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Abstract

We propose a novel adversarial attack targeting content
features in some deep layer, that is, individual neurons in the
layer. A naive method that enforces a �xed value/percentage
bound for neuron activation values can hardly work and
generates very noisy samples. The reason is that the level
of perceptual variation entailed by a �xed value bound is
non-uniform across neurons and even for the same neuron.
We hence propose a novel distribution quantile bound for
activation values and a polynomial barrier loss function.
Given a benign input, a �xed quantile bound is translated to
many value bounds, one for each neuron, based on the distri-
butions of the neuron’s activations and the current activation
value on the given input. These individualized bounds enable
�ne-grained regulation, allowing content feature mutations
with bounded perceptional variations. Our evaluation on Im-
ageNet and �ve different model architectures demonstrates
that our attack is effective. Compared to seven other latest
adversarial attacks in both the pixel space and the feature
space, our attack can achieve the state-of-the-art trade-off
between attack success rate and imperceptibility. 1

1. Introduction

Adversarial attack is a prominent security threat for Deep
Learning (DL) applications. With a benign input, perturba-
tion is applied to the input to derive an adversarial example,
which causes the DL model to misclassify. An underlying as-
sumption is that adversarial samples should be perceptually
close to real inputs [10]. Without this assumption, adversar-
ial samples could merely be too different from real inputs
and become unseen samples, in which case misclassi�cation
is well expected. Traditionally, imperceptibility is ensured by
having bounded perturbation in the pixel space. The bound
is usually small, e.g., [�4; 4] in the RGB range of [0; 255],
such that perturbations are imperceptible by humans.

Researchers have recently shown adversarial examples
with large pixel distances (from the original inputs) can

1Code and Samples are available on Github [37].

be generated. Such distances are usually way beyond the
bounds that many existing defense and validation techniques
aim to protect, providing a new attack vector. These tech-
niques focus on mutating meta-features of original inputs,
such as colors and styles, due to the dif�culty of harness-
ing perturbations on content features, such as shapes and
local patterns, denoted by individual neurons. While us-
ing adversarial samples generated by these techniques can
harden the model in meta-feature space, making the model
robust to color and style changes, they offer limited protec-
tion when the attacker is able to mutate individual content-
features/neurons in an imperceptible way. In addition, the
perturbations generated by these methods are pervasive and
hence more visible in human eyes, making them less desir-
able when being used in real attacks.

In this paper, we propose a new attack vector in the fea-
ture space that can perform imperceptible content feature
perturbation. Such perturbations cannot be expressed by
pixel bounds or meta-feature bounds (e.g., bounds on mean
and standard deviation of activation values) and hence pose
a new challenge to existing defense techniques. The essence
of our technique is to bound the perturbations of individ-
ual neurons. Given a uniform bound at the perception level
(e.g., allowing 10% perceptual perturbation for each content-
feature/neuron), it is projected to various value bounds for
individual neurons which have different activation value
ranges and distributions. Gradient back-propagation is used
to mutate input pixels, just like in traditional adversarial
attack, while the mutations are constrained by the internal
bounds. A naive method is to �rst pro�le the activation value
ranges of individual neurons and then limit the variation of
each neuron to a �xed portion of its value range. However,
this method does not work because the perception of a �xed
activation value perturbation varies substantially (even for
a single feature) depending on the activation value itself.
For example, a change of 1.0 when the activation value is
0.0 admits a substantially different level of perceptual varia-
tions compared to the same change when the value is 15.0.
To achieve a uniform perceptual bound, we propose to use
a distribution quantile bound. More speci�cally, given a
model, we identify internal values that approximate normal
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Figure 1. Adversarial examples of different attacks/attack-settings. The �rst column represents the original images. The second and third
columns show examples from Basic Iterative Method (BIM) with a small and a large pixel distances, respectively. The following columns
are samples from Feature Space Attack(FS), Semantic Attack (SM), and our Deep Distribution Bounded Attack (D2B). For each set of
images, the �rst row presents the adversarial examples. The second row shows the perturbations applied to the original image. We enlarge
the perturbations of BIM by 10 times and the others’ by 5 times for better illustration. On the bottom of each column, there is a quadruple
representing the ‘1, ‘2 distances, the attack con�dence of each example and the attack success. A positive value implies a successful attack
and a large value indicates the model is very con�dent about the (misclassi�cation) result.

