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Abstract

Weakly Supervised Object Localization (WSOL) aims
to localize objects with image-level supervision. Existing
works mainly rely on Class Activation Mapping (CAM) de-
rived from a classification model. However, CAM-based
methods usually focus on the most discriminative parts of an
object (i.e., incomplete localization problem). In this paper,
we empirically prove that this problem is associated with
the mixup of the activation values between less discrimi-
native foreground regions and the background. To address
it, we propose Class RE-Activation Mapping (CREAM),
a novel clustering-based approach to boost the activation
values of the integral object regions. To this end, we in-
troduce class-specific foreground and background context
embeddings as cluster centroids. A CAM-guided momen-
tum preservation strategy is developed to learn the con-
text embeddings during training. At the inference stage,
the re-activation mapping is formulated as a parameter es-
timation problem under Gaussian Mixture Model, which
can be solved by deriving an unsupervised Expectation-
Maximization based soft-clustering algorithm. By simply
integrating CREAM into various WSOL approaches, our
method significantly improves their performance. CREAM
achieves the state-of-the-art performance on CUB, ILSVRC
and OpenImages benchmark datasets. Code will be avail-
able at https://github.com/Jazzcharles/CREAM.

1. Introduction
Weakly Supervised Object Localization (WSOL) aims to

localize objects only belonging to one class in each image
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Figure 1. Histograms of the activation values in CAM and our pro-
posed CREAM. The red curves show the IOU between the ground-
truth box and the predicted box when τ varies from 0.1 to 0.5.

using image-level supervision [6, 33, 34, 38]. WSOL allevi-
ates massive efforts in obtaining fine annotations.

Prior works mainly follow the pipeline of training a clas-
sification network then deriving the Class Activation Map-
ping (CAM) [38] for WSOL. The foreground region is
determined by the CAM values larger than the threshold.
However, CAM only highlights the most discriminative re-
gions (i.e., incomplete localization). Existing works seek to
discover the complete object via adversarial erasing [22,34],
spatial regularization [15, 19] or attention mechanism [6].
Most of them still acquire the activation maps via a classi-
fication pipeline like CAM to answer “which pixels con-
tribute to the class prediction”.

In this paper, we argue that the incomplete localization

9437



problem of CAM is associated with the mixup of the activa-
tion values between less discriminative foreground regions
and the background. Figure 1 (top) illustrates the distribu-
tions of foreground activations (red) and background activa-
tions (blue) in CAM. High activations are only dominated
by the most discriminative parts (e.g., bird head). In con-
trast, numerous low activations belong to both the less dis-
criminative parts (e.g., bird body) and the background, mak-
ing them hard to distinguish. The mixup activations bring
the challenge of balancing the precision and the recall of the
foreground region. Specifically, the widely adopted thresh-
old τ=0.2 [6, 22, 38] appears too large to completely cover
foreground object. Whereas tuning a very small threshold
(e.g., τ<0.1) may induce significant false-positive localiza-
tions. Moreover, due to mixup activations, a slight change
to the threshold leads to a drastic change to the IOU when
τ is small (red curve), and therefore the localization result
is sensitive to the threshold. Choe et al. [5] also revealed
that a well chosen threshold could lead to a misconception
of improvement over CAM. This indicates the infeasibility
of improving CAM by simply controlling the threshold.

To address the above challenges, we propose Class RE-
Activation Mapping (CREAM), a novel framework for
WSOL. We rethink the WSOL task by answering “whether
the pixel is more similar to the foreground or the back-
ground”. In particular, we introduce class-specific fore-
ground (background) context embeddings describing the
common foreground (background) features. During train-
ing, a momentum preservation strategy is developed to up-
date the context embeddings under the guidance of CAM.
With abundant context information, the learned embeddings
serve as initial foreground (background) cluster centroids
for each class. During inference, we cast the re-activation
mapping as a parameter estimation problem formulated un-
der the Gaussian Mixture Model (GMM) framework. We
solve it by deriving an Expectation-Maximization (EM)
based soft-clustering algorithm. CREAM boosts the acti-
vation values of the integral object, eases the foreground-
background separation and shows robustness to the thresh-
old, as shown in Figure 1 (bottom). It outperforms prior
WSOL works on CUB, ILSVRC and OpenImages datasets.

