
FineDiving: A Fine-grained Dataset for Procedure-aware
Action Quality Assessment

Jinglin Xu*, Yongming Rao*, Xumin Yu, Guangyi Chen, Jie Zhou, Jiwen Lu†

Department of Automation, Tsinghua University, China
Beijing National Research Center for Information Science and Technology, China
{xujinglinlove, raoyongming95}@gmail.com; yuxm20@mails.tsinghua.edu.cn;

guangyichen1994@gmail.com; {jzhou, lujiwen}@tsinghua.edu.cn

Figure 1. An overview of the FineDiving dataset and procedure-aware action quality assessment approach. FineDiving is a fine-grained
sports video dataset with detailed annotations on action procedures. It provides a potential for proposing an action quality assessment ap-
proach with better interpretability via constructing a new Temporal Segmentation Attention module between query and exemplar instances.

Abstract
Most existing action quality assessment methods rely on

the deep features of an entire video to predict the score,
which is less reliable due to the non-transparent inference
process and poor interpretability. We argue that under-
standing both high-level semantics and internal temporal
structures of actions in competitive sports videos is the key
to making predictions accurate and interpretable. Towards
this goal, we construct a new fine-grained dataset, called
FineDiving, developed on diverse diving events with de-
tailed annotations on action procedures. We also propose
a procedure-aware approach for action quality assessment,
learned by a new Temporal Segmentation Attention module.
Specifically, we propose to parse pairwise query and ex-
emplar action instances into consecutive steps with diverse
semantic and temporal correspondences. The procedure-
aware cross-attention is proposed to learn embeddings be-

*Equal contribution. †Corresponding author.

tween query and exemplar steps to discover their semantic,
spatial, and temporal correspondences, and further serve
for fine-grained contrastive regression to derive a reliable
scoring mechanism. Extensive experiments demonstrate
that our approach achieves substantial improvements over
the state-of-the-art methods with better interpretability. The
dataset and code are available at https://github.
com/xujinglin/FineDiving.

1. Introduction
Competitive sports video understanding has become a

hot research topic in the computer vision community. As
one of the key techniques of understanding sports action,
Action Quality Assessment (AQA) has attracted growing at-
tention in recent years. In the 2020 Tokyo Olympic Games,
the AI scoring system in gymnastics acted as a judge for as-
sessing the athlete’s score performance and providing feed-
back for improving the athlete’s competitive skill, which re-
duces the controversies in many subjective scoring events,
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e.g., diving and gymnastics.
AQA is a task to assess how well an action is performed

by estimating a score after analyzing the performance. Un-
like conventional action recognition [2, 8, 13, 17, 26, 33, 34,
36, 40–43, 45] and detection [21, 24, 46, 50], AQA is more
challenging since an action can be recognized from just one
or a few images while the judges need to go through the en-
tire action sequence to assess the action performance. Most
existing AQA methods [1,5,6,9,18,27–31,39,44,48] regress
on the deep features of videos to learn the diverse scores,
which is difficult for actions with a small discrepancy hap-
pening in similar backgrounds. Since the diving events are
usually filmed in a similar environment (i.e., aquatics cen-
ters) and all the videos contain the same action routine, that
is “take-off”, “flight”, and “entry”, while the subtle dif-
ferences mainly appear in the numbers of both somersault
and twist, flight positions as well as their executed quali-
ties. Capturing these subtle differences requires the AQA
method not only to parse the steps of diving action but also
to explicitly quantify the executed qualities of these steps.
If we judge the action quality only via regressing a score
on the deep features of the whole video, it would be a con-
fusing and non-transparent assessment of the action quality,
since we cannot explain the final score via analyzing the
performances of action steps.

Cognitive science [22, 32] shows that humans learn to
assess the action quality by introducing fine-grained anno-
tations and reliable comparisons. Inspired by this, we in-
troduce these two concepts into AQA, which is challenging
since existing AQA datasets lack fine-grained annotations
of action procedures and cannot make reliable comparisons.
If we judge the action quality using coarse-grained labels,
we cannot date back to a convincing reason from the final
action quality score. It is urgent to construct a fine-grained
sports video dataset for encouraging a more transparent and
reliable scoring approach for AQA.

