation in reward function brings
performance improvement of 0.2%.
Number of Input Configurations k. As shown in Tab. 6,
experiments are set up to determine the optimal number of

Total Number of Conf. n = 500 n = 200 n = 80

Hyperband 93.2 93.1 93.0
BOHB 93.1 93.4 93.2
ASHA 93.8 93.8 93.9
AME (Ours) 95.5 95.4 94.3

Table 7. Experiments on total number of configurations (C10).

0 3k
79

97

1k 2k

82

85

88

91

94

round of performance reports

va
lid

at
io

n
to

p-
1

ac
cu

ra
cy (a)

Base

Naive FC

Attention

With HB

No Clip

Mean

0 3k
79

97

1k 2k

82

85

88

91

94

round of performance reports

va
lid

at
io

n
to

p-
1

ac
cu

ra
cy (b)

Base

k=5

k=20

n=80

n=200

Figure 5. Performance comparison in ablation studies of AME
(C10). (a) Results in Tab. 3, Tab. 5. (b) Results in Tab. 6, Tab. 7.
Base: AME algorithm with default settings, described in Sec. 4.1.

input configurations for the agent. Experiments prove that
the value of k is set to 10 as the most appropriate. Both too
few and too many input configurations result in a decrease
in performance. The appropriate number of configurations
allows the agent to accurately achieve attentive sampling.
Total Number of Configurations n. Since the training
of searcher in AME is modeled as online learning, the to-
tal number of configurations n has a huge impact on it and
directly determines whether the training of searchers is suf-
ficient. The results in Tab. 7 show that when n is reduced,
the performance of AME drops sharply, and they eventual-
ly degenerate into random search. BOHB, Hyperband and
ASHA are much less sensitive to changes in n than our al-
gorithm. This also explains why the performance improve-
ments on detection and segmentation of AME are lower
than that on classification, revealed by Fig. 3 and Tab. 2.

5. Conclusions
In this paper, an innovative parallel and asynchronous H-

PO model AME is proposed under the framework of deep
reinforcement learning, enhancing the ability to capture
both the short-term and long-term relationships to achieve
attentive sampling. Bootstrap and random strategy are ap-
plied to solve the problem of an insufficient number of sam-
ples, which enable the training of searcher to be carried out
efficiently. Experiments prove the efficiency of AME on
three vision tasks, including classification, detection, and
segmentation. Future work will focus on extending AME
to more visual and non-visual tasks.

Acknowledgments
This research was supported by the National Key Re-

search and Development Program of China under Grant No.
2018AAA0100400, and the National Natural Science Foun-
dation of China under Grants 62071466, 62076242, and
61976208.

487



References
[1] A.G. Baydin, R. Cornish, D.M. Rubio, M. Schmidt, and F.

Wood. Online learning rate adaptation with hypergradient
descent. ICLR, 2018. 2

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. In NeurIPS, 2011. 2

[3] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. JMLR, 13(2), 2012. 2

[4] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high
quality object detection. In CVPR, 2018. 3, 6

[5] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu. Gcnet: Non-local
networks meet squeeze-excitation networks and beyond. In
ICCV, 2019. 3, 6

[6] L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In ECCV, 2018. 3, 6

[7] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q.V. Le.
Autoaugment: Learning augmentation strategies from data.
In CVPR, 2019. 2

[8] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q.V. Le, and R.
Salakhutdinov. Transformer-xl: Attentive language model-
s beyond a fixed-length context. In ACL, 2019. 4

[9] T. Domhan, J.T. Springenberg, and F. Hutter. Speeding up
automatic hyperparameter optimization of deep neural net-
works by extrapolation of learning curves. In IJCAI, 2015.
2

[10] M. Everingham, SM.A. Eslami, L. Van Gool, C.KI.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. IJCV, 111(1):98–
136, 2015. 6

[11] M. Everingham, L. Van Gool, C.KI. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 88(2):303–338, 2010. 6

[12] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and effi-
cient hyperparameter optimization at scale. In ICML, 2018.
2

[13] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu. Dual
attention network for scene segmentation. In CVPR, 2019. 3,
6

[14] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro,
and D. Sculley. Google vizier: A service for black-box opti-
mization. In SIGKDD, 2017. 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 3, 6

[16] Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han. Amc:
Automl for model compression and acceleration on mobile
devices. In ECCV, 2018. 2

[17] Y.Q. Hu, Y. Yu, W.W. Tu, Q. Yang, Y. Chen, and W. Dai.
Multi-fidelity automatic hyper-parameter tuning via transfer
series expansion. In AAAI, 2019. 2

[18] Y. Huang, Y. Li, Z. Li, and Z. Zhang. An asymptotically op-
timal multi-armed bandit algorithm and hyperparameter op-
timization. arXiv preprint arXiv:2007.05670, 2020. 2

[19] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W.
Liu. Ccnet: Criss-cross attention for semantic segmentation.
In ICCV, 2019. 3, 6

[20] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential
model-based optimization for general algorithm configura-
tion. In LION, 2011. 2

[21] F. Itano, M.A.A. de Sousa, and E. Del-Moral-Hernandez.
Extending mlp ann hyper-parameters optimization by using
genetic algorithm. In IJCNN, 2018. 2

[22] M. Jaderberg, V. Dalibard, S. Osindero, W.M. Czarnecki, J.
Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Si-
monyan, et al. Population based training of neural networks.
arXiv preprint arXiv:1711.09846, 2017. 2, 3

