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Abstract

In this paper, we propose a weakly-supervised approach
for 3D object detection, which makes it possible to train a
strong 3D detector with position-level annotations (i.e. an-
notations of object centers). In order to remedy the infor-
mation loss from box annotations to centers, our method,
namely Back to Reality (BR), makes use of synthetic 3D
shapes to convert the weak labels into fully-annotated vir-
tual scenes as stronger supervision, and in turn utilizes
the perfect virtual labels to complement and refine the
real labels.  Specifically, we first assemble 3D shapes
into physically reasonable virtual scenes according to the
coarse scene layout extracted from position-level annota-
tions. Then we go back to reality by applying a virtual-
to-real domain adaptation method, which refine the weak
labels and additionally supervise the training of detector
with the virtual scenes. Furthermore, we propose a more
challenging benckmark for indoor 3D object detection with
more diversity in object sizes for better evaluation. With less
than 5% of the labeling labor, we achieve comparable de-
tection performance with some popular fully-supervised ap-
proaches on the widely used ScanNet dataset. Code is avail-
able at: https://github.com/wyf-ACCEPT/BackToReality.

1. Introduction

3D object detection is a fundamental scene understand-
ing problem, which aims to detect 3D bounding boxes and
semantic labels from a point cloud of 3D scene. Due to the
irregular form of point clouds and complex contexts in 3D
scenes, most existing 2D methods [31,32,50] cannot be di-
rectly applied to 3D object detection. Fortunately, with the
development of deep learning techniques on point cloud un-
derstanding [27, 28], recent works [11,20,25,35,51] have
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Figure 1. Demonstration of BR. We consider position-level an-
notations as the coarse layout of the scenes, which is utilized to
generate virtual scenes from a 3D shape repository. Physical con-
straints are applied on the virtual scenes to remedy the information
loss from box annotations to centers. Then a virtual-to-real domain
adaptation method is presented to additionally supervise the real-
scene 3D object detection with the virtual scenes. Dashed arrows
indicate supervision for training.

employed deep neural networks to directly detect objects
from point clouds and achieved favorable performance.

Despite the successes in deep learning based object de-
tection on point clouds, massive amounts of labeled bound-
ing boxes are required for training the detector. This is-
sue significantly limits the applications of these methods,
as labeling a precise 3D box takes more than 100s even by
an experienced annotator [36]. Therefore, 3D object de-
tection methods using cheap labels are desirable for prac-
tical applications. Motivated by this, increasing attention
has been paid to weakly-supervised 3D object detection
methods, which can be divided into two categories ac-
cording to the form of annotation: scene-level [33] and
position-level [21, 22] where only the class tag and both
object center and class are annotated for each object re-
spectively. The two types of annotation only require less
than 1% and 5% time for one instance compared to label-
ing a bounding box, as shown in Table 1. While scene-
level annotation is more time-saving, it is hard for the de-
tector to learn how to precisely locate each object in a

8438



Table 1. Annotating time and detection results of different meth-
ods based on various types of annotation. The benchmark is de-
tailed in Section 4. (BBox refers to box annotation. S-L and P-L
mean scene-level and position-level annotations respectively.)

Annotation BBox [20]| S-L[33] P-L[21] P-L(BR)
Time(s per object) 110 1 5 5
mAP@0.25(%) 54.2 <20 324 47.0

scene due to the lack of position information, and thus
the performance is far from satisfactory [33]. Consider-
ing the time-accuracy tradeoff, position-level annotation
is a more practical solution. However, previous position-
level weakly-supervised 3D detection methods still require
a number of precisely labeled boxes and can only cope
with sparse outdoor scenes [21,22]. Purely position-level
weakly-supervised method for the complicated indoor de-
tection task is still under exploration.