distributions. We call them a throttle plane (see Section
3). After identifying the throttle plane, we collect the acti-
vation distribution over the training set for each neuron on
the plane. Given a benign sample, its activation on each
neuron (on the plane) is acquired. The bound for its value
change is dynamically computed based on a �xed quantile
of the distribution (e.g., 10%) and the activation itself. This
is called the quantile bound. Our technique is hence called
D2B (Deep Distribution Bounded Attack). We then enforce
the value bounds using a polynomial internal barrier loss
(Section 3.2). Note that such value bounds are completely
dynamic while they denote the same perceptual bound. Our
results show that the method can mutate content features in a
way that is less human perceptible. According to our human
study in Section 4, our technique can achieve 95% attack
success rate, and yet humans cannot easily distinguish the
adversarial examples from the benign ones within a short
time. In comparison to traditional pixel space attacks that
generate noise-like perturbations, our attack generates pertur-
bations piggy-backing on existing semantically meaningful
features, making them dif�cult to detect.

Example. The second and third columns of Figure 1 (in
the blue dashed box) show some samples with a small
pixel bound (i.e., ‘1 = 5=255, meaning the maximum
pixel value change is 5 out of 255) and a larger bound (i.e.,
‘1 = 16=255) for the BIM attack2. Observe that with the
larger bound, the adversarial perturbation is detectable by

2We use BIM instead of other pixel space attacks such as PGD because
we found that (compared to BIM) the random initialization of PGD degrades
imperceptibility at a non-trivial scale, in exchange for just a slightly higher
success rate. Hence, we consider BIM a more compelling baseline when
considering the balance between attack success rate and imperceptibility.

human eyes, suggesting using a large bound in the pixel
space is undesirable. The third and fourth columns (in the
orange dashed box) show some examples of attacks in the
feature space, namely feature space attack [38] and semantic
attack [2]. Details of these attacks can be found in Section 2.
Observe that they have much larger ‘1 and ‘2 distances
(from the original inputs in the �rst column) than the exam-
ples generated by the BIM attacks. While their perturbations
are less perceptible than the examples generated by pixel
space attacks given a similar pixel distance, the perturbations
are quite noticeable in human eyes due to their pervasive
nature. This is con�rmed by our human study (Section 4), in
which we show that with an 80% attack success rate, humans
can easily recognize the adversarial examples.

The last column of Figure 1 shows a typical example
generated by our technique and its pixel-level contrast with
the original image. Observe that the differences largely pig-
gyback on the content features of the original example (by
having similar shapes and local patterns as the original input),
making them more human imperceptible. More importantly,
these perturbations are quite different from those by exist-
ing pixel space and feature space attacks, suggesting a new
threat.

We conduct experiments on ImageNet and �ve models, in-
cluding both naturally and adversarially trained models. Our
results show that existing adversarial training has little effect
on our attack. Although comparing different attacks may
be comparing apple with orange, we study the correlations
between attack success rate and human imperceptibility for
seven related attacks perturbing either the pixel or internal
space, to understand the high level positioning of our attack.
Our results show that our attack produces adversarial exam-
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Figure 2. Work�ow of our attack. It consists of three steps: 1 throttle plane (TP) selection, 2 internal distribution boundary constraint, and
3 adversarial sample generation with combined losses.

ples that are less human perceptible when achieving the same
level of attack con�dence/success-rate. Further evaluation
against three different detection techniques demonstrates that
our attack has better/comparable persistence while having
better imperceptibility due to its new attack vector.

2. Related Work

White-box attacks, such as PGD [20], C&W [4],
BIM [18], and FGSM [10], assume access to model inter-
nals and leverage gradient information in sample generation.
Black-box attacks, such as ZOO [6], assume no access to
model internals and directly mutate inputs based on classi-
�cation outputs. Our work falls into the white-box attack
category in the image classi�cation domain.

