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Abstract

Semi-supervised action recognition is a challenging but
important task due to the high cost of data annotation. A
common approach to this problem is to assign unlabeled
data with pseudo-labels, which are then used as additional
supervision in training. Typically in recent work, the
pseudo-labels are obtained by training a model on the
labeled data, and then using confident predictions from the
model to teach itself. In this work, we propose a more effec-
tive pseudo-labeling scheme, called Cross-Model Pseudo-
Labeling (CMPL). Concretely, we introduce a lightweight
auxiliary network in addition to the primary backbone,
and ask them to predict pseudo-labels for each other. We
observe that, due to their different structural biases, these
two models tend to learn complementary representations
from the same video clips. Each model can thus benefit
from its counterpart by utilizing cross-model predictions
as supervision. Experiments on different data partition
protocols demonstrate the significant improvement of our
framework over existing alternatives. For example, CMPL
achieves 17.6% and 25.1% Top-1 accuracy on Kinetics-400
and UCF-101 using only the RGB modality and 1% labeled
data, outperforming our baseline model, FixMatch [17], by
9.0% and 10.3%, respectively. 1

1. Introduction

The rapid development of deep learning has led to great
success in action recognition. In the standard supervised
learning protocol, a considerable number of annotated
videos is needed but difficult to acquire in practice. On
the other hand, about 500 hours of video is uploaded to
YouTube every minute worldwide, providing a tremendous
amount of unlabeled data. Leveraging such unlabeled
videos for semi-supervised learning could thus be of great
benefit for action recognition.

1Project page is at https://justimyhxu.github.io/
projects/cmpl/.
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Figure 1. Category-wise performance gap between small and
large networks under the supervised training setting given 1%
labeled videos in Kinetics-400 [2]. Accs and Accl denote the
accuracy of the small (3D-ResNet50×1/4) and the large (3D-
ResNet50) network, respectively. For categories on which the
large network performs poorly (i.e., the left half of the figure),
the small network behaves better even with much lower model
capacity. Concretely, the small network tends to perform well on
classes with stronger temporal dynamics, i.e., “Swinging Legs”,
while the large network better recognizes actions mainly charac-
terized by spatial information, i.e., “Testifying”. See Sec. 4.4 for
further discussion.

To gain supervision from unlabeled data, a common
practice is to assign pseudo-labels to these data and treat
them as “ground-truth” for training [11,17,19,26]. Specifi-
cally, existing approaches train a model on labeled data and
then use it to predict the unlabeled videos. If the confidence
in a prediction is high enough, the prediction will be taken
as the pseudo-label of the video, to be used in network train-
ing henceforth. The quantity and quality of pseudo-labels
therefore has a significant impact in the current learning
scheme. However, the limited discriminative power derived
from a small amount of labeled data leads to inadequate
pseudo-labels and limits the gain from unlabeled data.
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Figure 2. Ratio of correct pseudo-labels. To compare the quality
and quantity of pseudo labels generated by CMPL and FixMatch,
we plot the ratio of correct pseudo-labels relative to the total
number of videos in the unlabeled dataset. Both models are trained
with 1% labeled Kinetics-400 [2] (the others are unlabeled). Our
CMPL is shown to more effectively provide high-quality pseudo-
labels than FixMatch.

To better capitalize on unlabeled videos, we present a
pseudo-labeling approach based on complementary repre-
sentations at the model level. We observe that models
of different scales exhibit markedly different behaviors in
regards to category-wise performance, due to their differ-
ent structural biases. As shown in Fig. 1 and studied
in Sec. 4.4, a small model, despite its lower capacity,
can achieve notable improvements over a large model on
certain categories. In particular, it better captures temporal
dynamics in recognizing actions, while a large model tends
to better learn spatial semantics for distinguishing different
action instances. This indicates that the two models differ
in what they learn and therefore can complement each other
in pseudo-labeling, where one model can more successfully
generate pseudo-labels for some categories while the sec-
ond model can be more effective on others.