In this paper, we propose a shape-guided label enhance-
ment approach called Back to Reality (BR) for weakly-
supervised 3D object detection'. To reduce the labor cost,
we only label the center of each object in the 3D space
and the labeling error of centers is allowed”. While largely
reducing the workload of labeling, the information loss is
non-negligible from box annotations to centers. To ad-
dress these, BR converts the weak labels into virtual scenes
which contain much of the lost information, and in turn uti-
lizes them to additionally supervise real-scene training, as
shown in Figure 1. Our approach is based on two moti-
vations: 1) in 3D vision, large-scale datasets of synthetic
shapes are available. They contain rich geometry informa-
tion, which can serve as strong prior to assist 3D object de-
tection; 2) the position-level annotations are not only su-
pervision for training, but they also provide coarse layout
of the scene. Therefore, we assemble the 3D shapes into
fully-annotated virtual scenes according to the coarse lay-
out and apply physical constraints on them to remedy the
information loss. Then a virtual-to-real domain adaptation
method is presented to align the global features and object
proposal features extracted by the detector between the real
and virtual scenes. Moreover, our method can take advan-
tage of the precise center labels in virtual scenes to correct
the center error of position-level annotations. In this way
the useful knowledge contained in virtual scenes is trans-
ferred back to reality. Experimental results on ScanNet [7]
show the effectiveness of the proposed BR method.

2. Related Work

3D Shape to Scene: Since it is much easier to obtain
a large scale synthetic 3D shape dataset than a real scene

ILabel enhancement (LE) is a technique to recover label distributions
from logical labels, as defined in [460]. Here we extend the concept of LE
to denote the process of recovering the lost information for weak labels.

2We show the detailed labeling strategy in Section 3.1.

dataset, utilizing the shapes to assist scene understanding
is a promising idea. Existing approaches can be divided
into two categories: supervised [2, 3, 6, 40] and unsuper-
vised [8, 19,24, 30,42]. For supervised methods, the syn-
thetic shapes are usually used to complete the imperfect real
scene scans. Given a set of CAD models and a real scan, a
network is trained to predict how to place the CAD mod-
els in the scene and replace the partial and noisy real ob-
jects [2, 3, 6,40]. Human-annotated pairs of raw scans and
object-aligned scans are used in the training process. As su-
pervised methods need extra human labor, that may limit the
full utilization of 3D shape datasets. Unsupervised methods
are usually used for data augmentation or dataset expansion.
3D CAD models are placed in a random manner following
the basic physical constraints, in order to generate mixed
reality scenes [8, 42] or virtual scenes [19, 24]. Recently,
RandomRooms [30] proposes to use ShapeNet dataset for
unsupervised pretraining of 3D detector. Our approach also
utilizes 3D shapes to assist object detection in an unsuper-
vised manner. Differently, we aim to make use of synthetic
shapes to enhance the weak label and gain stronger super-
vision in position-level weakly-supervised detection task.

3D Object Detection: Early 3D object detection meth-
ods mainly include template-based methods [16, 18, 23]
and sliding-window methods [37, 38]. Deep learning-based
3D detection methods for point clouds began to emerge
thanks to PointNet/PointNet++ [27, 28]. However, meth-
ods in [4, 5, 15, 26] rely on generating 2D proposals and
then project them into the 3D space, which is hard to
handle scenes with heavy occlusion. More recently, net-
works that directly consume point clouds have been pro-
posed [11,20,25,35,51]. While the development of 3D
object detection methods is rapid, the application is still re-
stricted partially due to the limited labeled data. To reduce
the labor of human annotation, weakly-supervised meth-
ods [21,22,29,33], semi-supervised methods [41,49] and
unsupervised pretraining methods [12,30,45,47] have been
proposed recently. However, pretraining methods rely on
huge computing resources for training the networks in a
contrastive learning manner. Semi-supervised methods fol-
low the similar procedure as their 2D counterparts [39] and
do not fully exploring the characteristics of 3d data. There-
fore, we investigate weakly-supervised approach tailored
for 3D object detection task.

3. Approach

Figure 2 illustrates the framework of our approach.
Given real scenes with position-level annotations, we uti-
lize 3D shapes to convert the weak labels into virtual scenes,
which are utilized to provide additional supervision for the
training of the detector. In this section, we first discuss
our weakly-supervised setting and then demonstrate the key
steps of BR.
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Figure 2. The framework of our BR approach. Given real scenes with position-level annotations, we first enhance the weak labels to get
fully-annotated virtual scenes. Then the real scenes and virtual scenes are fed into the detector, trained with weakly-supervised and fully-
supervised detection loss respectively. During training we use the precise object centers in virtual scenes to refine the imprecise centers in
real scenes. Strong-weak adversarial domain adaptation method is utilized to align the distributions of features from both domains. The
global discriminator outputs judgments for each scene, and the proposal discriminator outputs judgments for each object proposal. (Here
GRL refers to gradient reversal layer; Dy and D), stand for the global and proposal discriminators respectively.)