To address these challenges, we construct a new com-
petitive sports video dataset, “FineDiving” (short for Fine-
grained Diving), focusing on various diving events, which
is the first fine-grained sports video dataset for assessing ac-
tion quality. FineDiving has several characteristics (Figure
1, the top half): (1) Two-level semantic structure. All videos
are annotated with semantic labels at two levels, namely,
action type and sub-action type, where a combination of
the presented sub-action types produces an action type. (2)
Two-level temporal structure. The temporal boundaries of
actions in each video are annotated, where each action is
manually decomposed into consecutive steps according to
a well-defined lexicon. (3) Official action scores, judges’
scores, and difficulty degrees are collected from FINA.

We further propose a procedure-aware approach for as-
sessing action quality on FineDiving (Figure 1, the bottom
half), inspired by the recently proposed CoRe [47]. The

proposed framework learns procedure-aware embeddings
with a new Temporal Segmentation Attention module (re-
ferred to as TSA) to predict accurate scores with better in-
terpretability. Specifically, TSA first parses action into con-
secutive steps with semantic and temporal correspondences,
serving for procedure-aware cross-attention learning. The
consecutive steps of query action are served as queries and
the steps of exemplar action are served as keys and values.
Then TSA inputs pairwise query and exemplar steps into
the transformer and obtains procedure-aware embeddings
via cross-attention learning. Finally, TSA performs fine-
grained contrastive regression on the procedure-aware em-
beddings to quantify step-wise quality differences between
query and exemplar, and predict the action score.

The contributions of this work are summarized as: (1)
We construct the first fine-grained sports video dataset
for action quality assessment, which contains rich seman-
tics and diverse temporal structures. (2) We propose a
procedure-aware approach for action quality assessment,
which is learned by a new temporal segmentation attention
module and quantifies quality differences between query
and exemplar in a fine-grained way. (3) Extensive exper-
iments illustrate that our procedure-aware approach obtains
substantial improvements and achieves the state-of-the-art.

2. Related Work
Sports Video Datasets. Action understanding in sports
videos is a hot research topic in the computer vision com-
munity, which is more challenging than understanding ac-
tions in the general video datasets, e.g., HMDB [16], UCF-
101 [37], Kinetics [2], AVA [11], ActivityNet [7], THU-
MOS [10], Moments in Time [23] or HACS [49], due to
the low inter-class variance in motions and environments.
Competitive sports video action understanding relies heav-
ily on available sports datasets. Early, Niebles et al. [25] in-
troduced the Olympic sports dataset into modeling the mo-
tions. Karpathy et al. [14] provided a large-scale dataset
Sports1M and gained significant performance over strong
feature-based baselines. Pirsiavash et al. [31] released the
first Olympic judging dataset comprising of Diving and Fig-
ure Skating. Parmar et al. [29] released a new dataset in-
cluding Diving, Gymnastic Vault, Figure Skating for better
working on AQA. Bertasius et al. [1] proposed a first-person
basketball dataset for estimating performance assessment of
basketball players. Li et al. [20] built the Diving48 dataset
annotated by the combinations of 4 attributes (i.e., back,
somersault, twist, and free). Xu et al. [44] extended the ex-
isting MIT-Figure Skating dataset to 500 samples. Parmar
et al. [28,30] presented the MTL-AQA dataset that exploits
multi-task networks to assess the motion. Shao et al. [34]
proposed the FineGym dataset that provides coarse-to-fine
annotations both temporally and semantically for facilitat-
ing action recognition. Recently, Li et al. [19] developed
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Figure 2. Two-level semantic structure. Action type indicates an
action routine described by a dive number. Sub-action type is a
component of action type, where each combination of the sub-
action types can produce an action type and different action types
can share the same sub-action type. The green branch denotes
different kinds of take-offs. The purple, yellow, and red branches
respectively represent the somersaults with three positions (i.e.,
straight, pike, and tuck) in the flight, where each branch contains
different somersault turns. The orange branch indicates different
twist turns interspersed in the process of somersaults. The light
blue denotes entering the water. (Best viewed in color.)