Based on this observation, we propose Cross-Model
Pseudo-Labeling (CMPL), where the primary backbone is
supplemented by a lightweight auxiliary network with a
different structure and fewer channels than the backbone.
This difference in architecture leads to a different represen-
tation of the input data that complements that of the primary
backbone. Then, given an unlabeled video clip, we borrow
a confident prediction from the auxiliary network as the
pseudo-label for the primary backbone, and vice versa. As
these two models have their own strengths, a greater number
of unlabeled videos can be engaged in pseudo-labeling, fa-
cilitating each other’s training accordingly. Fig. 2 suggests
that our CMPL obtains more high-quality pseudo-labels
than the baseline. In addition, we also study the com-
patibility of this cross-model framework with conventional
temporal data augmentations (i.e., adjusting the temporal
location and the frame rate), which are widely used in
recent literature [5, 16, 29]. Experiments on a range of
standard benchmarks and training settings demonstrate the
effectiveness of our CMPL. In particular, when using only
the RGB modality and 1% labeled videos, CMPL achieves

17.6% and 25.1% Top-1 accuracy on Kinetics-400 [2] and
UCF-101 [18], surpassing FixMatch [17], by 9.0% and
10.3%, respectively. We also conduct a comprehensive
empirical analysis to study how the cross-model supervision
helps improve performance. This analysis shows that the
primary backbone has large improvement on classes for
which the auxiliary network works very well, supporting
our motivation that the auxiliary network can complement
the backbone.

2. Related Work
Semi-Supervised Learning for Image Classification.
Semi-supervised learning has been well-explored in the
area of image classification. Some prior works leverage
consistency regularization which requires models to be ro-
bust to perturbations including data augmentations [25] and
adversarial perturbations [13]. Recent work focuses more
attention on the pseudo-labeling framework, which assigns
labels to unlabeled images according to model predictions.
In particular, [19] and [11] produce pseudo-labels by uti-
lizing the exponential moving average of model parame-
ters and historical predictions, respectively. Differently,
FixMatch [17] combines consistency regularization and
pseudo-labeling by requiring the predictions from strongly-
augmented data to mirror those from weakly-augmented
data. These methods do not explicitly consider the temporal
dynamics that characterize human actions, which are shown
in our work to be more effectively represented with the help
of a separate complementary network.
Semi-Supervised Learning for Action Recognition.
While action recognition [2, 4, 6, 7, 12, 14, 15, 20–24, 27, 30,
33, 34] has progressed significantly in recent years, semi-
supervised learning for action recognition has been less
studied. [8] represents actions by a conventional action
bank and applies variants of extreme learning machines
for final class prediction. [31] presents an encoder-decoder
structure that is trained via an image reconstruction pretext
task. [9] introduces a new framework that leverages a 2D
image classifier to assist action recognition. [16] proposes a
temporal contrastive learning framework to model temporal
aspects by comparing the same video at different speeds.

A different approach is to learn from multiple views
of the same source data. In the concurrent work of
[28], the different views correspond to RGB, optical flow,
and temporal gradients. Prediction results are separately
generated from each view using a single common model,
and these results are ensembled to produce pseudo-labels
for retraining the model. This approach is similar to that of
co-training [1], where two networks are asked to iteratively
make predictions on the unlabeled data and the pseudo-
labels are then merged to supervise the two models jointly.
Differently, our approach requires the two models with
different architectures to provide pseudo-labels for each
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other in a cross-teaching manner. In this way, they are
expected to benefit from the complementary representation
learned by their counterparts.

3. Method
Given a labeled set V = {(v1, y1), . . . , (vNl

, yNl
)} con-

taining Nl videos and an unlabeled set U = {u1, . . . , uNu
}

comprising Nu videos, CMPL learns an action recognition
model by efficiently leveraging both labeled and unlabeled
data. In general, Nu is much larger than Nl. In this
section, we first present preliminary background on the
pseudo-labeling framework in Sec. 3.1, then we introduce
the proposed CMPL framework in Sec. 3.2, followed by a
description of the implementation for CMPL in Sec. 3.3.