3.1. Position-level Annotation

As choosing a point in the 3D space is hard, we divide
the labeling process into two steps: firstly we label the cen-
ter of an object in a proper 2D view of the scene, and com-
pute the line that goes through this center and the focus
point of the camera according to the camera parameters of
the 2D view. Secondly we choose a point on the line to de-
termine the object’s center in the 3D space. This strategy
requires less than S5s to label an instance, and the labeling
error can be controlled within 10% of the instance size.

When the 3D scene is scanned, in many cases we can ac-
quire mesh data. We assume the meshes are available in our
input. Nevertheless, case where we only have point cloud
data is also considered in our approach and experiments.

3.2. Shape-guided Label Enhancement

While position-level annotation requires far less labeling
time, its information loss is severe, which is manifested in
two aspects: 1) the information of objects’ sizes is lost; 2)
the object centers are imprecise. In spite of this, position-
level annotations can provide a coarse layout of the scenes.
By assembling synthetic 3D shapes according to the lay-
out, we are able to enhance the weak labels and generate
accurately-annotated virtual scenes where sizes are avail-
able and centers are precise. Our label enhancement method
is two-step: 1) first we calculate some basic properties of 3D
shapes; 2) then we place these shapes to generate physically
reasonable virtual scenes from the labels. We provide some
implementation details in the supplementary>.

Definition of Shape Properties: Given a synthetic 3D
shape, which is represented as O € RN*3 we assume it is

3we use * to indicate that the exact definition is in supplementary.

axis-aligned and normalized into a unit sphere. The length,
width and height of O is defined as [, w and h. Then we
divide the categories of shapes into three classes: supporter,
stander and supportee. Supporters and standers are objects
that can only be supported by ground, with the difference
that standers are not likely to support other things. Other
categories are supportees.

Then if a shape belongs to supporter, three properties are
calculated: minimum-area enclosing rectangle (M ER™),
supporting surface height (SSH™) and compactness of the
supporter surface (C'SS*). The M ER is computed in XY
plane, which is the minimum rectangle enclosing all the
points of the shape. The SSH is the height of the high-
est surface on which other objects can stand. The C'SS is
a boolean value, indicating whether the supporting surface
can be approximated by the M E R.

Virtual Scene Generation: We utilize a three-stage
approach to construct the virtual scenes, which is equiva-
lent to generate the position of each shape stage by stage:
1) we first refine the coarse layout provided by position-
level annotations and generate the initial positions; 2) then
we generate gravity-aware positions by restoring the sup-
porting relationships between objects; 3) lastly we generate
collision-aware positions to make the virtual scenes physi-
cally reasonable. The pipeline is shown in Figure 3.

To generate initial positions, we need to recover a more
precise layout from the geometric information of the scenes.
Given a scene in mesh format, we first oversegment the
meshes using a normal-based graph cut method [9, 13]. The
result is a segment graph, where the nodes indicating seg-
ments and the edges denoting adjacency relations. Then
for horizontal* segments whose area* is larger than A, ;,
and height* is larger than H,,;,, we iteratively merge their

8440



\
'

'
'

'

'

'

'

.

Gravity !

! | Constrain !
'

'

'

'

'

'

'

'

Position-level
Annotation

Layout
Refinement| ” .

)
o

(a) Initial Scene

'
Collision
Constrain
'

.

.

Horizontal Segments (c) Collision-aware Scene

(b) Gravity-aware Scene

Figure 3. The pipeline of our three-stage virtual scene generation method. We first extract horizontal segments from the mesh data and use
them to refine the coarse layout provided by position-level annotations. Then synthetic 3D shapes are placed in virtual scenes according to
the new layout to construct initial virtual scenes. After that we apply gravity and collision constraints on the virtual scenes to restore the

lost physical relationships between objects and make the scenes more realistic.

neighbors into them if the height difference between the
horizontal segment and the neighbor segment is smaller
than Aj. Once merged, the segments are considered as a
whole and the height of the new merged segment is set to
be same as the original horizontal segments. After merg-
ing, each horizontal segment is represented by its M E'R. If
only one supporter’s center falls in a M ER, we assign this
M ER to the supporter. When the centers of multiple sup-
porters fall in the same M E'R, we perform K-means clus-
tering of the horizontal segment according to these centers
and calculate M F R for each supporter respectively.