Several works explored adversarial samples which are
unrestricted in the pixel norm. Speci�cally, semantic at-
tack [2] manipulates a benign image’s color and texture. Xu
et al. [38] leveraged style transfer [14] to mutate (implicit)
styles of benign inputs. In particular, it perturbs the distri-
bution (e.g., mean and variation) of feature maps. Xiao et
al. [34] proposed to relocate pixels through �ow optimiza-
tion and constructed spatial adversarial samples. Song et
al. [28] leveraged GAN to generate unbounded adversarial
examples. Some works propose to uniformly change the
colors and lightning conditions for constructing adversarial
examples [12, 19]. To improve imperceptibility of adversar-
ial samples, Croce et al. [7] proposed sparse attack. It de�nes
a salience score for each pixel and avoids large perturbation
to salient pixels. HotCold attack [23] constrains the pertur-
bation of adversarial samples by utilizing SSIM [41], a score
for measuring structure similarity. However, these scores
can be unreliable for bounding perturbations [27]. Different
from these approaches, our D2B manipulates local content
features, providing a novel attack vector. Analogous to pixel
space attacks, D2B allows changing individual features (just
like changing individual pixels). To achieve the goal, a novel
bounding technique is proposed. Our experiments show that
our attack has high success rate while preserving impercepti-
bility.

Some existing works utilized internal representations to
facilitate attack [17, 25]. Sabour et al. [25] tried to minimize

the ‘2 distance of internal activations between normal and
adversarial inputs. Kumari et al. [17] optimized inputs to
have ‘1-bounded internal perturbations in order to improve
adversarial training. In Appendix F and L, we show that
the uniform bound and two-step optimization used in these
works are not effective for our purpose. Researchers also
tried to perturb the embedding of GAN to generate adver-
sarial samples [29, 30]. However, it is still an open problem
to obtain high-�delity and content-preserving GAN based
adversarial examples [9].

Some defense techniques utilize internal representations.
For example, existing works [5, 21, 22] use distance of inter-
nal representations to detect adversarial samples. Defense-
GAN [26] leverages the manifold of normal samples. It is
however unclear whether these techniques can effectively
defend against adversarial samples whose perturbations are
bounded in deep layers [1, 31].

3. Attack Design
In our �rst attempt, we directly extended an existing pixel-

space attack BIM to enforce a �xed internal activation value
bound. However, we found that it does not work well. The
reason is that a �xed value or percentage range makes sense
in the pixel space as it directly re�ects a �xed level of hu-
man perception variation. In contrast, a �xed internal range
may imply various levels of pixel changes and hence vari-
ous human perception levels. More details can be found in
Appendix A. We hence propose a different design.
Our Design. Figure 2 describes the work�ow of our at-
tack. Given a reference model (from which a throttle plane
is identi�ed and used to constrain feature variations), a target
model (for which adversarial samples are generated), and
some training samples, we �rst perform throttle plane (TP)
selection (step 1). Speci�cally, model execution can be
considered as a directed acyclic computational graph (DAG)
from the input to the output. We run the reference model
over some samples and collect the output distributions of
all operations in its computational graph (e.g., the output of
matrix multiplication). The output values lie in a cut-set [33]
of this computational graph are de�ned as a plane (e.g., the
blue and gray planes in Figure 2). Intuitively, a plane is a
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�slice� of a layer. It contains values from all parallel opera-
tions in a particular layer across all neurons and channels
(and hence also a cut-set of the graph). A layer can be con-
sidered as a stack of multiple planes. For instance, assume
a layer consists of three operations: kernel multiplication,
addition with bias, and ReLU activation function. The val-
ues collected at the end of each operation constitute a plane.
The plane could lie in the border between layers or even in
between operations within a layer.