3.1. Preliminaries on Pseudo-Labeling

Pseudo-labeling is a commonly used technique for semi-
supervised image recognition. It promotes the idea of utiliz-
ing the model itself to produce artificial labels for unlabeled
data. The artificial labels obtained with confidence above
a pre-defined threshold are retained, and the corresponding
unlabeled data can then serve as additional training samples.
A recent state-of-the-art method that adopts the pseudo-
labeling scheme is FixMatch [17], which uses a weakly-
augmented image as input to acquire the image’s pseudo-
label, that is subsequently paired with a strongly-augmented
version to form a labeled sample. FixMatch can be directly
extended to semi-supervised action recognition as:

Lu =
1

Bu

Bu∑
i=1

1(max(pi) ≥ τ)H(ŷi, F (Tstrong(ui))),

(1)

where Bu represents the batch size, τ is a threshold to
determine whether a prediction is confident or not, 1(·)
denotes the indicator function, pi = F (Tweak(ui)) denotes
class distribution, and ŷi = argmax(pi) represents the
pseudo-label. Tstrong(·) and Tweak(·) respectively denote
the weak and the strong augmentation processes. H(·, ·)
denotes the standard cross-entropy loss. Lu is the loss on
the unlabeled data, and the loss on the labeled data is the
cross-entropy loss commonly used in action recognition.

3.2. Cross-Model Pseudo-Labeling

As described in Sec. 3.1, the core idea of recent semi-
supervised learning approaches is to construct as many
high-quality pseudo-labels for unlabeled data as possible.
However, when the number of labeled data is limited, the
discriminative power of a single model is too weak to
successfully assign a large number of pseudo labels to the
unlabeled data. Therefore, our approach is to learn two
models with different architectures and ask them to provide

pseudo-labels for each other, which is inspired by the obser-
vation that different models have different structural biases
that lead to complementary semantic representations. As
shown in Fig. 3, our CMPL framework employs two models
(i.e., the primary backbone F (·) and the auxiliary network
A(·)) with different capacities. They both learn from
labeled data through supervised training and simultaneously
provide their companion with pseudo-labels for unlabeled
data. This symmetric design incentivizes the two models to
learn complementary representations, which in turn boosts
performance.
Learning on Labeled Data. It is straightforward to train
a model on labeled data. Given a set of labeled videos
{(vi, yi)}Bl

i=1, we formulate the supervised loss of the two
networks as:

LF
s =

1

Bl

Bl∑
i=1

H(yi, F (T F
standard(vi))), (2)

LA
s =

1

Bl

Bl∑
i=1

H(yi, A(T A
standard(vi))), (3)

where Tstandard(·) represents the standard data augmenta-
tion used in action recognition [4, 24].
Learning on Unlabeled Data. Given an unlabeled video
ui, the auxiliary network A(·) will make a prediction on
the weakly-augmented ui and output the category-wise
probabilities, pAi = A(Tweak(ui)). If the maximum
entry among these probabilities, max(pAi ), surpasses a pre-
defined threshold τ , we then regard this to be a solid
prediction and utilize pAi to derive the pseudo ground-truth
ŷAi = argmax(pAi ) for the strongly-augmented ui. In this
way, the backbone F (·) can be learned with

LF
u =

1

Bu

Bu∑
i=1

1(max(pAi ) ≥ τ)H(ŷAi , F (Tstrong(ui))),

(4)

where Bu denotes batch size, and H(·, ·) is cross-entropy
loss.

Similarly, the primary backbone will also make a predic-
tion pFi = F (Tweak(ui)) and use it to generate a labeled
pair (ŷFi , Tstrong(ui)) for the auxiliary network:

LA
u =

1

Bu

Bu∑
i=1

1(max(pFi ) ≥ τ)H(ŷFi , A(Tstrong(ui))).

