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Abstract

It is well known that the passive stereo system cannot
adapt well to weak texture objects, e.g., white walls. How-
ever, these weak texture targets are very common in indoor
environments. In this paper, we present a novel stereo sys-
tem, which consists of two cameras (an RGB camera and an
IR camera) and an IR speckle projector. The RGB camera is
used both for depth estimation and texture acquisition. The
IR camera and the speckle projector can form a monocu-
lar structured-light (MSL) subsystem, while the two cam-
eras can form a binocular stereo subsystem. The depth map
generated by the MSL subsystem can provide external guid-
ance for the stereo matching networks, which can improve
the matching accuracy significantly. In order to verify the
effectiveness of the proposed system, we build a prototype
and collect a test dataset in indoor scenes. The evaluation
results show that the Bad 2.0 error of the proposed system is
28.2% of the passive stereo system when the network RAFT
is used. The dataset and trained models are available at
https://github.com/YuhuaXu/MonoStereoFusion.

1. Introduction
Depth estimation is a fundamental problem in computer

vision, which has numerous applications in the fields of 3D
modeling, robotics, UAVs, augmented realities (AR), and
autonomous driving [1, 10, 31]. Depth estimation methods
can be divided into active structured-light, binocular stereo
vision, time-of-flight (TOF), and monocular depth estima-
tion.

Since Microsoft Kinect [48] was released in 2010,
consumer-grade depth sensors have been widely used.
Kinect is based on the monocular structured-light method,
which was also used in iPhone X released in 2017. How-
ever, it may fail to obtain depth measurements for distant
objects, or outdoor scenes under strong light. The binocular
stereo vision system has a larger measurement range than
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the structured-light system, and it can also work in outdoor
environment with strong sunlight, but it is easily affected
by the surface texture of the objects. In recent years, stereo
matching methods based on deep learning have achieved
remarkable progress. However, these methods may still fail
on scenes with weak texture (e.g., white walls). And this
kind of weak texture objects are very common in indoor
environment. The binocular active structured-light system
(e.g., Intel D435 [14]) relies on two IR cameras and an IR
projector for depth estimation, which has good adaptability
in both indoor and outdoor situations. To acquire texture, a
third camera (i.e. RGB camera) is required. Since there is
a baseline between the RGB camera and IR camera, a coor-
dinate system conversion step is required to make the depth
image aligned with the RGB image. Due to the noise of
the depth map and the error of the calibration parameters,
it is difficult to accurately align the RGB image and depth
map. In terms of hardware, three cameras and one projector
are required, which is not compact. TOF has poor adapt-
ability to objects with low reflectivity and distant objects.
In addition, TOF suffers from multipath interference [30].
The monocular depth estimation methods cannot obtain the
depth maps with a certain scale [11].

In this work, we seek a compact depth sensing solu-
tion that can integrate the advantages of the monocular
structured-light and binocular stereo vision.

The main contributions of this work are:
(1) We propose a novel stereo vision system, which con-

sists of an RGB camera, an IR camera and an IR speckle
projector. Especially, the IR camera is not attached with a
filter. Thus the IR camera can receive IR light (invisible to
human eyes) and ambient light (visible to human eyes) si-
multaneously. The IR camera and IR projector can form a
monocular active structured-light system as Kinect, while
the IR camera and the RGB camera can form a binocular
stereo system. These two types of stereo systems have com-
plementary advantages. We can obtain a robust stereo sys-
tem by fusing the initial depth map obtained by the active
structured-light system in the cost volume of stereo match-
ing network.
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(2) We build a prototype system and collect a new stereo
dataset for integrating the monocular structured light and
binocular stereo vision (i.e. MonoBinoStereo) to verify the
effectiveness of the proposed method. The dataset will be
open for further research.

(3) We find that DNN can accurately estimate the dispar-
ity map of a pair of asymmetric stereo images, where one is
passive and the other is active (with speckles). To the best
of our knowledge, this is the first time that DNN is used to
process this kind of stereo images with asymmetric texture.

The features of the proposed stereo system are as fol-
lows:

(1) Compared with the classical binocular stereo vision,
it is robust to weak texture objects and rich texture objects
simultaneously in indoor environments.