Then we place the 3D shapes of corresponding cate-
gories on the centers given by position-level annotations
and utilize the horizontal segments to refine the layout. The
initial positions of the shapes are represented by a dictio-
nary, whose key is the instance index and value is a list:

[(x7y7 Z)?(sx7sy)sz)707 97 S? M7 H} (1)

where the instance index is a integer ranging from 1 to the
number of objects in the scene. (x,y, z) denotes the center
coordinates. (s, sy, s.) indicates the scales in three dimen-
sions. 6 is the rotation angle of the shape. S tells whether
the shape is a supporter. M and H indicate the M E'R and
SSH of supporter. They are set to None when S is false.
If the shape has been assigned a horizontal segment, we use
the M E'R of that segment to initialize the above parame-
ters. That is, we choose a supporter whose C'S'S is True and
make the M FE R of this supporter overlap with the horizon-
tal segment. Otherwise we conduct random initialization. If
only point cloud data is available, we simply perform ran-
dom initialization and the following stages are the same.
Next we traverse the initial positions to generate gravity-
aware positions. In this process we only need to change
z and SSSH in the position dictionary. For supporters and
standers, we directly align their bottoms with the ground
(i.e. the XY plane). For a supportee, if its (x, y) fall in any
supporter’s M E'R, we assign it to the nearest supporter and
align its bottoms with the supporting surface. Otherwise, it

is aligned to the ground.

After that we move the shapes to acquire collision-aware
positions. This stage only x and y in the position dictionary
will be changed. First we move the objects on the ground,
the supported ones on which will move together if there are.
Then for each supporter, we move its supportees until there
is no overlap. Note that the three generation stages can not
only make the virtual scenes more realistic, but also weaken
the impact of imprecise center labels. Thus the virtual scene
generation method is robust to labeling errors.

Finally, we convert the collision-aware positions to point
clouds with proper density. As larger surfaces are more
likely to be captured by the sensor, we use the maximum
of (Isz)(wsy), (wsy)(hs,) and (Is;)(hs,) to approximate
the surface area of shapes. Then the number of points for
each object is set proportional to their surface areas using
uniform sampling, the largest one remaining /N points.

3.3. Virtual2Real Domain Adaptation

While the label enhancement approach is able to gen-
erate physically reasonable fully-annotated virtual scenes,
there is still a huge domain gap between them and the real
scenes (e.g. backgrounds like walls are missed in the virtual
scenes). Therefore, we need to mining useful knowledge in
the perfect virtual labels to make up for the information loss
of position-level annotations, rather than just relying on the
virtual scenes.

We refer to the virtual scenes and real scenes as source
domain and target domain respectively. A virtual-to-real
adversarial domain adaptation method is utilized to solve
the above problem, whose overall objective is:

max min J = Lsup(O) — Laaw (0, D)

= (L1+ Ly + L) — (L4 + Ls)

where O refers to the object detection network (detector)
and D indicates the discriminators used for adversarial fea-
ture alignment. L., aims to minimize the differences be-
tween the predicted bounding boxes and the annotations,
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Figure 4. Demonstration of our center refinement method. We first
jitter the center labels in source domain, and utilize a PointNet-
like module to predict the center offset from the local graph of the
jittered centers. This module can be directly utilized to predict the
center error in target domain as the global semantic features from
the two domains have been aligned.

which can be further divided into the loss for center re-
finement module (L), fully-supervised detection loss on
source domain (L9) and weakly-supervised detection loss
on target domain (L3). The objective of L,q4, is to align
the features from source domain and target domain, which
aims to utilize the knowledge learned from source domain
to assist object detection in target domain. L, can be di-
vided into global feature alignment loss (L4) and proposal
feature alignment loss (L5). Below we will explain these
loss functions and our network in detail.

Firstly we elaborate on Ly, (O). As shown in Figure 2,
we divide the detector into three blocks: a backbone which
extracts global semantic features from the scene, a detection
module which generates object proposals from the semantic
features, and a prediction head which predicts the semantic
label and bounding box from each object proposal feature.