(5)

Complete Training Objective. To summarize, with the
supervised losses from labeled data and the unsupervised
losses from unlabeled data, the complete objective function
is presented as

L = (LF
s + LA

s ) + λ(LF
u + LA

u ), (6)

2961



Weak
Aug

Pseudo
Labeling

Unlabeled Video

Primary

Auxiliary

Weak
Aug

Strong 
Aug

Strong 
Aug

Pseudo
Labeling

Unsupervised
Loss

Unsupervised
Loss

SG

SG

Figure 3. Illustration of the proposed Cross-Model Pseudo-Labeling (CMPL) framework, which consists of two models, i.e., the
primary backbone F (·) and the auxiliary network A(·). They take video input at different frame rates. Unless specified, we adopt 3D-
ResNet50 as the primary backbone and a lightweight 3D-ResNet50 ×1/4 as the auxiliary network. Given an unlabeled video, these two
models make independent predictions on weakly-augmented data. The predicted results are used to produce a pseudo-label for their sibling
where it is used as supervision for a strongly-augmented version. “SG” stands for the stop-gradient operation. The supervised losses from
labeled data are omitted in this figure.

where λ denotes the balancing coefficient for the unsuper-
vised losses. Note that the size of the auxiliary network
A(·) is designed to be much smaller than the backbone
F (·); therefore, the introduction of A(·) has little effect on
training efficiency.

3.3. Implementation

In this part, we describe the implementation of CMPL.
Auxiliary Network. As stated in Sec. 3.2, the auxiliary
network should have a different capacity from the primary
network to provide complementary representations. In
practice, we obtain the auxiliary network by adjusting the
depth and width of the primary network. For instance, if
the primary network is 3D-ResNet50, the auxiliary network
could be 3D-ResNet18 or 3D-ResNet50×1/4 where the
channels are reduced four-fold. Comprehensive ablation
studies on the depth and width of the auxiliary network
are included in Tab. 3 of the experiments section. Un-
less otherwise specified, we adopt 3D-ResNet50 and 3D-
ResNet50×1/4 as the primary backbone and auxiliary
network, respectively.
Temporal Data Augmentations. For spatial data augmen-
tation, we strictly follow the augmentations of [4, 24] for
training as Tstandard(·) on labeled data. For unlabeled data,
center cropping with a patch size of 224× 224 is employed
as the weak augmentation Tweak(·). Following FixMatch
[17], RandomAugmentation [17, 25] together with Cutout

[3] are used as the strong augmentations Tstrong(·). Note
that all the spatial transformations of the above augmenta-
tions are temporally consistent across all frames in the same
video clip.

Besides spatial augmentations, commonly used temporal
data augmentations, namely various temporal locations and
frame rates, are compatible with our CMPL. Previous
work [5] suggests that visual content is often temporally
persistent throughout the time span of a video, such that
different clips of a given video share similar representations.
Accordingly, we adjust the temporal location of the input
clip and control the augmentation strength via an adjustable
time offset ts. In our CMPL framework, this is done
by feeding the primary backbone F (·) and the auxiliary
network A(·) clips from different temporal locations of the
same video while still requiring them to supervise each
other. Meanwhile, we also follow [16, 29] in regarding
different frame rates as a form of temporal augmentation.
This is also illustrated in Fig. 3, where a faster frame rate
results in more frames given that all clips share the same
temporal duration.

4. Experiments

We evaluate the proposed CMPL on two commonly
used datasets, namely Kinetics-400 [2] and UCF-101 [18],
using two standard settings for semi-supervised action
recognition (i.e. 1% and 10% labeled data). Detailed
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Table 1. Comparison with state-of-the-art methods on UCF-101 and Kinetics-400. Note that R18 and R50 denote the backbone
networks and their depths. We report top-1 accuracy as the evaluation metric. “Input” shows the input data format used during training,
where ”V” is the raw rgb video, ”F” is optical flow and ”G” is the temporal gradient.