A plane whose value distribution approximates a normal
distribution is a possible throttle plane (TP) to harness the
adversarial perturbation (e.g., the blue plane in Figure 2).
We use the normality criterion to select information-rich
distributions and �lter ill-de�ned distributions. With a (or
multiple) selected throttle plane(s), we further inspect the
possible distribution boundary for each neuron at step 2.
That is, the perturbed value A0 should be bounded within
some distribution quantile range of the original value A. Fi-
nally, we model the constraint of distribution boundary by
an internal barrier loss function (on the reference model),
which is combined with the cross-entropy prediction loss
(on the target model). During attack (step 3), a normal
input is fed to both models and updated with respect to the
combined attack loss, which produces a successful and im-
perceptible adversarial example. While the reference model
and the target model could be the same model, empirically,
we �nd that using a stand-alone reference model allows the
best performance as it enables our attack even when a good
throttle plane cannot be found in the target model.

3.1. Distribution Based Bounding and Throttle
Plane Selection

The overarching design of our attack is to harness pertur-
bation at the selected throttle plane(s) such that only small
variations of abstract features are allowed. Note that the
corresponding pixel space perturbations could be substantial
as long as the inner value changes are within bound.
Challenges of Having Internal Throttle Plane. Traditional
adversarial sample generation techniques simply place the
perturbation throttle at the input plane. This makes the design
simple as the perturbation happens strictly within the throttle
plane. In contrast, placing the throttle in an inner plane poses
new challenges.

First of all, while in the input space values have uniform
semantics (e.g., denoting the RGB values of individual pix-
els), values of the inner distributions do not have such a
property. The different values on the same inner plane of-
ten represent various abstract features whose value ranges
have diverse semantics. As such, a uniform perturbation
bound across all these internal values is meaningless. Sec-
ond, in our design, the perturbation occurs in the input space
while the throttle is placed somewhere inside the reference
model. Hence, the input perturbation is not directly con-

trolled and could be substantial. An important hypothesis
is that since the perturbations can only induce bounded in-
ner value changes at the throttle plane, they denote small
semantic mutations of the abstract features. However, given
a particular inner value, the semantic mutation entailed by its
changes is non-uniform within its range. Consider Figure 3c,
which denotes the distribution of an inner value (across the
training set). Observe that a variation of 0.5 when the value
is 1 implies much more substantial semantic changes (indi-
cated by the entailed substantial quantile change) than when
the value is 4, which is at the very tail of the distribution, as
the model is likely insensitive to such a large value.
Our Method – Looking for Gaussian Planes. According
to the above discussion, we cannot utilize a uniform value
bound across the different inner values (on the plane); we
cannot utilize the same bound even when the value varies
(from one input to another). Therefore, we propose a novel
idea of using a distribution based bound. Particularly, we col-
lect the distributions for the individual values (on the plane).
During perturbation, the bound for each inner value is based
on its distribution quantile. As such, not only different values
along the plane have different bounds, but also, the value
may have different bounds when it varies from input to input.
In particular, we select the plane(s) whose values approxi-
mate Gaussian distributions and use a quantile bound based
on the current value and its distribution, instead of using a
concrete value bound. These allow us to have precise and
relatively easy control of the level of semantic mutation.

The intuition of looking for Gaussian distribution is to
maximize entropy. A larger entropy in our case implies
that the neuron contains more information, allowing more
�ne-grained semantic control. With the �rst and second
momentums �xed, a Gaussian distribution has the largest
entropy. In the following, we use a few examples to illustrate
this point.

Consider a block of an adversarially trained ResNet152
(Figure 3a). If we set the throttle plane at the block boundary
(i.e., right after the ReLU function), the distribution for
some value on the plane (across the entire training set) is
shown in Figure 3b. Observe that the density function is ill-
de�ned at point zero (due to ReLU). It is hence not a good
choice for the throttle plane. Intuitively, the reason is that
substantial input perturbations would be admitted as long as
their inner value remains negative before ReLU. Formally,
the information loss of the negative side is re�ected by the
smaller entropy (4.0 after ReLu compared to 5.1 before) and
results in degenerated effectiveness (see Figure 4b and 4c).

If we set the plane right before ReLU, according to Fig-
ure 3c, it approximates Gaussian distribution. The Gaus-
sian distribution makes enforcing a quantile bound easy and
hence allows generating imperceptible adversarial examples
(see Figure 4c). Observe that the background has undergone
much less perturbation (compared to others) as most pertur-
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Figure 3. Operations in the last block of group 1 of an adversarially trained ResNet152 and the corresponding typical distributions of
the values after these operations. In (b)-(e), we present the estimated distance between the empirical distribution and a Gaussian through
Jensen-Shannon(JS) divergence. A smaller value indicates more resemblance.