During training, we jointly refine the imprecise center
labels in target domain and supervise the predictions of the
detector. As shown in Figure 4, we jitter the center labels in
source domain by adding noise within 10% of the objects’
sizes to imitate the labeling error in target domain. Then
for each jittered center, we query its k nearest neighbors
in 3D euclidean space from the global semantic features to
construct a local graph, and predict the center offset through
a PointNet-like module:

p(c) = MLP, {'max {MLP[f;;¢; — c]}} 3)
i€N(c)
where p denotes the PointNet-like module, ¢ indicates the
jittered center label, N(c) is the index set of the k near-
est neighbors of ¢, f; is the global semantic feature, whose
coordinate is ¢;, and max refers to the channel-wise max-
pooling. We set Ly as the mean square error between
the ground-truth center offset and p(c). Then for fully-
supervised training, the detection loss Ly is the same as the
loss utilized in the original method. For weakly-supervised
training, we utilize p to predict the center error in target
domain and acquire refined center labels. We set Lz as a

simpler version of Lo which ignores the supervision for box
sizes. More details about L3 can be found in supplementary.

Secondly we analyze L4, (O, D). We conduct feature
alignment in an adversarial manner: the discriminator pre-
dicts which domain the features belong to, and the detector
aims to generate features that are hard to discriminate. The
sign of gradients is flipped by a gradient reversal layer [10].

As the virtual scenes and real scenes are processed by
the same network, we hope L3 helps the network learn how
to locate each object in real scenes, and Ly compensates
for the information loss of centers and sizes. However,
due to the domain gap, Lo will introduce domain-specific
knowledge of the virtual scenes, which impairs the influ-
ence of L3. Besides, the center refinement module is trained
only on source domain, which may not perform well on tar-
get domain. Therefore, we align the global semantic fea-
tures and object proposal features with L4 and L5 respec-
tively. Inspired by [34], the features are aligned with differ-
ent intensities at different stages. For global semantic fea-
tures, we use a PointNet to predict the domain label. Focal

loss [17,34] is utilized to apply weak alignment:
B
Ly=-Y_ (1-pi)log(p:), v>1 )
i=1

where B is the batch size, and p; refers to the probability
of the global discriminator’s predictions on the correspond-
ing domain. Features with high p is easy to judge, which
means they are domain-specific features and forcing invari-
ance to them can hurt performance. So a small weight is
used to reduce their impact on training. For object proposal
features, they will be directly taken to predict the properties
for bounding boxes. As the properties are domain-invariant
and have real physical meaning, we strongly align this stage
of features using an objectness weighted L2 loss:

B N
Ls =YY si;(1—py)° 5)

i=1 j=1

where B is the batch size, N is the number of proposals, s;;
refers to the objectness label and p;; is the probability of the
proposal discriminator’s predictions on the corresponding
domain. We detail the architectures of center refinement
module and discriminators in supplementary.

4. Experiment

In this section, we conduct experiments to show the
effectiveness of our BR approach. We first describe the
datasets and experimental settings. Then we evaluate the
generated virtual scenes and present the detection results
of our method. We also design experiments to show the ro-
bustness of our virtual scene generation method and demon-
strate the practicality of our approach. Finally we design
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Table 2. Number of objects in each category in the training set and validation set of ScanNet, and average number of points of objects in

each category in the real scenes and the virtual scenes.

Property B[it:_ Bed | Bench EZ::lkf» Bottle | Chair | Cup ?‘:: Desk | Door | Dresser lj(o Z);;j Lamp | Laptop | Monitor I::ag:é_ Plant | Sofa | Stool | Table | Toilet \:Ijéz_
# train Object Number 113 | 308 | 58 786 | 234 | 4357|132 408 | 551 |2028 | 174 193 | 376 86 574 190 | 293 | 406 | 315 | 1526 | 201 98
# validate 31 81 21 234 41 | 1368 | 34 | 95 | 127 | 467 43 53 83 25 191 34 50 | 97 | 51 | 407 | 58 19
# real Point Number 2941 13905 | 1015 | 2679 | 101 | 726 | 66 |2919 | 1525|1110 | 1274 74 | 272 173 370 700 | 792 | 2718 | 525 | 1282 | 1445 | 2762
# virtual 6891 | 8683 | 4097 | 6258 | 162 | 2135| 91 |5495|5004 |6048 | 2703 | 480 | 609 343 939 1088 | 1249|7250 | 1391 | 5421 | 3716 | 6105

Table 3. The class-specific detection results (mAP@0.25) of different weakly-supervised methods on ScanNet validation set. (FSB is the
fully-supervised baseline. T indicates the method requires a small proportion of bounding boxes to refine the prediction. Other methods
only use position-level annotations as supervision. We set best scores in bold, runner-ups underlined.)