(2) Compared with the existing monocular structured-
light system (e.g., Kinect [48] and Astra [24]), it has a larger
measuring distance range and better performance in outdoor
environment.

(3) Compared with the existing active depth sensing sys-
tem (e.g., Kinect and Intel D435), its output depth maps
have better completeness. In addition, the depth map is
naturally aligned with the RGB image pixel-by-pixel. This
feature gives our camera a significant advantage in certain
applications, such as object segmentation.

(4) For the interference of strong sunlight, it will degen-
erate into an ordinary passive stereo system in outdoor en-
vironments.

2. Related Work
Zbontar et al. [44] first use convolutional neural network

(CNN) to compare two image patches (e.g., 9×9 or 11×11)
and calculate their matching costs. The following steps,
such as cost aggregation, disparity computation, and dis-
parity refinement, are still traditional methods [23]. This
method (i.e. MC-CNN) significantly improves the accu-
racy, but still struggles to produce accurate disparity results
in textureless, reflective and occluded regions and is time-
consuming. DispNetC [22] is the first end-to-end stereo
matching network, which is more efficient, almost 1000
times faster than MC-CNN-Acrt [44]. In DispNetC, there
is an explicit correlation layer. In traditional stereo match-
ing methods, there is usually a disparity refinement module.
Inspired by this, the residual refinement layers are exploited
[19, 20, 25] to further improve the prediction accuracy. Be-
sides, the segmentation information [42] and edge informa-
tion [33] are incorporated into the stereo matching networks
to improve the performance. Wang et al. [37, 38] propose a
generic parallax-attention mechanism to capture stereo cor-
respondence regardless of disparity variations. Optical flow
and rectified stereo are closely related problems. RAFT [35]
uses a gated recurrent unit (GRU) based operator to itera-
tively update the flow field using features retrieved from the

correlation volume. RAFT shows good generalization per-
formance.

GC-Net [16] first uses 3D convolutions for cost aggre-
gation in a 4D cost volume, and utilizes the soft argmin
to regress the disparity. Duggal et al. [8] adopt the idea
of PatchMatch Stereo [2], and build a thin cost volume to
speed up the prediction process. The similar idea is also
used in [12]. Variance-based uncertainty estimation is used
to adaptively adjust disparity search space of the thin cost
volume [4,32]. Recent work [3,8] shows that the 3D convo-
lution can improve matching accuracy on specific datasets.
However, 3D convolution is more time-consuming than 2D
convolution, which makes it difficult to apply in real-time
applications. In order to pursue real-time performance,
StereoNet [17] performs 3D convolution at a low resolution
(e.g., 1/8 resolution), and then refines the disparities hierar-
chically. The resulting network can run in real-time at 60
fps. However, this simplification decreases the network’s
accuracy.

Xu et al. [40] design a bilateral grid based edge-
preserving cost volume upsampling module. With the up-
sampling module, a high quality cost volume of high reso-
lution can be obtained from the low resolution version ef-
ficiently. The upsampling module can be embedded into
many existing stereo matching networks, such as GCNet
[16], PSMNet [3] and GANet [45]. The resulting net-
works can be accelerated by several times while maintain-
ing comparable accuracy. HITNet [?] does not explicitly
build a volume and instead relies on a fast multiresolution
initialization step, differentiable 2D geometric propagation
and warping mechanisms to infer disparity hypotheses. To
achieve high accuracy, this method infers slanted plane hy-
potheses allowing to accurately perform geometric warping
and upsampling operations. In order to reduce the com-
putation burden, Yao et al. [43] propose a decomposition
model which performs dense matching at a very low reso-
lution (e.g., 20 × 36) and uses sparse matching at differ-
ent higher resolutions to recover the disparity of lost details
scale-by-scale.

ActiveStereoNet [47] is the first deep learning solution
for active stereo systems. Due to the lack of ground truth,
the network is designed to be fully self-supervised. Instead
of formulating the depth estimation via a correspondence
search problem, Riegler et al. [29] show that a simple con-
volutional architecture is sufficient for high-quality dispar-
ity estimates in a monocular structured-light system.