a large-scale dataset MultiSports with fine-grained action
categories with dense annotations in both spatial and tem-
poral domains for spatio-temporal action detection. Hong et
al. [12] provided a figure skating dataset VPD for facilitat-
ing fine-grained sports action understanding. Chen et al. [3]
proposed the SMART dataset with fine-grained semantic
labels, 2D and 3D annotated poses, and assessment infor-
mation. Unlike the above datasets, FineDiving is the first
fine-grained sports video dataset for AQA, which guides the
model to understand action procedures via detailed annota-
tions towards more reliable action quality assessment.
Action Quality Assessment. Most existing methods for-
mulate AQA as a regression on various video represen-
tations supervised by the scores. In early pioneering
work, Pirsiavash et al. [31] first formulated AQA and pro-
posed to map the pose-based features, spatio-temporal in-
terest points, and hierarchical convolutional features to the

............

Actions305B401B 5331D 5152B

...... ... ......

Steps

18930 18943 18957 18967 18978

Forward  2.5 Somersaults Pike 1 Twist Entry 2.5 Somersaults Pike

Figure 3. Two-level temporal structure. The action-level labels
describe temporal boundaries of valid action routines, while the
step-level labels provide the starting frames of consecutive steps
in the procedure. (Best viewed in color.)

scores by using SVR. Parmar et al. [29] utilized the spatio-
temporal features to estimate scores and demonstrated its
effectiveness on actions like Diving, Gymnastic Vault, and
Figure Skating. Bertasius et al. [1] proposed a learning-
based approach to estimate motion, behaviors, and perfor-
mance assessment of basketball players. Li et al. [18] pro-
posed to combine some network modification with ranking
loss to improve the AQA performance. Doughty et al. [6]
assessed the relative overall level of skill in a long video
based on the video-level pairwise annotation via the high-
skill and low-skill attention modules. Parmar et al. [28] in-
troduced the shared concepts of action quality among ac-
tions. Parmar et al. [30] further reformulated the definition
of AQA as a multitask learning in an end-to-end fashion.
Besides, Xu et al. [44] proposed to use self-attentive and
multiscale skip convolutional LSTM to aggregate informa-
tion from individual clips, which achieved the best perfor-
mance on the assessment of Figure Skating samples. Pan et
al. [27] assessed the performance of actions visually from
videos by graph-based joint relation modeling. Recently,
Tang et al. [39] proposed to reduce the underlying ambi-
guity of the action score labels from human judges via an
uncertainty-aware score distribution learning (USDL). Yu
et al. [47] constructed a contrastive regression framework
(CoRe) based on the video-level features to rank videos
and predict accurate scores. Different from previous meth-
ods, our approach understands action procedures and mines
procedure-aware attention between query and exemplar to
achieve a more transparent action assessment.

3. The FineDiving Dataset

In this section, we propose a new fine-grained compet-
itive sports video dataset FineDiving. We will introduce
FineDiving from dataset construction and statistics.

3.1. Dataset Construction

Collection. We search for diving events in Olympics, World
Cup, World Championships, and European Aquatics Cham-
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Figure 4. Statistics of FineDiving. (a) The action-type distribution
of action instances. (b) The sub-action type distribution of action
instances. (c) The difficulty degree distribution of action instances.

pionships on YouTube, and download competition videos
with high-resolution. Each official video provides rich con-
tent, including diving records of all athletes and slow play-
backs from different viewpoints.
Lexicon. We construct a fine-grained video dataset orga-
nized by both semantic and temporal structures, where each
structure contains two-level annotations, shown in Figures
2 and 3. Herein, we employ three professional athletes of
the diving association, who have prior knowledge in diving
and help to construct a lexicon for subsequent annotation.