To sum up, the contributions of this paper are as follows:

• We propose CREAM, a clustering-based method, to
solve the mixup of activations between less discrimina-
tive foreground regions and the background by boost-
ing the activations of the integral object regions.

• We devise a CAM-guided momentum preservation
strategy to learn the class-specific context embed-
dings and use them as initial cluster centroids for re-
activation mapping.

• We regard re-activation mapping as a parameter esti-
mation problem under the GMM framework and solve

it by deriving an EM-based soft-clustering algorithm.

• CREAM achieves state-of-the-art localization perfor-
mance on CUB, ILSVRC and OpenImages benchmark
datasets. It can also serve as a plug-and-play method
in a variety of existing WSOL approaches.

2. Related Work
2.1. Weakly supervised object localization

Regressor-free WSOL methods. Following Class Ac-
tivation Mapping (CAM) [38], most approaches obtain the
class prediction and the localization map with a classifi-
cation network only [2, 6, 22, 27, 35, 37]. To tackle the
incomplete localization problem of CAM, several meth-
ods adopted an iterative erasing strategy on input images
[22, 32] or feature maps [27, 35] to force the network’s at-
tention to the remaining parts of an object. Inspired by the
attention mechanism, Zhang et al. [36] leveraged pixel-level
similarities across different objects to acquire their consis-
tent feature representations. RCAM [1] offered thresholded
average pooling, negative weight clamping and percentile
thresholding as ways to improving CAM. SEM [37] sam-
pled top-K activations as foreground seeds and used them
to assign the label for each pixel. Xie et al. [28] gener-
ated compact activation maps under the guidance of low-
level features. Different from these approaches, our method
obtains the activation map via an EM-based soft clustering
mechanism, which naturally relieves the incomplete local-
ization problem.

Regressor-based WSOL methods. This category of
work [10,15,25,33] disentangles the WSOL task into image
classification and class-agnostic object localization. The in-
tuition is that a model’s high localization performance is ac-
companied by low classification accuracy in early epochs,
and vice versa in late epochs. The disentanglement aims to
boost both the localization and classification performance.
PSOL [33] first proved that training an additional regres-
sion network for bounding box prediction yielded great im-
provement. The bounding box annotations were obtained
using an unsupervised co-localization approach [26]. Lu et
al. [15] applied a classifier, a generator and a regressor to
impose the geometry constraint for compact object discov-
ery. SLT-Net [10] produced robust localization results with
semantic and visual stimuli tolerance strengthening mecha-
nisms. With the assistance of a separate regression network,
these works achieve superior localization performance over
most regressor-free methods. Our CREAM is applicable to
both the regressor-free and regressor-based methods.

2.2. EM-based deep learning methods

Expectation-Maximization (EM) algorithm has been fre-
quently adopted in deep learning in recent works [3, 12,
14, 16, 30, 31]. Hinton et al. [12] introduced EM routing
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Figure 2. The overall architecture of CREAM. The class-specific context embeddings are maintained during training. At the inference
stage, the trained embeddings act as initial cluster centroids and are utilized to re-activate CAM by executing E-step and M-step alternately.
Map calibration is conducted to generate the final class re-activation mapping M̂c. Best viewed in color.

to group capsules for part-whole relationship construction.
Yang et al. [31] designed prototype mixture models for few-
shot segmentation. They applied EM algorithm to estimate
the models’ mean vectors for query images. Biggs et al. [3]
used EM algorithm to learn a 3D shape prior for animal
reconstruction. Most prior works jointly optimized the pa-
rameters in the EM algorithm and the network’s parameters
during training. In comparison, we derive an EM based al-
gorithm during inference as an unsupervised soft-clustering
mechanism for foreground-background separation.

3. Methodology
3.1. Revisiting class activation mapping for WSOL

Let F ∈ Rd×h×w be the feature map in the last convolu-
tional layer, and each fk corresponds to the feature map at
channel k. wc

k is the weight for the kth channel with regard
to class c. The class activation mapping Mc is defined as:

Mc =
∑
k

wc
kfk. (1)

Meanwhile, the class prediction can be re-written as:

Sc =
∑
k

wc
k

∑
i,j

fk(i, j) =
∑
i,j

Mc(i, j). (2)

where i and j stand for the spatial location. In this way,
solving WSOL with CAM can be interpreted as answering
“which pixels contribute to the class prediction”.