Method Backbone Input #Frames
UCF-101 Kinetics-400

1% 10% 1% 10%

Supervised 3D-ResNet50 V 8 6.5 32.4 4.4 36.2

Image-based Semi-supervised Methods
S4L [32] 3D-ResNet18 V 16 - 29.1 - -
FixMatch [17] 3D-ResNet50 V 8 14.8 49.8 8.6 46.9
FixMatch [17] SlowFast-R50 V 8 16.1 55.1 10.1 49.4

Video-based Semi-supervised Methods
VideoSSL [10] 3D-ResNet18 V 16 - 42.0 - -
TCL [16] TSM-R18 R 8 - - 8.5 -
MvPL [28] 3D-ResNet50 V+F+G 8 22.8 80.5 17.0 58.2

Ours 3D-ResNet18 V 8 23.8 67.6 16.5 53.7
Ours 3D-ResNet50 V 8 25.1 79.1 17.6 58.4

ablation studies on the design choices of CMPL are also
included. In addition, some empirical analysis is presented
to validate our motivations for CMPL. We note that all the
experiments are conducted on a single modality (i.e., RGB)
and evaluated on the corresponding validation set unless
otherwise stated.

4.1. Settings

Dataset. Kinetics-400 [2] consists of 240K and 20K
videos respectively for training and validation, covering 400
categories. Each video lasts about 10 seconds. UCF-101
[18] contains 101 action classes with roughly 9.5K training
videos and 4K validation videos. To obtain 1% or 10%
labeled data for the two evaluation settings, for Kinetics-
400 we form two balanced labeled subsets by sampling
6 or 60 videos per class. As for UCF101, we sample
1 or 10 videos per class as labeled data. To reduce the
randomness brought by the sampling process, the accuracy
averaged over three different sampled subsets is reported.
To obtain the input frames for each video, we first extract 64
consecutive frames as a raw clip, then sample sparsely with
a stride s to obtain 64/s frames, denoted as 64/s×s. Unless
stated otherwise, the input frames for the primary and
auxiliary branches are set to 8× 8 and 16× 4, respectively.
Training. For Kinetics-400, we train the model using 16
GPUs, with the SGD optimizer, momentum 0.9, and weight
decay 0.0001. The batch size for labeled data and unlabeled
data are 2 and 10 on each GPU, resulting in a mini-batch
size of 192 in total. The base learning rate is set to 0.1
and decayed according to the cosine scheduler. A total of
200 training epochs is used. In addition, λ is set to 5 and
2 for the 1% and 10% labeled data settings, and τ is set to
0.9. The training setting of UCF-101 is the same as that for

Kinetics-400 except that the weight decay is set to 0.001.
Inference. Following the test protocol in [4, 24, 30],
we uniformly sample ten clips over the whole video and
average the softmax probabilities of all clips as the final
prediction. The shorter spatial side of the input video is
scaled to 256 pixels, and three crops of size 256 × 256
are extracted to obtain more spatial information. Although
the primary and auxiliary network are jointly optimized
in training, we use only the primary model for inference,
leading to no additional inference cost.
Baselines. First, we have a supervised baseline with the
same architecture as our approach and the same set of la-
beled samples for training, but without any unlabeled data.
Secondly, we extend the state-of-the-art semi-supervised
learning approaches in the image domain [17, 32] to the
video domain for comparison. For Fixmatch [17], we
adopt the same experimental settings as our approach.
Finally, we also include the state-of-the-art video-based
semi-supervised learning methods [10, 16, 28], whose per-
formances from their original papers are directly reported.

4.2. Main Results

Quantitative results are presented in Tab. 1. Compared to
previous methods that use a single modality of RGB frames
(all baselines except for MvPL [28]), our CMPL leads by a
clear margin even when equipped with a shallower network,
i.e., 3D-ResNet18 as the backbone. Further improvements
are obtained by increasing the capacity of the backbone
network i.e., from 3D-ResNet18 to 3D-ResNet50.