(a) Original
(Entropy, Is Cut?)

(b) After ReLU
(4.0, Yes)

(c) Before ReLU
(5.1, Yes)

(d) Main
(5.8, No)

(e) Main and Shortcut
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Figure 4. Adversarial images when the throttle plane is at different positions in Figure 3, under the same perturbation bound. In the bottom,
we report the average entropy of underlying throttle plane and whether it forms a cut of the data �ow.

bation is on the content features of the dog and hence not
that visible. We also study the distributions of the values
after the main output and along the shortcut (e.g., Figure 3d
and 3e, respectively). Observe that although (d) resembles
Gaussian distribution and has the largest entropy, placing the
throttle there produces unnatural samples (see Figure 4d).
The main reason is that the operation alone does not form
a cut-set of the computational graph. Intuitively, it leaves a
large part (i.e., the values along the shortcut) unconstrained.
Figure 16 in Appendix R shows the distributions for a set
of randomly selected values on the same plane. Observe
that they approximately follow normal distributions. Also,
observe that their distribution parameters are quite different,
supporting our design of using different bounds for various
values on a plane.

During sample generation, given a benign input, the se-
lected throttle plane’s inner values are collected. The bound
of the value is then determined by its quantile of the value (on
its density function). How to enforce such quantile bounds
is discussed in the following section.

3.2. Enforcing Quantile Bound with Polynomial
Barrier Loss

Let D be a distribution on support S. The activation
yi of neuron i on a selected throttle plane I is a random
variable through mapping fi : S ! R, yi � fi(D). We
denote the cumulative distribution function of yi as Ci(x),
and the corresponding quantile function as C�1

i (x). Let
the original image be xnat and the adversarial sample be

xadv. Correspondingly, let yi
adv and yi

nat be the respective
activations for xnat and xadv. Assume the allowed quantile
change is less than a threshold �. The corresponding value
bound for yadv

i 2 [lowi; highi] is hence the following.

yadv
i 2

�
C�1

i
�
max(Ci(xnat) � �; 0)

�
;

C�1
i

�
min(Ci(xnat) + �; 1)

�� (1)

Note that we translate the quantile bound to a value bound,
over which we can de�ne a loss function.

Polynomial Barrier Loss. Interior point method or bar-
rier method [3] is a standard technique for constrained op-
timization. It is widely used in linear programming appli-
cations [32]. It utilizes a negative log function in the loss
function by default. However, it was intended to be used
in problems where the bound is hard, meaning the values
must not exceed the bound as the loss becomes in�nitely
large when the value in�nitely approaches the bounds. In
our context, a hard bound does not work well with ReLU
functions. Speci�cally, input changes guided by gradients
may activate some previously inactive neurons, leading to
the inner values to exceed their bounds, causing numerical
exceptions (on the log function). Another naive design is to
introduce a ReLU kind of bound, that is, the loss is 0 while
the value is in bound and some large value otherwise. How-
ever, it does not apply penalty when the value is approaching
the bound. Therefore, we devise a polynomial barrier loss as
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follows.

Li(yi
adv) = k

�
ReLU(yi

adv � yi
nat)

highi � yi
nat +

ReLU(yi
nat � yi

adv)
yi

nat � lowi

�b (2)

Intuitively, the loss function applies a polynomially increas-
ing penalty when the inner value induced by adversarial per-
turbation approaches the bound. Please refer to Appendix J
for details and the comparison with other loss choices.

Optimization Method. With the polynomial barrier loss,
we use a standard gradient sign method [4] for optimiza-
tion. There are other design choices. For example, in [17], a
two-step optimization was proposed to facilitate adversarial
example generation by leveraging internal values. However,
we found that the method is not effective when a strict inter-
nal boundary is enforced. Another simple method is clipping,
which clips the inner values (on a throttle plane) and prevents
gradient propagation if they are beyond bounds as we men-
tioned in Section 3. We conduct experiments to compare the
three methods. Our method can better enforce the internal
bound and generate adversarial examples with one order of
magnitude smaller average boundary size. Details can be
found in Appendix F.