[Setting [batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. Ward.[mAP@O.ZS
FSB [25] 66.8 86.2 24.4 55.6 0.0 88.3 0.0 48.5 62.8 45.8 24.1 0.1 472 52 62.1 732 134 88.7 35.1 62.6 94.6 7.8 45.1
~|WSB 219 469 03 23 0.0 537 00 09 321 1.0 66 0.1 02 01 1.8 536 01 570 46 64 197 0.0 14.1
% Ws3DT [211]22.0 58.5 10.3 5.8 0.0 604 0.0 4.1 267 32 1.6 00 140 06 18.6 463 04 327 11.8 23.5 650 0.0 18.4
3 |WSBPp 432 58.0 24 16.1 0.0 75.1 0.7 79 542 64 7.1 23 352 184 128 64.0 4.4 68.5 20.2 22.0 71.6 5.2 27.1
= WSBPs 45.0 49.6 55 185 0.0 62.7 29 114 496 69 25 10 300 7.6 214 64.8 73 79.6 23.1 352 809 2.2 27.6
BRp(Ours) | 51.2 73.0 164 27.1 0.1 70.3 0.0 83 445 7.3 160 1.5 402 7.7 42.1 50.8 7.4 67.1 10.7 39.0 88.4 18.1 31.2
BRj/(Ours) | 57.1 80.4 143 31.7 0.0 77.4 0.0 13.2 49.7 11.3 148 1.0 435 6.0 56.5 65.0 10.6 80.2 269 442 914 6.5 35.5
A FSB [20] 86.2 87.5 163 49.6 0.6 92.5 0.0 70.9 78.5 53.5 56.0 6.4 68.2 11.5 81.5 88.5 152 88.2 45.6 65.0 99.7 31.2 54.2
< |[WSB 75.0 7577 43 172 0.0 81.4 0.0 3.5 340 47 32 21 466 33 458 528 83 71.0 15.7 18.1 90.8 0.7 29.7
&’ WS3DT [21]] 71.9 783 0.9 202 0.8 792 1.0 2.9 47.6 7.7 10.6 192 41.6 13.5 656 41.2 0.8 74.6 17.7 263 889 1.7 32.4
S| WSBPp 719 771 7.7 252 3.0 80.6 04 3.2 50.1 10.5 36.3 17.0 529 30.3 599 63.8 9.6 78.2 284 25.3 933 144 38.2
8 WSBPjs 81.8 82.6 0.0 350 0.0 775 0.4 27.1 384 7.6 223 9.7 443 244 654 765 55 624 347 28.7 99.7 54 37.7
BRp(Ours) | 72.3 73.5 45.8 27.7 0.0 77.2 8.2 30.8 35.0 17.8 51.7 0.3 64.2 25.0 63.5 66.6 23.8 86.7 33.9 37.6 983 5.2 43.0
BRy/(Ours) | 853 90.9 8.8 343 1.9 80.0 7.7 24.7 58.0 20.8 454 31.3 64.4 25.8 67.5 76.7 27.3 914 43.3 46.7 94.8 8.3 47.1
several ablation studies to verify our scene generation and compare BR with the following settings: 1) FSB: fully-

domain adaptation method.

4.1. Experiments Setup

Datasets: We choose ModelNet40 [43] as the dataset
of synthetic 3D shapes. ModelNet40 contains 12,311 syn-
thetic CAD models from 40 categories, split into 9,843 for
training and 2,468 for testing. We perform experiments
on the ScanNet [7] dataset. ScanNet is a richly annotated
dataset of indoor scenes with 1201 training scenes and 312
validation scenes. For each object appeared in the scenes,
ScanNet officially provides its corresponding class in Mod-
elNet40. Therefore we choose 22 categories of ModelNet40
which have more than 50 objects in ScanNet training set
and 20 in the validation set, and report detection perfor-
mance on them. Since ScanNet does not provide human-
labeled bounding boxes, we predict axis-aligned bound-
ing boxes and evaluate the prediction on validation set as