To produce the final bounding box/mask for WSOL eval-
uation, Mc is then normalized to [0, 1] and thresholded
by a pre-defined hyperparameter τ . Only the CAM values
greater than τ are considered as foreground pixels. How-
ever, the activation values of the less discriminative fore-
ground region and the background are indistinguishable, as

shown in Figure 1 (top). CAM is thus prone to the incom-
plete localization problem.

3.2. Class re-activation mapping

For each image, our goal is to discover its foreground re-
gion by mapping each pixel into foreground or background
cluster. We start by introducing V fg and V bg as the context
embeddings. V fg

c ∈ Rd and V bg
c ∈ Rd represent the com-

mon foreground and background context features in class c,
respectively. They can also be regarded as two cluster cen-
troids for each class. The ways to learning the embeddings
and realizing re-activation based on the learned embeddings
are described below. Figure 2 shows the framework of our
proposed Class RE-Activation Mapping.

Training stage: context embedding learning. We fol-
low exactly the same training procedure and the cross-
entropy loss as CAM [38] except that we maintain the con-
text embeddings additionally. The basic idea of context
embedding learning is to use the foreground (background)
features of current mini-batch images to update the embed-
dings. First, we perform hard-thresholding on CAM to ob-
tain the one-hot binary masks Mfg

c ,M bg
c ∈ {0, 1}h×w as

foreground-background indicators, which are calculated as:

Mfg
c = 1(Mc ≥ δ), M bg

c = 1(Mc < δ), (3)

where 1() is an indicator function; and δ is set to 0.2 ×
max(Mc) as suggested in [38]. The foreground (back-
ground) features can be retrieved by the element-wise multi-
plication of the original feature F and the mask Mfg

c (M bg
c ).

For each sample (x, c), we exploit a momentum preserva-
tion strategy on the foreground (background) embeddings
using the spatial average of the foreground (background)
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features. Suppose m ∈ {fg, bg}, the update of the embed-
dings with regard to class c is given by:

V m
c = λV m

c + (1− λ)
1

||Mm
c ||0

h∑
i=1

w∑
j=1

Fij(M
m
c )ij , (4)

where Fij is the F value at location (i, j); λ is the mo-
mentum coefficient; || · ||0 counts the number of non-zero
elements. With rich context features, the trained V fg and
V bg act as the initial cluster centroids for re-activation.

Inference stage: re-activation mapping. At the in-
ference stage, we formulate re-activation mapping as a
parameter estimation problem under Gaussian Mixture
Model (GMM) [20] and solve it using an unsupervised
Expectation-Maximization (EM) algorithm [7]. EM algo-
rithm is a generalization of Maximum Likelihood Estima-
tion for probabilistic models with latent variables [4].
Problem Formulation. For each sample x, the log-
likelihood we aim to maximize is given by:

log p(x|θ) =
h∑

i=1

w∑
j=1

log p(xij |θ), (5)

where θ = {afg, abg, V fg
c , V bg

c } is the model parameter. In
particular, we define the model for each pixel xij as a prob-
ability mixture model of two distributions, i.e., foreground
distribution and background distribution:

p(xij |θ) =
∑

m∈{fg,bg}

ampm(xij |V m
c ), (6)

where the mixing weights afg, abg ∈ [0, 1] and afg+abg=1.
The foreground (background) base model pfg(pbg) is de-
signed to measure the similarity between the image features
and the learned embeddings. Instead of using the RBF ker-
nel in GMM, the choice of base models is Gaussian function
based on cosine similarity for implementation efficiency:

pm(xij |V m
c ) = e(V

m
c )TFij/σ, m ∈ {fg, bg}, (7)

where σ is a scale parameter. Next, we describe the ap-
plication of EM in solving the mixture model. We define
Zfg, Zbg∈ [0, 1]h×w as the latent variables. Zfg

ij represents
the probability of belonging to foreground at location (i, j).
E-step. In the E-step, current parameters are utilized to
evaluate the posterior distribution of the latent variables,
i.e., p(Zfg|x, afg, V fg

c ) and p(Zbg|x, abg, V bg
c ). In each it-

eration t(1 ≤ t ≤ T ), assuming the model parameters are
fixed, the latent variables are computed as:

Z
m(t)
ij =

ampm(xij |V m(t)
c )∑

m′∈{fg,bg} a
m′pm′(xij |V m′(t)

c )
,m ∈ {fg, bg}.