Our work is also related to image guided depth comple-
tion, whose task is to estimate the dense depth map from
sparse depth measurement. Ma et al. [21] proposed to
feed the concatenation of the sparse depth and the color
image into an encoder-decoder deep network. Jaritz et
al. [15] combined semantic segmentation to improve the
depth completion. Cheng et al. [5] proposed a convolu-
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tional spatial propagation network (CSPN) to post process
the depth completion results with neighboring depth val-
ues. However, CSPN relies on fixed-local neighbors, which
could be from irrelevant objects. Park et al. [26] proposed a
non-local spatial propagation network for depth completion.
This method can effectively avoids irrelevant local neigh-
bors and concentrates on relevant non-local neighbors dur-
ing propagation. Qiu et al. [28] learned surface normals as
the intermediate representation. Xu et al. [41] modeled the
geometric constraints between depth and surface normal in
a diffusion module and predicted the confidence of sparse
LiDAR measurements to mitigate the impact of noise. For
addressing the problem of depth smearing, Imran et al. [13]
proposed a multi-hypothesis depth representation that ex-
plicitly models both foreground and background depths in
the difficult occlusion-boundary regions.

Compared with depth completion methods, our method
can utilize the stereo pair and the depth guidance from the
monocular structured light subsystem for disparity estima-
tion. When the depth guidance is not available, the stereo
pair can still be used to estimate the depth of the targets.
The stereo images can form stronger constraints than single
images.

3. System
3.1. Hardware

In this paper, we design a novel stereo camera. As illus-
trated in Figure 1d, the proposed stereo camera consists of
an RGB camera, an IR camera and an IR projector. Its lay-
out is similar to the monocular structured-light system (Fig-
ure 1b), e.g., Kinect. However, it is significantly different
from Kinect. In Kinect, the IR camera and IR projector are
used for depth estimation. To obtain the depth map aligned
with RGB image, a depth-to-color step is required to con-
vert the depth map from the IR camera coordinate system
to the RGB camera coordinate system.

The proposed stereo system consists of two subsystems.
First, the IR camera and the IR projector form an active
monocular structured-light subsystem. Second, the IR cam-
era and the RGB camera form a binocular stereo subsystem.
The monocular structured-light subsystem is robust to weak
texture objects, while the binocular subsystem has the abil-
ity to reconstruct distant objects and can work in outdoor
environment. Thus the two subsystems have complemen-
tary advantages.

In the next subsections, we will show how the two sub-
systems are integrated.

3.2. Depth Estimation Pipeline

As mentioned before, the proposed depth camera con-
sists of two subsystems. The input includes an RGB im-
age, an IR image and a reference speckle image. The

Figure 1. Layout of various depth cameras. (a) Binocular stereo
camera (e.g., ZED [34]). (b) Monocular structured-light depth
camera (e.g., Kinect [48]). (c) Active binocular depth camera (e.g.,
Intel D435 [14]). (d) Design of the proposed depth camera. Com-
pared with (b), there should be enough baseline between the IR
camera and RGB camera in the proposed depth camera since the
two cameras are used for the binocular stereo subsystem. In addi-
tion, the IR camera and IR projector form a monocular structured-
light (MSL) subsystem. The depth map from the MSL subsystem
can provide external guidance in stereo matching networks.

reference image is pre-stored and fixed in the monocular
structured-light subsystem, as shown in Figure 2. First, the
current IR image of the targets and the reference speckle
image are matched, and then a disparity map dm is ob-
tained. With the calibration parameters of the monocular
structured-light subsystem, a depth map Zm can be ob-
tained and re-projected to the RGB camera coordinate sys-
tem. We use Z ′

m to denote the depth map aligned with the
RGB image and d′m to denote the corresponding disparity
map. Then, the RGB image, IR image and disparity map
d′m are fed into the stereo matching network to estimate the
final disparity map. The pipeline is illustrated in Figure 2.