Identifying an appropriate quantile bound value is im-
portant. We address the problem by pro�ling the quantile
changes at the throttle plane under other attacks. Speci�-
cally, we use the average observed internal value ‘1 quan-
tile change (at a throttle plane) for the adversarial examples
by BIM4. Identifying the learning rate is discussed in Ap-
pendix B. Occasionally, we observe the generated adversarial
examples exhibit checkerboard patterns. We hence add a
feature smoothing loss during optimization. Details and an
ablation study can be found in Appendix C and G.

4. Experiments

We conduct experiments on ImageNet [24] and �ve types
of DNN models. We show that pre-trained models hardened
by state-of-the-art adversarial training methods cannot de-
fend our attack. Furthermore, although attacks in different
spaces may not be comparable in general, we study the trade-
off between attack effectiveness and imperceptibility for a
large set of eight attacks in both pixel and feature spaces,
including D2B. The goal of the study is not to say one at-
tack is superior to another, but rather to provide an intuitive
understanding of D2B’s positions in these generic metrics.
Finally, we evaluate D2B against three popular adversarial
attack detection approaches.
Attacks In Study. We study D2B and seven other existing
attack methods: BIM [18], hot cold attack [23], sparse at-
tack [7], feature space attack [38], semantic attack [2], latent

attack [17] and spatial attack [34]. We use BIM as the rep-
resentative of classic pixel space adversarial attacks such as
PGD and C&W (due to the reason explained in Section 1).
Feature space attack uses auto-encoder based on VGG16 and
performs bounded perturbation of the mean and variance of
internal embeddings [38]. Semantic attack manipulates input
color and texture. Sparse attack applies small perturbation
to salient pixels and large perturbation to less salient pixels.
Hot-cold attack uses the SSIM score [41] to constrain per-
turbation. Spatial attack optimizes �ow of pixels to generate
adversarial sample. Latent attack uses two-step optimization.
We use these eight attack methods to generate adversarial
examples for a naturally trained ResNet50 model [11] and
an adversarially trained ResNet152 model [35] (ResNet152-
adv). For BIM, sparse attack, hot cold attack, latent attack,
feature space attack and our attack, we stop the attack op-
timization when convergence is reached (no con�dence in-
crease). For semantic attack and spatial attack, we use a
preset number of optimization steps. Note that they are un-
bounded and the optimization step controls the perturbation
and the attack success rate. For the sparse attack, we are
unable to scale it up to an untargeted attack on ResNet152-
Adv.

Evaluation Metrics. We measure attack success rate versus
imperceptibility for untargeted attacks on the adversarially
trained model (Figures 5b and 5d). In contrast, we measure
attack con�dence score versus naturalness for targeted at-
tacks on the normally trained model (Figures 5a and 5c).
Note that we cannot use attack success rate for the normally
trained model as it is almost 100% for all the attacks. We do
not conduct untargeted attacks on the normally trained model
or targeted attacks on the adversarially trained model as the
former is too easy and the latter is too hard for a comparative
study. The con�dence score of a sample x is de�ned on the
logits (the pre-softmax) value L(x) [4]. Speci�cally, for a
targeted attack, suppose the target label is t, the con�dence
score of a sample x is de�ned as follows.

Lt(x) � max
i 6=t

Li(x) (3)

Intuitively, it is the logits gap between the target label and
another label with the maximum logits and hence measures
the success level of an attack when the attack can always
induce misclassi�cation [35].