in [20,25,44,48]. We name this benchmark ScanNet-md40.
Compared to the 18-category setting in previous
works [20, 25, 44], our ScanNet-md40 benchmark is more

challenging. Apart from the categories of big objects (e.g.
desk and bathtub), we also aim to detect relatively small
objects, such as laptop, keyboard and monitor. Hence our
benchmark can better evaluate the performance of both de-
tectors and weakly-supervised learning methods.
Compared Methods: To illustrate the effect of our
BR approach, the popular VoteNet [25] and state-of-the-
art GroupFree3D [20] are selected as our detectors. We

supervised baseline, which serves as the upper bound of
weakly-supervised methods; 2) WSB: weakly-supervised
baseline, which trains the detector on real scenes by us-
ing L3 only; 3) WS3D: another position-level weakly-
supervised approach proposed in [2 1], which makes use of a
number of precisely annotated bounding boxes; 4) WSBP:
WSB pretrained on the virtual scenes. For settings which
require the virtual scenes, we conduct experiments on two
versions of virtual scenes (from points/meshes), which are
distinguished by subscripts M and P respectively.

Implementation Details: We set N = 10000, A,.;n =
0.1m2, Hpin = 0.1m, Ay 0.02m, k 16 and
~ = 3. During training, as real scenes are more compli-
cated, the converging of L3 is much slower than Ly. There-
fore we multiple Ly by 0.1 to slow down the training on
virtual scenes and stabilize the process of feature align-
ment. To better train our center refinement module, the
global semantic features should not change rapidly. There-
fore we first train BR without L; until convergence, and
then use the whole loss function to fine-tune the network.
For GroupFree3D which has several decoders and each one
outputs a stage of proposal features, we conduct feature
alignment only for the last stage.

Different from previous works [20,25], in our setting we
need to detect small objects, such as bottle, cup and key-
board. As it is difficult for the network to extract high-
quality features of these objects, we utilize an augmentation
strategy to alleviate the problem, which is similar to [14].
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(a) Real Scenes

(b) Cared Objects

(c) Mesh-version Virtual Scenes

(d) Point-version Virtual Scenes

Figure 5. The qualitative visualization results of our virtual scene generation. In (b), (c) and (d), the same color indicates the same object.
Gray points are floors, walls and objects that we do not care. It can be seen that the virtual scenes preserve the coarse scene context and the

supporting relationships between objects.

Please refer to the supplementary for more details.

4.2. Results and Analysis

Virtual Scene Evaluation: We first evaluate the statis-
tics of the generated virtual scenes by computing the av-
erage number of points of objects in each category in real
scenes and virtual scenes. As the input point clouds are
downsampled to a given number before fed into the net-
work, we only care about the ratio of average point numbers
of objects in each category as the numbers can be controlled
by the downsampling scale. We demonstrate the results in
Table 2. It shows that the ratio in our virtual scenes is simi-
lar with that in the real scenes, which indicates the statistics
of the virtual scenes are reasonable.

We also show qualitative visualizations to demonstrate
our scene generation method in Figure 5. The virtual
scenes generated with mesh information are named as
mesh-version virtual scenes. Otherwise they are named as
point-version virtual scenes. It is shown that the mesh-
version virtual scenes can largely preserve the layout of the
real scenes, and the point-version ones successfully com-
bine the individual 3D shapes in a meaningful way.

3D Object Detection Results: As shown in Table 3,
with position-level annotations only, WSB reduces the de-
tection accuracy by a large margin in terms of mAP@0.25

compared to FSB. That’s mainly because WSB fails to learn
the ability of predicting precise centers and sizes of bound-
ing boxes according to the scene context. WS3D makes use
of some box annotations and achieve better performance.
However, as it is specially designed for outdoor 3D object
detection, WS3D is still far from satisfactory when cop-
ing with the complicated indoor scenes. With pretraining
on the virtual scenes, WSBP has more than 8% improve-
ment over the WSB. That shows the ability of predicting
precise bounding boxes learned in the source domain has
been successfully transferred to the target domain. With
our domain adaptation method to conduct better transfer-
ring, the improvement over the WSB is boosted to a higher
level. The above results shows each step in BR is necessary:
the virtual scenes are helpful to boost the detection perfor-
mance, and the domain adaptation method can further ex-
plore the potential of the virtual scenes. Interestingly, as the
virtual scenes become more realistic (from point-version to
mesh-version), the performance of BR improves a lot while
WSBP has little change, which indicates that layout may not
be that important in pretraining as in domain adaptation.