(8)

From the perspective of soft clustering, Eq. (8) calculates
the similarity between each pixel feature and context em-
beddings (i.e., centroids), and assigns a soft label (fg/bg) to
each pixel. Different from the random initialization in EM,
in our case, the initial embeddings have gained sufficient
class-specific features from context embedding learning.
M-step. In the M-step, the purpose is to adjust the con-
text embeddings by maximizing the expected log-likelihood
of the image features using the computed latent variables.
This enables class-specific context embeddings to be image-
specific. The new model parameters can be obtained by:

V m(t+1)
c =

∑h
i

∑w
j Z

m(t)
ij Fij∑h

i

∑w
j Z

m(t)
ij

, am(t+1) =

∑h
i

∑w
j Z

m(t)
ij

h× w
,

(9)
where m ∈ {fg, bg}. V fg

c and afg are updated by the
weighted mean of the features and the effective number of
pixels assigned to the foreground, respectively.

Eqs. (8) and (9) execute alternately until convergence.
Zfg(T ) and Zbg(T ) successfully mark the entire object re-
gions. CREAM naturally re-activates the values of the in-
tegral object regions by assigning a higher probability of
being foreground to them. The consequent benefit of gain-
ing the activation map via feature clustering is that it avoids
Global Average Pooling layer’s bias towards small areas [1].

3.3. Map calibration

So far, Zfg(T ) and Zbg(T ) have been serving as object lo-
calization results. According to the underlying assumption
of CAM, foreground objects correspond to high values in
the activation map. However, we cannot tell from Eqs. (7)
and (8) whether higher or lower values correspond to the
foreground regions in Zfg(T ). To be specific, Zfg(T ) is ex-
pected to be the final localization map only if its foreground
regions have higher values. Otherwise, Zbg(T ) should be
chosen. To deal with this uncertainty, we perform map cal-
ibration by leveraging their averaged probabilities of being
the foreground, i.e., Z

fg
and Z

bg
as:

Z
m

=
1

||Mfg
c ||0

h∑
i=1

w∑
j=1

Z
m(T )
ij (Mfg

c )ij , m ∈ {fg, bg},

(10)
where the foreground region Mfg

c can be similarly retrieved
under the guidance of CAM as to the training stage. The
calibrated foreground map M cal

c is defined as the one with
greater averaged probability:

M cal
c = (Zfg(T ))1(Z

fg≥Z
bg

)(Zbg(T ))1(Z
fg

<Z
bg

). (11)

To further reduce the re-activations over background re-
gions, the final re-activation map M̂c is formulated as the
sum of the calibrated foreground map and CAM:

M̂c = M cal
c +Mc. (12)
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Methods CUB (MaxBoxAccV2) ILSVRC (MaxBoxAccV2) OpenImages (PxAP) Total
VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean

Center baseline 54.4 54.4 54.4 54.4 48.9 48.9 48.9 48.9 45.8 45.8 45.8 45.8 52.3

CAM [38] 63.7 56.7 63.0 61.1 60.0 63.4 63.7 62.4 58.3 63.2 58.5 60.0 61.2
HaS [22] +0.0 -3.3 +1.7 -0.5 +0.6 +0.3 -0.3 +0.2 -0.2 -5.1 -2.6 -2.6 -1.0
ACoL [34] -6.3 -0.5 +3.5 -1.1 -2.6 +0.3 -1.4 -1.2 -4.0 -6.0 -1.2 -3.7 -2.0
SPG [35] -7.4 -0.8 -2.6 -3.6 -0.1 -0.1 -0.4 -0.2 +0.0 -0.9 -1.8 -0.9 -1.6
ADL [6] +2.6 +2.1 -4.6 +0.0 -0.2 -2.0 +0.0 -0.7 +0.4 -6.4 -3.3 -3.1 -1.3
CutMix [32] -1.4 +0.8 -0.2 -0.3 -0.6 +0.5 -0.4 -0.2 -0.2 -0.7 -0.8 -0.6 -0.3
RCAM [1] - - - - - - - - +1.3 +0.1 +2.4 +1.3 -
CAM IVR [13] +1.5 +4.1 +3.9 +3.1 +1.5 +2.1 +1.9 +1.8 +1.0 +0.4 +0.5 +0.6 +1.8

CREAMBase +7.8 +7.5 +10.5 +8.6 +6.2 +5.5 +3.7 +5.1 +3.7 +1.4 +6.2 +3.8 +5.8

Table 1. Quantitative results using threshold-independent metrics. Green (red) numbers denote the absolute increase (decrease) over CAM.