While CMPL outperforms FixMatch when both of these
methods adopt 3D-ResNet50 as the backbone, the im-
provement of CMPL may come from the inclusion of the
lightweight auxiliary network. To investigate this, we
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Table 2. Ablation studies on CMPL components. We gradually
add the auxiliary network (Auxilary), different visual tempos
(Frame Rates) and different temporal locations (Temporal Loc) to
the baseline model (FixMatch). All studies are trained with 50
epochs on 1% labeled Kinetics-400. Unless specified, the results
of following tables are all with the same training configuration.

Auxilary Frame Rates Temporal Loc Top-1

FixMatch 6.78
3 7.12
3 3 7.68

3 12.04
3 3 12.90
3 3 3 13.71

change the backbone of FixMatch from 3D-ResNet50 to
SlowFast-R50, which is a two-branch network that also
includes a lightweight component for feature aggregation.
As shown in Tab. 1, CMPL still outperforms FixMatch with
a larger backbone, suggesting it is the auxiliary supervision
that matters.

Meanwhile, the concurrent work MvPL [28] achieves
performance competitive to ours. However, for these results
it uses 3 modalities, compared to only the RGB modality for
CMPL.

4.3. Ablation Study

In this part, we make comprehensive analysis of the
proposed CMPL via ablation studies. We first analyze the
key components of our approach in Sec. 4.3.1, followed by
the experimental results of different instantiations of losses
and hyperparameters in Sec. 4.3.2. Note that all ablation
studies are performed on 1% labeled data of Kinetics-400
with 50 training epochs. The 3D-ResNet50 backbone and
the sparse sampling strategy (8 × 8) are adopted for the
primary backbone unless specified otherwise.

4.3.1 CMPL Components

Ablations on CMPL components. While the auxiliary
network provides pseudo-label estimates that complement
those generated by the primary backbone, we adopt two
advanced temporal augmentations to further enhance di-
vergence between the representations of these two net-
works, to encourage greater complementarity. As shown
in Tab. 2, starting from the baseline approach FixMatch
which achieves 6.78% Top-1 accuracy, introducing the
auxiliary supervision improves the accuracy to 12.04%,
demonstrating the effectiveness of the cross-model strategy.
On top of this, the temporal augmentations further enhance
performance to 13.71%, leading to a stronger result.
Auxiliary network architecture. To study the effect
of auxiliary network architecture, we start by using the

Table 3. Architectures of the auxiliary network. Different
architectures are adopted as the auxiliary network to study the
effects of network architectures. Specifically, when the auxiliary
pathway adopts the primary’s architecture, CMPL degenerates to
FixMatch [17], providing a strong baseline for our comparison.

Auxiliary Network #Frames #FLOPs Top-1

Primary 8 146G 6.78
Primary 16 168G 7.12
3D-ResNet50 16 187G 9.97

network depth
3D-ResNet18 16 132G 10.63
3D-ResNet10 16 108G 10.88

network width
3D-ResNet50×1/2 16 112G 11.57
3D-ResNet50×1/4 16 94G 12.90
3D-ResNet50×1/8 16 87G 12.08

Table 4. Effects of input #Frames. Different number of frames
are adopted as the auxiliary input to evaluate the effect of frame
rates in CMPL.

T 8 × 8 16 × 4 32 × 2

Top-1 12.04 12.90 12.94

same architecture for both the backbone and the auxiliary
network, which leads to two different versions, one with a
shared set of parameters (equivalent to FixMatch) and an-
other with two different sets of parameters, corresponding
to the 2nd and 3rd lines of Tab. 3.

Subsequently, we also shrink the depth and width of
3D-ResNet50 to produce other auxiliary network variants.
Tab. 3 presents the performance with different auxiliary
networks. It can be seen that even with the backbone
and auxiliary network being identical but with different
weights, learning in the cross-model manner still leads to
performance improvements. Moreover, substantial gains
are obtained no matter which factor (e.g., depth or width)
is shrunk, indicating that a relatively small network as the
auxiliary network can provide complementary information
for the backbone. In addition, the cross-model learning
strategy is the key to the enhanced performance, rather than
the newly introduced model capacity, since consistent gains
are observed as the auxiliary network varies.
Frame rate for visual tempo. To study how the frame rates
between the primary backbone and auxiliary network affect
the performance, we fix the sampling rate (8 × 8) for the
backbone, and use different sampling rates for the auxiliary
network, namely 8 × 8, 16 × 4, and 32 × 2.