In order to measure the imperceptibility of generated
examples, we perform a human study using Amazon Turk.
We employ a similar setting as that in [40]. Speci�cally,
for each attack, users are given 100 pairs of images, each
consisting of a real image and its adversarial counterpart.
They are asked to choose the one that looks unreal. Each
user is given 5 test-drives before the study starts. Each pair
of image appears on screen for 5 seconds and is evaluated
by three different users. More about the user study can be
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(a) Targeted attacks on Resnet50 (human-pref vs. con�dence) (b) Untargeted attacks on Resnet152-Adv (human-pref vs. ASR)

(c) Targeted attacks on Resnet50 (SSIM vs. con�dence) (d) Untargeted attacks on Resnet152-Adv (SSIM vs. ASR)
Figure 5. Quality of the generated adversarial examples. These �gures present the level of naturalness (y axis) versus the level of attack
success (x axis). Results in the top-right corner denote the best trade-off. Figures (a) and (c) denote targeted attacks on a normally trained
Resnet50; (b) and (d) denote untargeted attacks on an adversarially trained Resnet152. For naturalness, we report SSIM score (with value 1
indicating an adversarial sample and its benign version are identical), and human preference rate collected in human studies, which denotes
the rate that humans consider an adversarial example real (compared to its benign version), with 50% meaning humans cannot distinguish.
To measure attack success level, we use attack success rate and con�dence score. The latter is for attacks on normally trained models which
always cause misclassi�cation, rendering attack success rate an invalid metric. We regard an untargeted attack successful if the true label
does not appear in the top-5 predicted labels, which is consistent with the literature [36]. The shaded area on a data point (i.e., an attack
setting) represents the standard error of the human preference rate or the SSIM score.

Table 1. Pixel and quantile distances for ResNet50, with Conf.
meaning attack con�dence

Attack Conf. Pixel Dist. ‘1 Quantile Dist.

‘2 ‘1 Plane 1 Plane 2 Plane 3

BIM4 81.91 10.81 0.04 0.62 0.83 0.90
D2B10 30.29 4.26 0.07 0.06 0.08 0.09
D2B20 58.82 6.27 0.09 0.12 0.16 0.17
D2B30 72.43 7.28 0.10 0.18 0.24 0.26
D2B40 80.06 7.88 0.11 0.24 0.32 0.35
D2B50 84.52 8.25 0.11 0.30 0.41 0.44

Table 2. Pixel and quantile distances for ResNet152-Adv, with Succ.
meaning attack success rate

Attack Succ. Pixel Dist. ‘1 Quantile Dist.

‘2 ‘1 Plane 1 Plane 2 Plane 3

BIM4 0.58 14.49 0.04 0.65 0.82 0.89
D2B10 0.61 6.65 0.11 0.06 0.08 0.09
D2B20 0.86 15.43 0.24 0.13 0.16 0.17
D2B30 0.86 16.68 0.19 0.19 0.24 0.26
D2B40 0.97 21.84 0.22 0.26 0.33 0.35
D2B50 0.98 27.08 0.26 0.33 0.41 0.44

found in Appendix D. In addition to the human study, we
also use Structure Similarity Index (SSIM) [41] to quantify
the perceptual distance of the adversarial samples. SSIM
ranges from �1 to 1, with a larger value indicating more
similarity, while a 0 score indicating no similarity.

Results. The results are summarized in Figure 5. These

�gures show the tradeoffs between imperceptibility (y axis)
and attack effectiveness (x axis) for various attacks. Fig-
ures (a) and (c) present targeted and untargeted attacks for
Resnet50, respectively, and (b) and (d) for the adversarial
trained Resnet152. Each point in these �gures denotes an
attack setting and each curve shows the variations of differ-
ent settings of an attack. Points at the top-right corner are



desirable, i.e., effective attacks with imperceptibility.
BIMx denotes BIM with an ‘1 bound x% of 255. For

example, BIM4 means the ‘1 bound is 255 � 4% � 10.
FS1 and FS2 are feature space attacks using the relu2_1 and
relu3_1 layers of VGG16, respectively, as the embedding
layer. SMx is semantic attack with an optimization step
of x. SP1 and SP2 are spatial attacks [34] with the �ow
constraint set to 0:005 and 0:0005 respectively. HCx is the
hot-cold attack using a SSIM score x as the constraint. D2Bx
denotes that we allow x% of the average quantile change
observed in BIM4 at the throttle plane. The reason we use
percentage relative to BIM4 is for simplicity. Otherwise, one
needs to �ne tune the magnitude among different throttle
planes. Overall, we have studied 37 attack settings, each
entailing one user study. In these user studies, we involve
3700 samples and 252 users in total.