For semantic structure in Figure 2, the action-level labels
describe the action types of athletes and the step-level la-
bels depict the sub-action types of consecutive steps in the
procedure, where adjacent steps in each action procedure
belong to different sub-action types. A combination of sub-
action types produces an action type. For instance, for an
action type “5255B”, the steps belonging to the sub-action
types “Back”, “2.5 Somersaults Pike”, and “2.5 Twists” are
executed sequentially.

In temporal structure, the action-level labels locate the
temporal boundary of a complete action instance performed
by an athlete. During this annotation process, we discard
all the incomplete action instances and filter out the slow
playbacks. The step-level labels are the starting frames of
consecutive steps in the action procedure. For example, for
an action belonging to the type “5152B”, the starting frames
of consecutive steps are 18930, 18943, 18957, 18967, and
18978, respectively, shown in Figure 3.
Annotation. Given a raw diving video, the annotator uti-
lizes our defined lexicon to label each action and its proce-
dure. We need to accomplish two annotation stages from
coarse- to fine-grained. The coarse-grained stage is to la-
bel the action type for each action instance and its temporal
boundary accompanied with the official score. The fine-
grained stage is to label the sub-action type for each step in
the action procedure and record the starting frame of each

Table 1. Comparison of existing sports video datasets and Fine-
Diving. Score indicates the score annotations; Step is fine-grained
class and temporal boundary; Action is coarse-grained class and
temporal boundary; Tube contains fine-grained class, temporal
boundary, and spatial localization.

Localization #Samples #Events #Act. Clas. Avg.Dur. Anno.Type
TAPOS [35] 16294 / 21 9.4s Step
FineGym [34] 32697 10 530 1.7s Step
MultiSports [19] 37701 247 66 1.0s Tube
Assessment #Samples #Events #Sub-act.Typ. Avg.Dur. Anno.Type
MIT Dive [31] 159 1 / 6.0s Score
UNLV Dive [29] 370 1 / 3.8s Score
AQA-7-Dive [28] 549 6 / 4.1s Score
MTL-AQA [30] 1412 16 / 4.1s Action,Score
FineDiving 3000 30 29 4.2s Step,Score

step. Both coarse- and fine-grained annotation stages adopt
a cross-validating labeling method. Specifically, we employ
six workers who have prior knowledge in the diving domain
and divide data into six parts without overlap. The annota-
tion results of one worker are checked and adjusted by an-
other, which ensures annotation results are double-checked.
To improve the annotation efficiency, we utilize an effective
toolbox [38] in the fine-grained annotation stage. Under
this pipeline, the total time of the whole annotation process
is about 120 hours.

3.2. Dataset Statistics

The FineDiving dataset consists of 3000 video sam-
ples, covering 52 action types, 29 sub-action types, and
23 difficulty degree types, which are shown in Figure 4.
These statistics will be helpful to design competition strat-
egy and better bring athletes’ superiority into full play.
Table 1 reports more detailed information on our dataset
and compares it with existing AQA datasets as well as
other fine-grained sports datasets. Our dataset is differ-
ent from existing AQA datasets in the annotation type and
dataset scale. For instance, MIT-Dive, UNLV, and AQA-7-
Dive only provide action scores, while our dataset provides
fine-grained annotations including action types, sub-action
types, coarse- and fine-grained temporal boundaries as well
as action scores. MTL-AQA provides coarse-grained anno-
tations, i.e., action types and temporal boundaries. Other
fine-grained sports datasets cannot be used for assessing ac-
tion quality due to a lack of action scores. We see that Fine-
Diving is the first fine-grained sports video dataset for the
AQA task, filling the fine-grained annotations void in AQA.