In terms of class-specific results, on some categories the
mAP@0.25 of the BRy; (for GroupFree3D) is even the
highest among all the methods including the FSB. However,
all methods fail to precisely detect cup and bottle, which
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Table 4. The detection results (mMAP@0.25) of BR under different
error rate for center labeling on ScanNet. We adopt GroupFree3D
as the detector and utilize mesh-version virtual scenes for BR.

Table 5. The detection results (mMAP@0.25) of BR with virtual
scenes at different generation stages on ScanNet. Here the detector
is VoteNet and the virtual scenes are point-version.

Error Rate Gravit Collision Densit
Method 10% 20% 30% 40% 50% Constra}i/n Constrain ControB{ mAP@0.25
WSB 29.7 26.8 25.0 22.3 19.7 26.3
BR,(Ours) 47.1 46.0 43.9 43.1 41.2 v 27.2
v v 28.5
v v v 31.2

shows current 3D detectors still face huge challenges in
small object detection. More detection results (mAP@0.5)
can be found in supplementary.

Robustness for Labeling Error: In our labeling strat-
egy, the center error is within 10%, which we define as the
error rate, of the object’s size. To show the robustness of
our approach, we gradually increase this rate from 10% to
50% by randomly jittering the centers according to the box
sizes, and report the detection results of WSB and BRj,
(for GroupFree3D) in terms of mAP@0.25. As shown in
Table 4, with the increasing of error rate, the performance
of BR degrades more slowly than WSB. Even if the error
rate is 50%, which allows us to label the centers in a more
time-saving strategy, BR can still achieve satisfactory re-
sults (higher than 0.41 in terms of mAP@0.25).

4.3. Ablation Study

We further design ablation experiments to study the in-
fluences of each scene generation step and each domain
adaptation loss to the performance of our BR approach. In
this section, we adopt VoteNet as the detector and use point-
version virtual scenes for universality.

In Table 5, we illustrate that in our virtual scene gener-
ation pipeline, the physical constraints and density control
are effective. As the virtual scenes become more realistic,
the performance of our BR approach is getting better.

As shown in Table 6, we show the effect of each domain
adaptation module and the center refine module. It can be
seen that with global alignment or object proposal align-
ment, the detection performance can be boosted by 3.5%
and 2.2% respectively. By combining the two kinds of
feature alignments, we achieve higher detection accuracy.
Having applied the center refinement method, the perfor-
mance is further boosted by 1.0%.

4.4. Limitation

Due to the limited number of categories in Model-
Net40, we selectively evaluate the performance of BR on 22
classes. However, as online repositories of user-generated
3D shapes, such as the 3D Warehouse repository [1], con-
tain 3D shapes in almost any category, BR can be eas-
ily extended to 3D object detection on more classes once
these online synthetic shapes are organized into a standard
dataset. Therefore, ideally we can leverage a larger syn-

Table 6. The detection results (mAP@0.25) of BR with differ-
ent domain adaptation modules on ScanNet. Here the detector is
VoteNet and the virtual scenes are point-version.

Global Proposal Center
Alignment  Alignment  Refinement mAP@0.25
24.2
v 28.7
v 27.4
v v 302
v v v 312

thetic 3D shape dataset, which covers all objects that may
appear in indoor scenes. This dataset can promote more re-
searches on 3D scene understanding with synthetic shapes,
which we leave for future work.

5. Conclusion

In this paper, we have proposed a new label enhance-
ment approach, namely Back to Reality (BR), for 3D ob-
ject detection trained using only object centers and class
tags as supervision. To fully exploit the information con-
tained in the position-level annotations, we consider them
as the coarse layout of scenes, which is utilized to assem-
ble 3D shapes into fully-annotated virtual scenes. We ap-
ply physical constraints on the generated virtual scenes to
make sure the relationship between objects is reasonable.
In order to make use of the virtual scenes to remedy the in-
formation loss from box annotations to centers, we present
a virtual-to-real domain adaptation method, which transfers
the useful knowledge learned from the virtual scenes to real-
scene 3D object detection. Experimental results on ScanNet
dataset show the effectiveness of our BR approach.
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