From Figure 5, we have the following observations.
(1) Adversarial training has less effect on D2B. Observe

in (a), without adversarial training, D2B40 has a very high
80 con�dence with 0.43 human preference, meaning that
the attack is quite effective while humans can hardly tell the
adversarial samples from the benign ones. BIM2 and BIM4
have similar performance. In (b), with adversarial training,
D2B40 still has close to 1.0 attack success rate and a 0.36
human preference rate. Even the lightest attack D2B10 has
close to 0.7 ASR and 0.42 human preference. In contrast,
adversarial training is quite effective for defending BIM.
Observe only BIM2 can achieve a similar human preference
rate as D2B40. But its ASR is as low as 0.37. The results on
SSIM, i.e., (c) and (d), disclose similar observations.

(2) D2B is much more effective and imperceptible than
other feature space attacks. Observe that in (a), all the
feature space attack data points are distant from the D2B
curve, mostly falling in the left-bottom quadrant. In other
words, they have low attack con�dence and humans can tell
the adversarial samples. In (b), although the gap becomes
narrower due to adversarial training, the differences are still
prominent. For example, SM500 can achieve 1.0 ASR, just
like D2B40. However, its human preference rate is as low
as 0.04. FS1 has a comparable human preference score as
D2B40, but its ASR is 0.66 (compared to 1.0 for D2B40).

(3) D2B has the highest attack con�dence/success rate
at the same level of human preference/SSIM score (more
towards the top-right corner than others). And with the
same con�dence/success rate, our adversarial examples are
consistently more favored by the testers/SSIM score (for
being more imperceptible) than those by other attacks. Our
adversarial examples with the most aggressive settings (e.g.,
D2B40) have a similar human preference to pixel space
attack with a very small bound (BIM2 and BIM4), indicating
our attack is indeed imperceptible. With the increase of
quantile change, perturbation bound, or optimization step,
all the attacks achieve a higher success rate, and our attack

is increasingly more imperceptible than others.

We further study the pixel distance and quantile distance
of the generated adversarial examples by different attacks.
The ‘1 quantile distance is de�ned as maxi2I jCi(xadv) �
Ci(xnat)j. Table 1 and Table 2 show that with a similar level
of attack con�dence or attack success rate, our attack has
a smaller ‘2 pixel distance and ‘1 quantile distance. This
indicates that our generated examples can achieve a similar
level of attack effectiveness with less perturbation (and hence
better imperceptibility). In other words, it can tolerate more
aggressive perturbation without degrading imperceptibility
as much, demonstrating the bene�ts of bounding deep layers.
The larger ‘1 pixel distance and the smaller ‘2 pixel distance
(compared to BIM4) indicate our perturbations are more
diverse, heavily piggy-backing on original features. The
attack effectiveness and pixel/internal distances for other
models are similar. Details can be found in Appendix H.
Adversarial examples generated by the different settings of
our attack and other attacks can be found in Figure 13 and
Figure 14 in Appendix Q.

Other Experiments. We evaluate D2B against three popular
detection approaches and �nd that our attack is more or com-
parably persistent in the presence of detection (Appendix M).
We study the transferability of our attack and observe that
D2B has a comparable/slightly-better transferability than
others (Appendix O). We conduct a study about the essence
of D2B by studying the places that it aims to attack (Ap-
pendix N). Comparison of different reference models and
deep bounds can be found in Appendix K and L. Details
about the throttle planes used are discussed in Appendix E.

5. Conclusion
We propose a novel adversarial attack that perturbs indi-

vidual content-features/neurons. It leverages a per-neuron
normal distribution quantile bound and a polynomial bar-
rier loss to address the non-uniformity of internal values
regarding perception. Our evaluation on ImageNet, �ve
models, and comparison with seven other state-of-the-art
attacks demonstrates that the examples generated by our at-
tack are more imperceptible while achieving better attack
effectiveness. This poses new challenges to existing defense.
It is also more persistent in the presence of various detection
techniques. We discuss ethical considerations in Appendix P.
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