4. Approach

In this section, we will systematically introduce our ap-
proach, whose main idea is to construct a new temporal seg-
mentation attention module to propose a reliable and trans-
parent action quality assessment approach. The overall ar-
chitecture of our approach is illustrated in Figure 5.
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Figure 5. The architecture of the proposed procedure-aware action quality assessment. Given a pairwise query and exemplar instances,
we extract spatial-temporal visual features with I3D and propose a Temporal Segmentation Attention module to assess action quality via
successively accomplishing procedure segmentation, procedure-aware cross-attention learning, and fine-grained contrastive regression.
The temporal segmentation attention module is supervised by step transition labels and action score labels, which guides the model to
focus on exemplar regions that are consistent with the query step and quantify their differences to predict reliable action scores.

4.1. Problem Formulation

Given pairwise query X and exemplar Z instances, our
procedure-aware approach is formulated as a regression
problem that predicts the action quality score of the query
video via learning a new Temporal Segmentation Attention
module (abbreviated as TSA). It can be represented as:

ŷX = P(X,Z|Θ) + yZ (1)

where P = {F , T } denotes the overall framework contain-
ing I3D [2] backbone F and TSA module T ; Θ indicates
the learnable parameters of P; ŷX is the predicted score of
X and yZ is the ground-truth score of Z.

4.2. Temporal Segmentation Attention

There are three components in TSA, that is, proce-
dure segmentation, procedure-aware cross-attention learn-
ing, and fine-grained contrastive regression.
Procedure Segmentation. To parse pairwise query and
exemplar actions into consecutive steps with semantic and
temporal correspondences, we first propose to segment the
action procedure by identifying the transition in time that
the step switches from one sub-action type to another.

Suppose that L step transitions are needed to be identi-
fied, the procedure segmentation component S predicts the
probability of the step transition occurring at the t-th frame
by computing:

[p̂1, · · · , p̂L] = S(F(X)), (2)

t̂k = argmax
T
L (k−1)<t≤T

L k

p̂k(t) (3)

where p̂k ∈ RT is the predicted probability distribution of
the k-th step transition; p̂k(t) denotes the predicted proba-

bility of the k-th step transiting at the t-th frame; t̂k is the
prediction of the k-th step transition.

In Equation (2), the component S is composed of two
blocks, namely “down-up” (b1) and “linear” (b2). Specif-
ically, the b1 block consists of four “down-m-up-n” sub-
blocks, where m and n denote specified dimensions of out-
put along the spatial and temporal axes, respectively. Each
sub-block contains two consecutive convolution layers and
one max pooling layer. The b1 block increases the length
of I3D features F(X) using convolution layers along the
temporal axis and reduces the dimension of F(X) using
max-pooling layers along the spatial axis. The “down-up”
block advances the visual features F(X) in deeper layers
to contain both deeper spatial and longer temporal views
for procedure segmentation. The “linear” block further en-
codes the output of the b1 block to generate L probability
distributions {p̂k}Lk=1 of L step transitions in an action pro-
cedure. Besides, the constrain in Equation (3) ensures the
predicted transitions being ordered, i.e., t̂1 ≤ · · · ≤ t̂L.

Given the ground-truth of the k-th step transition, i.e.,
tk, it can be encoded as a binary distribution pk, where
pk(tk) = 1 and pk(ts)|s̸=k =0. With the prediction p̂k and
ground-truth pk, the procedure segmentation problem can
be converted to a dense classification problem, which pre-
dicts the probability of whether each frame is the k-th step
transition. We calculate the binary cross-entropy loss be-
tween p̂k and pk to optimize S and find the frame with the
greatest probability of being the k-th step transition. The
objective function can be written as:

LBCE(p̂k, pk) = −
∑

t(pk(t) log p̂k(t)

+ (1− pk(t)) log(1− p̂k(t))).
(4)

Minimizing LBCE makes distributions p̂k and pk closer.
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Procedure-aware Cross-Attention. Through procedure
segmentation, we obtain L+1 consecutive steps with se-
mantic and temporal correspondences in each action pro-
cedure based on L step transition predictions. We leverage
the sequence-to-sequence representation ability of the trans-
former for learning procedure-aware embedding of pairwise
query and exemplar steps via cross-attention.