As shown in Tab. 4, a larger sampling rate leads to a
better performance. As stated in previous work [4, 30], a
larger difference between two sampling rates usually leads
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Table 5. Effects of time offset ts. The time offset determines the
temporal distance between the clips processed by the primary and
auxiliary networks.

ts 1 2 5 10

Top-1 12.90 12.64 13.44 13.71

Table 6. Effects of the losses for the auxiliary network.

LA
s LA

u Top-1 Top-5

FixMatch 6.78 17.92
3 10.57 25.53

3 10.32 24.46
3 3 12.90 28.19

to a more different representations of the same videos at
the input level. This naturally constructs two relevant and
complementary views, further boosting our cross-model
learning.
Time offset for temporal location. Besides frame rate,
we also explore the effect of the time offset for temporal
location, which is controlled by the hyper-parameter ts as
shown in Sec. 3.3. Tab. 5 reports the performance for
increasing ts. It is seen that a larger ts positively affects
the final performance. It should be noted that the trimmed
videos of Kinetics last about 10s so that ts is set to at most
10.

4.3.2 Choices of losses and hyperparameters

Losses for auxiliary branch. There is a supervised and
an unsupervised loss for both the primary and the auxiliary
networks. Here, we examine the importance of the super-
vised and unsupervised loss of the auxiliary network, while
the two losses of the primary network are kept.

Tab. 6 presents the results. Including the auxiliary
network always improves performance, no matter where
the labels come from (e.g. pseudo-labels or ground-truth
labels). This demonstrates that the auxiliary network brings
representations complementary to those of the primary
network. Including both types of labels leads to the best
results.
Hyperparameters. Fig. 4a presents the effects of different
thresholds, where using 0.9 as the threshold obtains the best
performance. It is concluded that a higher threshold leads
to better performance, i.e., the quality of the pseudo labels
matters. Besides, we also consider the ratio of unlabeled
data to labeled data (Bu/Bl). We fix the batch size of
labeled data to be 2 and set the ratio to be {1, 2, 5, 10}
to analyze its effect. As shown in Fig. 4b, Bu/Bl set to
be 5 can achieve the best trade-off between performance
and computation cost. We also analyze the effect of the
loss weight λ and observe that it affects the performance as
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Figure 4. Effects of hyperparameters. Results of varying
threshold, the ratio of unlabeled data to labeled data (Bu/Bl), as
well as the loss weight (µ), are included to comprehensively study
the effects of the hyperparameters.
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Figure 5. Accuracy drop ratio with different frames per clip.
The top half of this figure presents the re-sampled frames with
different strides. As the stride increases, the number of re-sampled
frames decreases, weakening the temporal dynamics of the given
clip. We evaluate the performance drop ratio of the re-sampled
frames to study the representations learned by the two different
networks.

accuracy drops by 2% when setting λ to 1 or 10. Fig. 4c
illustrates that the optimal value of the loss weight is 5, at
which the supervised loss and unsupervised loss is properly
balanced.

4.4. Empirical Analysis

To validate our motivations for CMPL, some empirical
analysis is conducted on Kinetics-400 with 1% labeled
data. Unless specified otherwise, we use 3D-ResNet50 as
the backbone, which takes 8 frames as input. As for the
auxiliary network, we use 3D-ResNet50×1/4, which takes
16 frames as input.
Representation learned by different networks. Fig. 1
indicates that networks of different scale learn complemen-
tary semantics with limited annotated data. To study the
mechanism by which these two networks complement each
other, we first train the primary and auxiliary networks
separately with 8 × 8 frames as the input. They are only
trained with 1% labeled samples of Kinetics-400. We then
re-sample the 8 frames with different stride {1, 2, 4, 8} in
order to decrease the temporal dynamics of a given video
clip. Notably, no matter how many frames the sampled
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clip contains, they are always extended to a 8-frame clip
for testing.