4. Experiments

4.1. Experimental setup

Datasets. We evaluate our method on three popular
WSOL benchmark datasets, i.e., Caltech-UCSD-Birds-200-
2011 (CUB) [24], ILSVRC [8] and OpenImages [5]. CUB
is a fine-grained bird dataset with 200 species. The train-
ing set and testing set contains 5,994 and 5,794 images,
respectively. ILSVRC contains 1.2 million training images
and 50,000 validation images of 1,000 classes. Both CUB
and ILSVRC datasets provide bounding boxes for WSOL
evaluation. OpenImages is a recently proposed benchmark.
It consists of 29,819, 2,500 and 5,000 images of 100 cate-
gories for training, validation and testing, respectively.

Evaluation metrics. Following [33, 34], we use three
threshold-dependent evaluation metrics: Top-1 localization
accuracy (Top-1 Loc), Top-5 localization accuracy (Top-
5 Loc) and GT-Known localization accuracy (GT-Known).
We adopt two recently proposed metrics, MaxBoxAccV2
and Pixel-wise Average Precision (PxAP) [5]. They directly
measure the localization performance regardless of the class
prediction and the choice of threshold τ .

Implementation details. We implement our method on
three backbones pre-trained on ImageNet [8], i.e., VGG16
[21], InceptionV3 [23] and ResNet50 [11]. Following
[5,34,35], the input images are resized to 256×256 and ran-
domly cropped to 224×224. We perform random horizon-
tal flip during training. We train 50/6/10 epochs on CUB,
ILSVRC and OpenImages, respectively. The initial learning
rate is 0.001 and divided by 10 for every 15/2/3 epochs on
three datasets, respectively. Notably, we set 10× scale of
the learning rate to the classifier due to its random initial-
ization. The min-max normalization strategy is adopted in
all the experiments. The SGD optimizer is used with the
batch size of 32. On average, the total iterations T=2 is
sufficient to cover foreground objects. By default, σ=8 and
λ=0.8 are set across all datasets. Specifically, we introduce
two variants of CREAM in the experiments:

Re-activation

classifier

regressor

ℒ𝑀𝑆𝐸
Top1 Loc

Top5 Loc

GT Known

(a) Pseudo bounding box generation 

(b) Regressor training (c) Inference

Inference via trained CREAM

Figure 3. The pipeline of CREAMReg .

• CREAMBase stands for the base CREAM model that
only uses the classification network (i.e., regressor-
free) to obtain both the class prediction and the lo-
calization result, as shown in Figure 2. Most ablation
studies are conducted over CREAMBase.

• CREAMReg includes a regressor to predict the final
bounding box following recent regressor-based meth-
ods [10, 33], as illustrated in Figure 3. First, we apply
the trained CREAMBase model to generate the pseudo
bounding boxes for the training set. We then train a re-
gressor from scratch using the pseudo bounding boxes
as the ground truth. The MSE loss is calculated over
four coordinates of the box. During inference, the
class prediction and object location are derived from
the classifier and the regressor, respectively. By disen-
tangling the WSOL task into classification and class-
agnostic object localization, CREAMReg solves the
contradiction that the localization accuracy gradually
decreases while the classification accuracy increases
during training [17, 33].