Based on S, the query and exemplar action instances
are divided into L + 1 consecutive steps, denoted as
{SX

l , SZ
l }

L+1
l=1 . Considering that the lengths of SX

l and SZ
l

may be different, we fix them into the given size via down-
sampling or upsampling to meet the requirement that the di-
mensions of “query” and “key” are the same in the attention
model. Then we propose procedure-aware cross-attention
learning to discover the spatial and temporal correspon-
dences between pairwise steps SX

l and SZ
l , and generate

new features in both of them. The pairwise steps comple-
ment each other and guide the model to focus on the consis-
tent region in SZ

l with SX
l . Here, SZ

l preserves some spatial
information from the feature map (intuitively represented
by patch extraction in Figure 5). The above procedure-
aware cross-attention learning can be represented as:

Sr′

l =MCA(LN(Sr−1
l , SZ

l ))+Sr−1
l , r=1· · ·R (5)

Sr
l =MLP(LN(Sr′

l ))+Sr′

l , r=1· · ·R (6)

where S0
l =SX

l , Sl=SR
l . The transformer decoder [4] con-

sisted of alternating layers of Multi-head Cross-Attention
(MCA) and MLP blocks, where the LayerNorm (LN) and
residual connections are applied before and after every
block, respectively, and the MLP block contains two lay-
ers with a GELU non-linearity.
Fine-grained Contrastive Regression. Based on the
learned procedure-aware embedding Sl, we quantify the
step deviations between query and exemplar by learning
the relative scores of pairwise steps, which guides the TSA
module to assess action quality via learning fine-grained
contrastive regression component R. It is formulated as:

ŷX =
1

L+ 1

L+1∑
l=1

R(Sl) + yZ (7)

where yZ is the exemplar score label from the training set.
We optimize R by computing the mean squared error be-
tween the ground truth yX and prediction ŷX , that is:

LMSE = ∥ŷX − yX∥2. (8)

4.3. Optimization and Inference

During training, for pairwise query and exemplar (X,Z)
in the training set with step transition labels and action score
labels, the final objective function for the video pair is:

J =

L∑
k=1

LBCE(p̂k, pk) + LMSE. (9)

During testing, for a test video Xtest, we adopt a
multi-exemplar voting strategy [47] to select M exemplars
from the training set and then construct M video pairs
{(Xtest, Zj)}Mj=1 with exemplar score labels {yZj

}Mj=1. The
process of multi-exemplar voting can be written as:

ŷXtest =
1

M

∑M
j=1(P(Xtest, Zj |Θ) + yZj

). (10)

5. Experiments
5.1. Evaluation Metrics

We comprehensively evaluate our approach on two as-
pects, namely procedure segmentation and action quality
assessment, and compute the following three metrics.
Average Intersection over Union. When the procedure
segmentation is finished, a set of predicted step transitions
are obtained for each video sample. We rewrite these step
transition predictions as a set of 1D bounding boxes, de-
noted as Bp = {t̂k+1− t̂k}L−1

k=1 . Supposed that the ground-
truth bounding boxes can be written as Bg={tk+1−tk}L−1

k=1 ,
we calculate the average Intersection over Union (AIoU)
between two bounding boxes (i.e., t̂k+1− t̂k and tk+1−tk)
and determine the correctness of each prediction if IoUi is
larger than a certain threshold d. We describe the above op-
eration as a metric AIoU@d for evaluating our approach:

AIoU@d =
1

N

∑N
i=1 I(IoUi ≥ d) (11)

IoUi = |Bp ∩ Bg|/|Bp ∪ Bg| (12)

where IoUi indicates the Intersection over Union for the i-
th sample and I(·) is an indicator that outputs 1 if IoUi≥d,
whereas outputs 0. The higher of AIoU@d, the better of
procedure segmentation.
Spearman’s rank correlation. Following the previous
work [27,28,30,39,47], we adopt Spearman’s rank correla-
tion (ρ) to measure the AQA performance of our approach.
ρ is defined as:

ρ =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2
∑N

i=1(ŷi − ¯̂y)2
(13)

where y and ŷ denote the ranking of two series, respec-
tively. The higher ρ the better performance.
Relative ℓ2-distance. Following [47], we also utilize rel-
ative ℓ2-distance (R-ℓ2) to measure the AQA performance
of our approach. Given the highest and lowest scores of an
action, namely ymax and ymin, R-ℓ2 can be defined as:

R-ℓ2 =
1

N

N∑
i=1

(
|yi − ŷi|

ymax − ymin

)
(14)

where yi and ŷi indicate the ground-truth and predicted
scores for the i-th sample, respectively. The lower of Rℓ2 ,
the better performance.
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Table 2. Comparisons of performance with existing AQA methods
on FineDiving. (w/o DN) indicates selecting exemplars randomly;
(w/ DN) indicates using dive numbers to select exemplars; / indi-
cates without procedure segmentation.

Method (w/o DN) AIoU@
ρ R-ℓ2(×100)0.5 0.75

USDL [39] / / 0.8302 0.5927
MUSDL [39] / / 0.8427 0.5733
CoRe [47] / / 0.8631 0.5565

TSA 80.71 30.17 0.8925 0.4782

Method (w/ DN) AIoU@
ρ R-ℓ2(×100)0.5 0.75

USDL [39] / / 0.8913 0.3822
MUSDL [39] / / 0.8978 0.3704
CoRe [47] / / 0.9061 0.3615

TSA 82.51 34.31 0.9203 0.3420

5.2. Implementation Details

Experiment Settings. We adopted the I3D model pre-
trained on the Kinetics [2] dataset as F with the initial learn-
ing rate 10−4. We set the initial learning rates of T as 10−3.
We utilized Adam [15] optimizer and set weight decay as 0.
Similar to [39, 47], we extracted 96 frames for each video,
split them into 9 snippets, and then fed them into I3D, where
each snippet contains 16 continuous frames with stride 10
frames. Following the experiment settings in [30, 39, 47],
we selected 75 percent of samples are for training and 25
percent are for testing in all the experiments. We also spec-
ified network parameters for two blocks b1 and b2 in S. In
the block b1, (m,n) in the sub-blocks equal to (1024, 12),
(512, 24), (256, 48), and (128, 96), respectively. The block
b2 is a three-layer MLP. Furthermore, we set M as 10 in the
multi-exemplar voting strategy and set the number of step
transitions L as 2. More details about the criterion of se-
lecting exemplars and the number of step transitions can be
found in the supplementary materials.
Compared Methods. We reported the performance of the
following methods including baseline and different versions
of our approach:

• F+R (Baseline), F+R⋆, and F+R♯: The baseline
uses I3D to extract visual features for each input video and
predicts the score through a three-layer MLP with ReLU
non-linearity, which is optimized by the MSE loss between
the prediction and the ground truth. ⋆ indicates the baseline
adopting the asymmetric training strategy and ♯ denotes the
baseline concatenating dive numbers to features.

• F+S+R: The procedure segmentation component is
introduced into the baseline, which is optimized by the com-
bination of MSE and BCE losses.

• TSA, TSA†: The approach was proposed in Section 4.
† indicates parsing action procedure using the ground-truth
step transition labels instead of the prediction of procedure
segmentation, which can be seen as an oracle for TSA.

Table 3. Ablation studies on FineDiving. / indicates the methods
without segmentation and ✓ denotes the method using the ground-
truth step transition labels.