Fig. 5 displays accuracy curves of the two networks with
inputs of varying temporal dynamics. It can be seen that the
auxiliary network is more sensitive to temporal dynamics.
This suggests that the tiny model using a lower channel
capacity can better capture fast motion without building
a detailed spatial representation, providing complementary
temporal semantics in relation to the spatial patterns learned
by the backbone network.
Effects of the auxiliary pseudo-labels. A key difference
between CMPL and FixMatch [17] is the source of the
pseudo-labels. The primary backbone takes the pseudo-
labels from the auxiliary network while FixMatch only uses
its own high-confidence predictions. To study the quality
of the pseudo-labels provided by the auxiliary network,
we compare three sources of pseudo-labels, namely the
backbone network, the auxiliary network trained in CMPL,
and the 3D-ResNet50 trained in FixMatch, which has the
same architecture as the backbone network. We first select
the samples with pseudo-labels assigned by the auxiliary
network to build a subset. And then the accuracy of
these three pseudo-label sources are tested on this subset.
Accuracy is recorded over the whole training process at an
interval of 10 epochs.

Fig. 6 shows the accuracy curves. Obviously, for the
samples originally labeled by the auxiliary network with
high confidence, the auxiliary network consistently obtains
better pseudo-labels (orange curve) than the backbone
network (blue curve) throughout the training process.
Moreover, compared to the same architecture learned with
FixMatch (green curve), the backbone network gradually
produces better estimates for these selected samples. Such
results demonstrate 1) cross-model pseudo-labeling using a
tiny auxiliary network can enhance the backbone network;
2) the backbone network indeed learns from the auxiliary
network through the proposed cross-model strategy; 3) al-
though the low-capacity auxiliary network tends to perform
worse than the high-capacity backbone network, it still
provides knowledge to guide the latter.
Primary gain vs. Auxiliary accuracy. The key idea of
CMPL is to adopt an auxiliary network to provide com-
plementary information that promotes better representation.
Therefore, we examine the per-class gain (primary gain)
of the backbone network on the Kinetics-400 validation
dataset when adopting our CMPL instead of FixMatch.
We also include the per-class performance of the auxiliary
network (auxiliary accuracy) trained in a supervised man-
ner as a reference. For better visualization, we discretize
auxiliary accuracy into bins with an interval of 0.05 and
then calculate the mean of the primary gain (y-axis) in
each bin. As shown in Fig. 7, the performance gain of
the backbone network is positively correlated with that of
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Figure 6. Training accuracy curves of the primary branch of
CMPL (blue), the backbone of FixMatch (green), and the auxilary
of CMPL (orange). Training accuracy is evaluated on the samples
with pseudo-labels assigned by the auxiliary network. Please refer
to Sec. 4.4 for more details.
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Figure 7. Primary gain vs. Auxiliary accuracy. Each red point
denotes the mean accuracy gain of the primary backbone within
a bin of auxiliary network accuracy. The blue line plots a least
squares approximation.

the auxiliary network on the corresponding classes. This
study supports our motivation that the auxiliary network
complements the backbone network, particularly on action
classes recognized well by the former.

5. Conclusion
We present a Cross-Model Pseudo-Labeling frame-

work for semi-supervised action recognition. It pairs a
lightweight auxiliary network with the primary backbone
such that they can learn from each other via pseudo-
labeling. Over multiple datasets and low data regimes,
our approach outperforms its supervised counterpart with
limited labeled data by a substantial margin and surpasses
several previous methods using only RGB frames. More-
over, we show that the primary network can be comple-
mented by an auxiliary network even with the same input,
demonstrating a new alternative to the previous standard of
changing the input data in semi-supervised learning. While
CMPL obtains improved performance for semi-supervised
action recognition, its results with 10% annotated data are
not as good as supervised training with 100% labeled data.
This leaves room for further investigation into improving
CMPL with more advanced techniques.
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