3.3. Monocular Structured-Light

Different from the binocular stereo system, a camera is
replaced by a projector in the monocular structured-light
system, as shown in Figure 3. The depth estimation pro-
cess is similar to Kinect [9, 36]. The current speckle image
of the targets is matched to the reference image, which is
a speckle image captured when the camera’s optical axis is
perpendicular to a planar target at a known distance Zref .
In order to eliminate the influence of different brightness
of the two images to be matched, we follow the method
in [36] to convert these images to binary images. Then, an
efficient block matching algorithm is used to calculate the
corresponding relationships between the two binary images
to obtain the disparity map dm. The matching window size
is set to 21×21. With the disparity map, we can obtain the
depth map Zm via

Zm =
Zref

1− Zrefdm

Bmfm

(1)
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Figure 2. Pipeline of the proposed depth estimation method. First, the initial depth map is obtained with the monocular structured-light
(MSL) subsystem by matching the IR image and the pre-stored reference image. Then, the IR and RGB image pairs are fed to the stereo
matching network to extract features and build a cost volume. The information of the active monocular subsystem is integrated in the cost
volume as done in GSM [27] to obtain high quality disparity map.

where Bm is the baseline and fm is the focal length of the
monocular structured-light system. With the calibration pa-

Figure 3. Principle of the monocular structured-light system. The.
The change in depth will bring about the movement of the speckle
spots in the horizontal direction.

rameters of the cameras, we can convert the depth map Zm

onto the image plane of the RGB camera and obtain the
depth map Z ′

m aligned with the RGB image. Next, we
can obtain the corresponding disparity map in the binocu-
lar stereo system via

d′m = Bf/Z ′
m (2)

where B is the baseline and f is the focal length of the
binocular system.

3.4. Stereo Matching Network and Fusion Strategy

Note that, the IR camera here does not have a narrow-
band filter as Kinect. So the IR camera can receive the ac-
tive speckled light and ambient light. Thus the images of the
two cameras are very different in appearance in indoor en-
vironments, as shown in Figure 2. It seems that it is difficult
to match this kind of images. Fortunately, we find that accu-
rate matching results can be obtained with the deep neural
networks (DNN).

In order to verify the adaptability of the DNN to this
kind of stereo images with asymmetric textures, we first
modify the training dataset and testing dataset of Flyingth-
ings3D [22]. In the modified dataset, the left image remains
unchanged, while tens of thousands of random speckle dots
are added in the right image, as shown in Figure 4. So the
stereo images in the modified dataset have asymmetric tex-
tures. The brightness of the speckles is decreased according
to the distance from these points to the camera to mimicking
energy attenuation of light energy. Then, we use both the
original and modified training datasets to train two stereo
matching networks, including PSMNet [3], and RAFT [35].
RAFT shows good generalization in optical flow estimation
task, which requires to estimate displacement both in X and
Y directions. Here, we make a small modification to esti-
mate only the displacement in the X direction.

Table 1 indicates that these networks have good adapt-
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ability to this kind of stereo images with asymmetric tex-
tures (more details are in subsection 4.3). Figure 4 shows
the qualitative results.

Although there are usually many invalid values in the
depth map from the active structured-light system (Figure
2), the depth values are relatively reliable. So the valid
depth values can be used as the guidance for the stereo
matching network. The cost volume in stereo matching net-
work consists of features with geometric and contextual in-
formation that allows the subsequent convolution to regress
the disparity probability [3, 16, 19]. To integrate the advan-
tage of the monocular structured-light system, we modify
the cost volume according to the disparity map d′m as done
in guided stereo matching (GSM) [27], which peaks the
correlation scores or the features activation related to the
hypotheses suggested by the sparse hints and dampens the
remaining ones.

Specifically, let g be a matrix of size w×h, conveying the
externally provided disparity values, and v a binary mask,
specifying which elements of g are valid (i.e., if vxy = 1).
The cost volume is denoted as C ∈ Rw×h×Dmax×F , where
Dmax is the max disparity and F is the feature number.
Given the pixel coordinate (x, y) and disparity value g(x, y)
from external cue g, GSM applies Gaussian function

fGSM (x, y, d) = λ · e−
(d−g(x,y))2

2σ2 (3)

on the features C(x, y, d) of the cost volume, and obtain a
new cost volume C′,

C′(x, y, d) = (1− vxy + vxy · fGSM (x, y, d)) · C(x, y, d)
(4)

where σ determines the width of the Gaussian, while λ rep-
resents its maximum magnitude and should be greater than
or equal to 1.