4.2. Comparison with state-of-the-art methods

Results on CUB. Tables 1, 2 and 4 show the quantita-
tive comparisons with other methods. Regarding Maxbox-
AccV2 in Table 1, CREAMBase achieves a consistent im-
provement on all the backbones, e.g., up to 10.5% on
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Methods Backbone Localization Accuracy

Top-1 Loc. Top-5 Loc. GT-Known

CAM [38] VGG16 44.15 52.16 56.00
CutMix [32] VGG16 43.45 - -
ACoL [34] VGG16 45.92 56.51 54.10
SPG [35] VGG16 48.93 57.85 58.90
HaS-32 [22] VGG16 49.50 - 71.60
ADL [6] VGG16 52.36 - 75.40
DANet [29] VGG16 52.52 61.96 67.70
MEIL [17] VGG16 57.46 - 73.80
SPA [19] VGG16 60.27 72.50 77.29
RCAM [1] VGG16 61.30 - 80.72
GC-Net [15] VGG16 63.24 75.54 81.10
PSOL [33] VGG16 66.30 84.05 -
SLT-Net [10] VGG16 67.80 - 87.60
ORNet [28] VGG16 67.74 80.77 86.20
FAM [18] VGG16 69.26 - 89.26

CREAMReg VGG16 70.44 85.67 90.98

DANet [29] InceptionV3 49.45 60.46 67.00
ADL [6] InceptionV3 53.04 - -
SPA [19] InceptionV3 53.59 66.50 72.14
I2C [36] InceptionV3 55.99 68.34 72.60
PSOL [33] InceptionV3 65.51 83.44 -
SLT-Net [10] InceptionV3 66.10 - 86.50
FAM [18] InceptionV3 70.67 - 87.25

TS-CAM [9] Deit-S 71.30 83.80 87.70

CREAMReg InceptionV3 71.76 86.37 90.43

Table 2. Quantitative results on CUB.

ResNet compared with vanilla CAM. For GT-Known that
measures the localization performance only, our method
reaches new state-of-the-art GT-Known performance of
90.98% and 90.43% on VGG16 and InceptionV3, respec-
tively. Meanwhile, our method retains the highest accuracy
on Top-1 Loc and Top-5 Loc. Especially when the back-
bone is InceptionV3, CREAMReg surpasses PSOL [33] by
2.9% on Top-5 Loc. Despite variations in bird size and view
angle, the results show that our method succeeds in localiz-
ing objects in the fine-grained dataset CUB.

Results on ILSVRC. Tables 1, 3 and 4 contain the re-
sults on ILSVRC. ILSVRC is more challenging than CUB
because of its 1,000 classes and multiple salient objects
in an image, resulting in potential false-positive localiza-
tions. Despite the difficulties, our method respectively ex-
ceeds CAM by 9.3% and 6.4% on VGG16 and InceptionV3.
Besides, CREAMBase outperforms CAM by an average
of 5.1% on MaxBoxAccV2. In terms of Top-1 Loc., our
method achieves a modest improvement of 0.3%, 0.3% and
1.2% over the second best methods using VGG16 and In-
ceptionV3 and ResNet50, respectively.

Results on OpenImages. Regarding pixel-wise WSOL
evaluation, CREAMBase also achieves high localization
performance. As listed in Table 1, when the backbone
is ResNet50, CREAMBase boosts by 6.2% and 3.8%
over vanilla CAM and the previous best-performed model
RCAM [1], respectively. We attribute the gain to the pixel-

Methods Backbone Localization Accuracy

Top-1 Loc. Top-5 Loc. GT-Known

CAM [38] VGG16 42.80 54.86 59.00
CutMix [32] VGG16 43.45 - -
RCAM [1] VGG16 44.69 - 61.69
ADL [6] VGG16 45.92 - -
ACoL [34] VGG16 45.83 59.43 62.96
MEIL [17] VGG16 46.81 - -
I2C [36] VGG16 47.41 58.51 63.90
SEM [37] VGG16 47.53 - 63.74
SPA [19] VGG16 49.56 61.32 65.05
PSOL [33] VGG16 50.89 60.90 64.03
SLT-Net [10] VGG16 51.20 62.40 67.20
ORNet [28] VGG16 52.05 63.94 68.27
FAM [18] VGG16 51.96 - 71.73

CREAMReg VGG16 52.37 64.20 68.32

CAM [38] InceptionV3 46.29 58.19 62.68
MEIL [17] InceptionV3 49.48 - -
GC-Net [15] InceptionV3 49.06 58.09 -
SPA [19] InceptionV3 52.73 64.27 68.33
SEM [37] InceptionV3 53.04 - 69.04
I2C [36] InceptionV3 53.11 64.13 68.50
PSOL [33] InceptionV3 54.82 63.25 65.21
SLT-Net [10] InceptionV3 55.70 65.40 67.60
FAM [18] InceptionV3 55.24 - 68.62

TS-CAM [9] Deit-S 53.40 64.30 67.60

CREAMReg InceptionV3 56.07 66.19 69.03

Table 3. Quantitative results on ILSVRC.