[23] K. Jamieson and A. Talwalkar. Non-stochastic best arm i-
dentification and hyperparameter optimization. In AISTATS,
2016. 2

[24] K. Kandasamy, K.R. Vysyaraju, W. Neiswanger, B. Paria,
C.R. Collins, J. Schneider, B. Poczos, and E.P. Xing. Tuning
hyperparameters without grad students: Scalable and robust
bayesian optimisation with dragonfly. JMLR, 21(81):1–27,
2020. 2

[25] Z. Karnin, T. Koren, and O. Somekh. Almost optimal explo-
ration in multi-armed bandits. In ICML, 2013. 2

[26] A. Klein, S. Falkner, J.T. Springenberg, and F. Hutter. Learn-
ing curve prediction with bayesian neural networks. In ICLR,
2017. 2

[27] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi. Fove-
abox: Beyound anchor-based object detection. IEEE TIP,
29:7389–7398, 2020. 3, 6

[28] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object repre-
sentations for fine-grained categorization. In ICCVW, 2013.
6

[29] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of
features from tiny images. Technical Report, 2009. 6

[30] H.C.L. Law, P. Zhao, L. Chan, J. Huang, and D. Sejdi-
novic. Hyperparameter learning via distributional transfer.
In NeurIPS, 2019. 2

[31] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A.
Talwalkar. Hyperband: A novel bandit-based approach to hy-
perparameter optimization. JMLR, 18(1):6765–6816, 2017.
2

[32] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt,
B. Recht, and A. Talwalkar. A system for massively parallel
hyperparameter tuning. In MLSys, 2020. 2, 3

[33] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J.E. Gonzalez,
and I. Stoica. Tune: A research platform for distributed mod-
el selection and training. In ICMLW, 2018. 6

[34] T.Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal
loss for dense object detection. In ICCV, 2017. 3, 6

[35] S. Liu, X. Sun, P.J. Ramadge, and R.P. Adams. Task-agnostic
amortized inference of gaussian process hyperparameters. In
NeurIPS, 2020. 2

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 3, 6

[37] P.R. Lorenzo, J. Nalepa, M. Kawulok, L.S. Ramos, and J.R.
Pastor. Particle swarm optimization for hyper-parameter se-
lection in deep neural networks. In GECCO, 2017. 2

[38] J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions
of hyperparameters by implicit differentiation. In AISTATS,
2020. 2

488



[39] W. Ma, T. Tian, H. Xu, Y. Huang, and Z. Li. Aabo: Adaptive
anchor box optimization for object detection via bayesian
sub-sampling. In ECCV, 2020. 2

[40] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based
hyperparameter optimization through reversible learning. In
ICML, 2015. 2

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness,
M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015. 2

[42] E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S.
Jayakumar, M. Jaderberg, R.L. Kaufman, A. Clark, S. Noury,
et al. Stabilizing transformers for reinforcement learning. In
ICML, 2020. 2, 4

[43] J. Parker-Holder, V. Nguyen, and S.J. Roberts. Provably ef-
ficient online hyperparameter optimization with population-
based bandits. In NeurIPS, 2020. 2

[44] F. Pedregosa. Hyperparameter optimization with approxi-
mate gradient. In ICML, 2016. 2

[45] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: toward-
s real-time object detection with region proposal networks.
IEEE TPAMI, 39(6):1137–1149, 2016. 3, 6

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017. 2, 5

[47] A. Shaban, C.A. Cheng, N. Hatch, and B. Boots. Truncat-
ed back-propagation for bilevel optimization. In AISTATS,
2019. 2

[48] J. Snoek, H. Larochelle, and R.P. Adams. Practical bayesian
optimization of machine learning algorithms. In NeurIPS,
2012. 2

[49] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger. Gaus-
sian process optimization in the bandit setting: No regret and
experimental design. In ICML, 2010. 2

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A.N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. In NeurIPS, 2017. 2

[51] CF.J. Wu and M.S. Hamada. Experiments: planning, analy-
sis, and optimization, volume 552. John Wiley & Sons, 2011.
2

[52] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In CVPR,
2017. 3, 6

[53] L. Yang and A. Shami. On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neuro-
computing, 415:295–316, 2020. 1

[54] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin. Reppoints:
Point set representation for object detection. In ICCV, 2019.
3, 6

[55] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y.
Sun, T. He, J. Mueller, R. Manmatha, et al. Resnest: Split-
attention networks. arXiv preprint arXiv:2004.08955, 2020.
3, 6

[56] S. Zhang, C. Chi, Y. Yao, Z. Lei, and S.Z. Li. Bridging
the gap between anchor-based and anchor-free detection via
adaptive training sample selection. In CVPR, 2020. 3, 6

[57] X. Zhang, X. Chen, L. Yao, C. Ge, and M. Dong. Deep
neural network hyperparameter optimization with orthogo-
nal array tuning. In ICONIP, 2019. 2

[58] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 3, 6

[59] H. Zhao, Y. Zhang, S. Liu, J. Shi, C.C. Loy, D. Lin, and J.
Jia. Psanet: Point-wise spatial attention network for scene
parsing. In ECCV, 2018. 3, 6

[60] C. Zhu, Y. He, and M. Savvides. Feature selective anchor-
free module for single-shot object detection. In CVPR, 2019.
3, 6

[61] B. Zoph and Q.V. Le. Neural architecture search with rein-
forcement learning. In ICLR, 2016. 2, 4

489