For RAFT, the correlation values in the cost volume are
normalized to [0, 1] to avoid peak negative correlations via

C(x, y, d) = < Fl(x, y), Fr(x− d, y) >

2(||Fl(x, y)||+ ϵ)(||Fr(x− d, y)||+ ϵ)
+0.5

(5)
where, Fl and Fr are features extracted from the left and
right images, d denotes the disparity, and ϵ is a small con-
stant.

In this work, the disparity map d′m is taken as the external
guidance for the stereo matching networks.

4. Experiments
4.1. Prototype

To verify the effectiveness of the proposed system, we
build a prototype system as shown in Figure 5. The sys-
tem includes two synchronized CMOS cameras and an IR
speckle projector. Both cameras have a focal length of 4.0

Method
EPE

(Original)
EPE

(Modified)
PSMNet-O [3] 0.895 3.922

PSMNet-M 1.212 0.955
PSMNet-OM 0.925 0.984

PSMNet-OM-G 0.666 0.686
RAFT-O [35] 0.985 1.910

RAFT-M 1.070 1.092
RAFT-OM 1.026 1.109

RAFT-OM-G 0.751 0.771

Table 1. Evaluation of networks on the original SceneFlow dataset
and the modified SceneFlow dataset. We use suffixes O, M and
OM to denote the models trained with the original Flyingthings3D
dataset, the modified Flyingthings3D dataset and the mixture of
the two datasets, respectively. The suffix G denotes the guidance
is used in the network.

mm and a resolution of 1280×960. The maximum frame
rate is 30 frames per second (fps). The baseline of the stereo
subsystem is 94.14 mm and that of monocular structured-
light system is 63.0 mm. The diffractive optical element
(DOE) based projector can project about 11,000 speckle
dots onto the scenes. The wavelength of the customized
IR projector is 940 nm. This kind of projector is very cheap
(less than $3). We capture a speckle image of a white wall
as the reference image at a distance of 80 cm when the op-
tical axis of the camera is perpendicular to the white wall.
The RGB camera has an IR-cut filter, and the IR camera has
no filter.

4.2. Dataset and Evaluation Metrics

Synthetic dataset. The synthetic SceneFlow [22] stereo
dataset includes Flyingthings3D, Driving, and Monkaa.
The dataset consists of 35,454 training images and 4,370
testing images of size 960×540 with accurate ground-truth
disparity maps. We will use Flyingthings3D for study of the
stereo matching networks. The End-Point-Error (EPE) will
be used as the evaluation metric.

Real-scene dataset. To evaluate the performance of
the proposed system, we collect a dataset (i.e., MonoBi-
noStereo) in indoor environment, which covers different in-
door scenes, including offices, living rooms, and bedrooms.
The stereo pairs are easy to acquire. However, it is not a
easy task to acquire the corresponding ground-truth dispar-
ity maps for the stereo pairs. Here, we choose to use the
space-time stereo method [7, 46] to obtain the ground truth
disparities as done in [6]. 200 pairs of stereo images are
captured for each scene. During the process of image cap-
turing, thousands of moving speckles are projected. There-
fore, the speckle distribution in each frame is different. The
ground truth disparity maps are estimated by integrating all
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left right RAFT-O RAFT-OM GT

Figure 4. Evaluation on SceneFlow.

Method projector on projector off
EPE Bad0.5 (%) Bad1.0 (%) Bad2.0 (%) EPE Bad0.5 (%) Bad1.0 (%) Bad2.0 (%)

PSMNet-O [3] 9.007 70.51 55.66 41.79 2.112 52.54 33.85 20.42
PSMNet-OM 2.687 57.35 39.28 24.81 1.871 51.70 33.16 19.89

PSMNet-OM-G 0.814 45.63 15.73 3.81 2.018 52.02 32.67 18.33
RAFT-O [35] 2.498 57.83 37.70 21.88 1.183 46.43 26.07 12.71

RAFT-OM 1.370 49.23 29.31 14.60 1.239 44.21 23.18 11.72
RAFT-OM-G 0.811 45.13 16.08 3.59 1.103 44.75 23.71 10.51

MSG [18] 3.092 58.85 30.32 14.25 - - - -

Table 2. Quantitative evaluation on the real scene dataset. The suffix G denotes the guidance is used during training of the network models.
Note that, when the projector is on, depth from MSL is used as the guidance in the models with suffix G. When the DOE projector is off
(i.e., both the left and right images are passive), the guidance is not available and not used in network prediction.