Methods Backbone CUB ILSVRC

Top-1 Loc. GT Top-1 Loc. GT

RCAM [1] ResNet50 59.53 77.58 49.42 62.20
PSOL [33] ResNet50 70.68 - 53.98 65.44
FAM [18] ResNet50 73.74 85.73 54.46 64.56

CREAMReg ResNet50 76.03 89.88 55.66 69.31

Table 4. Quantitative results using ResNet50.

level EM clustering in CREAM.
The last column in Table 1 shows the total mean scores

across different datasets and threshold-independent metrics.
CREAMBase outperforms CAM and CAM IVR [13] by
5.8% and 4.0% on average. It reveals that the performance
gain of CREAMBase comes from the improved activation
map instead of the choice of a better threshold.

4.3. Ablation study

In Eq. (12), we combine the calibrated foreground map
M cal

c with CAM (Mc) to get the final re-activation map
CREAMBase at the inference stage. In Table 5, we com-
pare CAM (row 1), calibrated foreground map (row 2),
CREAMBase (row 3), and CREAMReg (row 4). The cal-
ibrated foreground map outperforms the vanilla CAM by
a large margin, 29.8% and 5.3% on CUB and ILSVRC
datasets, respectively. It demonstrates the effectiveness
of the proposed re-activation mapping. By combining
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Methods CUB ILSVRC

Top-1 GT Top-1 GT

Baseline CAM (Mc) 44.2 56.0 42.8 59.0
Caliberated foreground map (M cal

c ) 65.5 85.8 49.1 64.3
CREAMBase(Mc +M cal

c ) 67.4 86.7 51.8 68.0
CREAMReg(Mc +M cal

c + regressor) 70.4 91.0 52.4 68.3

Table 5. Ablation study on CREAM using VGG16.

D
D
T

O
u
rs

Figure 4. Comparison of generated pseudo bounding boxes.

Methods CUB ILSVRC

VGG Inception ResNet VGG Inception ResNet

DDT [26] 84.6 51.8 72.4 61.4 51.9 59.9
SLT-Net [10] 85.6 78.6 68.2 63.4 65.7 54.0
CREAMBase 86.7 72.8 88.0 68.0 70.8 69.1

Table 6. GT-Known localization performance of pseudo bounding
box generation methods using different backbones.

CAM and the calibrated foreground map, CREAMBase

further boosts the localization performance. An improve-
ment of 3.7% is observed on ILSVRC. This is because
CAM aids CREAMBase in suppressing the activation val-
ues of the background regions, especially on ILSVRC
where CREAMBase has potential false-positive localiza-
tions. With the aid of the additional separate regression net-
work, CREAMReg consistently improves CREAMBase on
both datasets.

5. Discussion

Pseudo bounding box generation. In PSOL [33],
a co-supervised method DDT [26] was used to generate
pseudo bounding boxes for the training set before a sepa-
rate classification-regression model was trained. For com-
parison, we replace DDT with CREAMBase for bounding
box generation. Following PSOL, we also adopt the resolu-
tion of 448× 448 when generating boxes. The input image
resolution of the regression network remains 224× 224. As
listed in Table 6, CREAMBase surpasses DDT by a large
margin. On ResNet50 backbone, a significant improvement
of 15.6% on CUB is observed. Figure 4 shows the exam-
ples of the generated pseudo bounding boxes. DDT fails to
capture the entire birds when they have long wings or tails,
whereas CREAMBase generates accurate boxes regardless
of the changes in bird scale. However, a potential draw-

T CUB ILSVRC Time (s)

0 56.0 59.0 0.0017
1 69.3 65.5 0.0058
2 86.7 68.0 0.0060
3 82.2 67.0 0.0062
4 75.3 66.4 0.0065

Table 7. GT-Known and infer-
ence time over iterations T .

λ CUB ILSVRC

0.2 85.2 67.3
0.6 85.4 67.7
0.8 86.7 68.0
0.99 85.6 67.9
1.0 53.1 60.3

Table 8. GT-Known over mo-
mentum coefficients λ.

back is that both CREAMBase and DDT have difficulty in
dealing with the reflection, as shown in the last column.