Figure 5. Prototype of the proposed depth camera.

the 200 pairs of images. A sub-pixel refinement and a left-
right check (LRC) are also applied. The MonoBinoStereo
dataset includes 15 scenes in total. The samples are shown
in Figure 6. For each scene, we collect two stereo pairs,
where the left images are always passive, while one image
of the right camera is passive (with projector off) and the
other is active (with projector on).

However, we lack a large training dataset in real indoor
scenes. The synthetic IRS dataset [39] is considerably close
to the real scenes. It contains more than 100,000 pairs of
960×540 resolution stereo images (84,946 for training and
15,079 for testing) in indoor scenes. We use the IRS dataset
as the training dataset for evaluation on the MonoBinoS-
tereo dataset. Details of the network training are presented

in the supplementary material.

4.3. Quantitative Evaluation

We first evaluate the proposed method on the SceneFlow
dataset. We trained PSMNet [3] and RAFT [35] with the
original Flyingthings3D dataset and the modified Flyingth-
ings3D dataset respectively. We use suffixes O, M and OM
(e.g, PSMNet-O) to denote the models trained with the orig-
inal Flyingthings3D dataset, the modified Flyingthings3D
dataset and the mixture of the two datasets, respectively.
The End-Point-Error (EPE) results are reported in Table 1.
When the models are trained with the original dataset, the
EPEs on the modified test dataset are large. For example,
the EPE of the PSMNet-O on the modified test dataset is
3.922. When the modified training dataset is used, the EPE
of the resulting model (PSMNet-M) is reduced to 0.955.
However, the EPE for the original test dataset increases
from 0.895 to 1.212. When both training datasets are used,
the resulting model (PSMNet-OM) can balance the two test
datasets. Furthermore, if the external guidance is available,
we can use the strategy in GSM [27] to further improve the
results. The resulting methods are denoted with a suffix G,
e.g., PSMNet-OM-G. When 5% pixels of the ground truth
depth map are used as the external guidance, the EPE is
reduced from 0.984 to 0.686 on the modified test dataset.
The results are similar for RAFT. The qualitative results are
shown in Figure 4.
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Figure 6. Comparisons on the real dataset. The first row shows the left images (The RGB images are converted to grayscale images before
network prediction). The second row shows the right images with speckles (the passive right images are not shown), the third row is the
ground truth disparity maps generated with the space-time stereo method [7, 46], the fourth row shows the depth images generated with
the MSL subsystem, the fifth row shows the disparity maps of RAFT-O for the passive stereo images, and the last row shows the disparity
maps of RAFT-OM-G, where the left image is passive and the right image is with speckles. In row 5 and row 6, Bad2.0 error is shown for
each disparity map. The corresponding error maps are shown in the supplementary material.

To further verify the effectiveness of the proposed
method, we evaluate the models on the collected real-scene
dataset, MonoBinoStereo. The models are trained by mix-
ing the Flyingthings3D and IRS datasets. The quantitative
results are shown in Table 2. Take RAFT for example. The
Bad 2.0 error of RAFT-O is up to 21.88% on the real test
dataset with the DOE projector on, where only the origi-
nal datasets (Flyingthings3D and IRS) are used for training.
When the modified datasets are added, the Bad 2.0 error of
the resulting model (RAFT-OM) is reduced to 14.60%. In

our system, the depth map from the monocular structured-
light subsystem can be used as the external guidance for the
stereo matching networks. We use 10% of the pixels in d′m
as the guidance1. When this guidance is utilized, the Bad
2.0 error is reduced to 3.59% (RAFT-OM-G). In Table 2,
the quantitative results of the different models on the pure
passive stereo dataset (see Subsection 4.2) are also shown.
Note that the guidance information of the passive mode is

1Since the cost volume is built at 1/8 resolution for RAFT, only 1/640
of the pixels in d′m are used for guidance actually.