The regression networks in prior works directly predict
the coordinates of the bounding box without improving the
localization map. They have difficulties in fitting pixel-wise
WSOL evaluation (e.g., on OpenImages). Notably, our pro-
posed CREAMBase improves the activation map before the
pseudo box generation in CREAMReg , making CREAM
applicable to both bounding box and pixel-wise evaluation.

Iterations T and momentum coefficient λ. Tables 7
and 8 demonstrate the changes of GT-Known with differ-
ent iterations T and momentum coefficients λ. Both are
conducted on CREAMBase. On both CUB and ILSVRC,
CREAM yields the best performance when T=2. CREAM
(T=2) outperforms CAM by nearly 30% on CUB with only
4.3-ms longer inference time per image. They have similar
training time as context embedding learning is not involved
in the back propagation. We visualize the re-activation
maps in Figure 5. When T=1, the re-activation map roughly
captures the foreground object, but there are still false-
positive pixels. When T=2, as E-step and M-step execute
in turn, the improved foreground (background) cluster cen-
troids have a more precise indication on foreground (back-
ground), and the re-activation map is automatically refined.
Nevertheless, we find that the re-activation map tends to
oversmooth when T is large. As shown in Table 8, CREAM
is not sensitive to the momentum coefficient. A large λ only
performs slightly better. When λ=1.0, the context embed-
dings are equivalent to randomly initialized vectors. In this
case, the embeddings include much random noise in the EM
process, and the performance of CREAM drops dramati-
cally. This suggests that preserving rich context information
in context embeddings helps improve the localization.

Visualization of the localization results. As shown
in Figure 5, our method successfully re-activates com-
plete foreground regions in comparison to CAM. On CUB,
CREAMBase even embodies the capability of precise local-
ization by highlighting the objects with a clear contour. We
attribute this contour-aware localization to the EM-based re-
activation. In EM process, the soft label for each pixel fea-
ture is solely determined by the similarity between the fea-
ture and the context embeddings. The pixel belongs to the
foreground as long as it is more similar to the foreground
context embedding than that of the background.
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Figure 5. Visualization results of the raw image, CAM, CREAMBase (T=1) and CREAMBase (T=2) on CUB, ILSVRC, and OpenImages.

Figure 6. BoxAccV2 under different thresholds on CUB. Solid
(dashed) lines show the results of baselines (our method).

The effect of re-activation and generalization ability
of CREAM. Following [5], we re-implement CAM, HAS
[22] and SPG [35] on BoxAccV2 [5] using VGG16. As
illustrated in Figure 6 (left), HAS and SPG perform better
than CAM only when τ is small (e.g. τ<0.1). When τ is
large (e.g. τ>0.2), however, there is no apparent improve-
ment by CAM. In comparison, CREAMBase curve is above
CAM curve for most thresholds. Besides, it is flatter around
the peak, showing that CREAMBase is more robust to the
choice of threshold.

We integrate CREAMBase into HAS and SPG, resulting
in HAS CREAMBase and SPG CREAMBase, respectively.
As shown in Figure 6 (right), both HAS CREAMBase and
SPG CREAMBase significantly promote the localization
performance with an improvement of 10% to 60% under
different thresholds. The baselines only perform better

when τ<0.1 as their foreground activations gather around
0.1. Whereas the foreground activations in our CREAM-
based counterparts appear larger. Their peaks are also more
flatter than original methods. The results demonstrate the
effectiveness and the generalization ability of CREAM.

6. Conclusion

In this paper, we attribute the incomplete localization
problem of CAM to the mixup of the activations between
less discriminative foreground regions and the background.
We propose CREAM to boost the activation values of the
full extent of object. A CAM-guided momentum preser-
vation strategy is exploited to learn the class-specific con-
text embeddings. During inference, re-activation is formu-
lated as a parameter estimation problem and solved by a de-
rived EM-based soft-clustering algorithm. Extensive exper-
iments show that CREAM outperforms CAM substantially
and achieves state-of-the-art results on CUB, ILSVRC and
OpenImages. CREAM can be easily integrated into various
WSOL approaches and boost their performance.
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