1752



Figure 7. Qualitative comparison. The first column shows the
RGB images, the second column shows the disparity maps of
RAFT-OM-G, the third column shows disparity maps of Kinect.
The first row is the results in indoor scenes, and the second row
shows the results in outdoor scenes. It is difficult for Kinect to
output stable depth map out of doors. To keep anonymous, the
faces are masked.

Figure 8. Qualitative comparison with Intel RealSense D435 [14].
D435 uses two cameras to obtain depth map and a third camera for
texture acquiring, where occlusion is inevitable. In contrast, Our
system can output depth maps naturally aligned with RGB images
with only two cameras. To keep anonymous, the face is masked.

not available. We run the model RAFT-O on the passive test
dataset. The Bad 2.0 error is 12.71%, which is 3.5 times of
RAFT-OM-G. It indicates that the proposed method can im-
prove stereo matching accuracy significantly. The Bad 2.0
error on the passive dataset of RAFT-OM-G is 10.51% (no
guidance used), which indicates that RAFT-OM-G can be
well generalized to passive scenes. The qualitative results
are shown in Figure 6. Table 2 also shows that the overall
performance of RAFT is better than PSMNet on MonoBi-
noStereo.

In addition, we compare with a depth completion
method, MSG [18], on the MonoBinoStereo dataset, where
1% of the pixels in d′m are used as the guidance. The results
are shown in Table 2. The Bad 2.0 error of MSG is 18.57%,
which is much larger than RAFT-OM-G.

4.4. Qualitative Evaluation

We also test the proposed system in dynamic scenes with
people and outdoor scenes, where it is difficult to obtain the
ground truth disparity maps. For these scenes, we present
the qualitative comparison results.

In Figure 7, we compare the proposed system with
Kinect V1 in indoor and outdoor scenes. Kinect can output

dense depth estimation in indoor scenes. However, in out-
door scenes, there are more holes in the depth maps because
the IR speckles projected are interfered by the sun light.
However, for the proposed system, it will degenerate into
a passive binocular stereo system, where the stereo pairs
can still be used to estimate the dense depth maps of the
scenes. We also compare our system with Intel RealSense
D435 [14], the results are shown in Figure 8.

4.5. Limitation

In the monocular structured light system, a reference im-
age of a planar target with known depth Zref is required.
When capturing the reference image, we assume that the op-
tical axis of the camera is perpendicular to the planar target,
which is hard to guarantee in practice. Compared with the
binocular stereo system, the monocular structured light sys-
tem is more difficult to calibrate. The calibration error will
lead to alignment error of the RGB image and the depth im-
age Z ′

m, which may cause wrong guidance in guided stereo
matching network. In experiment, we find that increasing
the number of guide points does not improve the accuracy
(see supplementary material for details). Furthermore, if
the same number of guidance points are sampled from the
ground truth, the Bad0.5, Bad1.0 and Bad 2.0 errors are re-
duced to 12.94, 4.94, and 2.00 for RAFT-OM-G, respec-
tively. So in the future, we will focus on the accurate cali-
bration method of the monocular structured light system to
further improve performance.

5. Conclusion

In this paper, we present a novel stereo system. This sys-
tem includes a monocular structured-light subsystem and
a binocular stereo subsystem. These two subsystems are
combined to obtain robust depth estimation. Our system is
unique in that it has only two cameras, an RGB camera and
an IR camera. The RGB camera is used both for depth es-
timation and texture acquisition. The depth maps obtained
are naturally aligned with RGB images pixel-by-pixel. We
collect a real test dataset in indoor scenes. The quantita-
tive results show that the Bad 2.0 error of the proposed sys-
tem is 28.2% of the classical passive stereo system. Under
strong outdoor light, the proposed system will degenerate
to a passive stereo system. We hope the proposed system
can provide a new solution for designing more robust depth
cameras for the community.
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