Method (w/o DN) AIoU@
ρ R-ℓ2(×100)0.5 0.75

F+R / / 0.8504 0.5837
F+R⋆ / / 0.8452 0.6022
F+R♯ / / 0.8516 0.5736
F+S+R 77.44 26.36 0.8602 0.5687
TSA 80.71 30.17 0.8925 0.4782
TSA† ✓ ✓ 0.9029 0.4536

Method (w/ DN) AIoU@
ρ R-ℓ2(×100)0.5 0.75

F+R / / 0.8576 0.5695
F+R⋆ / / 0.8563 0.5770
F+R♯ / / 0.8721 0.5435
F+S+R 78.64 29.37 0.8793 0.5428
TSA 82.51 34.31 0.9203 0.3420
TSA† ✓ ✓ 0.9310 0.3260

5.3. Results and Analysis

Comparisons with the State-of-the-art Methods. Ta-
ble 2 shows the experimental results of our approach and
other AQA methods, trained and evaluated on the Fine-
Diving dataset. We see that our approach achieves the
state-of-the-art. Specifically, compared with the methods
(USDL, MUSDL, and CoRe) without using dive numbers
to select exemplars (i.e., w/o DN), our approach respec-
tively obtained 6.23%, 4.98% and 2.94% improvements on
Spearman’s rank correlation. Meanwhile, our approach also
achieved 0.1145, 0.0951, and 0.0783 improvements on Rel-
ative ℓ2-distance compared to those methods, respectively.
Similarly, compared with USDL, MUSDL, and CoRe that
use dive numbers to select exemplars (i.e., w/ DN), our ap-
proach also obtained different improvements on both Spear-
man’s rank correlation and Relative ℓ2-distance.
Ablation studies. We conducted some analysis experi-
ments under two method settings for studying the effects of
dive number, asymmetric training strategy, and procedure-
aware cross-attention learning. As shown in Table 3,
the performance of F+R was slightly better than that of
F+R⋆, which verified the effectiveness of symmetric train-
ing strategy. Compared with F+R, F+R♯ obtained 0.12%
and 1.45% improvements on Spearman’s rank correlation.
Meanwhile, our approach also achieved 0.0101 and 0.026
improvements on Relative ℓ2-distance. It demonstrated that
concatenating dive numbers and I3D features can achieve
a positive impact. Compared with F+R (w/ DN), F+S+R
(w/ DN) improved the performance from 85.76% to 87.93%
on Spearman’s rank correlation via introducing procedure
segmentation. Compared with F+S+R (w/ DN), TSA (w/
DN) further improved the performance from 87.93% to
92.03% to on Spearman’s rank correlation, which demon-
strated the superiority of learning procedure-aware cross at-
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Figure 6. The visualization of procedure-aware cross attention between pairwise query and exemplar procedures. Our approach can focus
on the exemplar regions that are consistent with the query step, which makes step-wise quality differences quantifying reliable. The
presented pairwise query and exemplar contain the same action and sub-action types. (Best viewed in color.)

Table 4. Effects of the number of exemplars for voting.

M
AIoU@

ρ R-ℓ2(×100)0.5 0.75

1 76.01 26.56 0.9085 0.4020
5 80.64 31.78 0.9154 0.3658
10 82.51 34.31 0.9203 0.3420
15 82.52 34.31 0.9204 0.3419

tention between query and exemplar procedures.
Besides, for the multi-exemplar voting used in infer-

ence, the number of exemplars M is an important hyper-
parameter that is a trade-off between better performance and
larger computational costs. In Table 4, we conducted some
experiments to study the impact of M on our approach TSA
(w/ DN). It can be seen that with M increasing, the per-
formance becomes better while the computational cost is
larger. The improvement on Spearman’s rank correlation
becomes less significant when M>10 and the similar trend
on Relative ℓ2-distance also can be found in Table 4.

5.4. Visualization

We visualize the procedure-aware cross-attention be-
tween query and exemplar on FineDiving, as shown in Fig-
ure 6. It can be seen that our approach highlights semantic,
spatial, and temporal correspondent regions in the exemplar
steps consistent with the query step, which makes the rela-
tive scores between query and exemplar procedures learned
from fine-grained contrastive regression more interpretable.

6. Conclusion and Discussion
In this paper, we have constructed the first fine-grained

sports video dataset, namely FineDiving, for assessing ac-
tion quality. On FineDiving, we have proposed a procedure-
aware action quality assessment approach via constructing a
new temporal segmentation attention module, which learns
semantic, spatial, and temporal consistent regions in pair-
wise steps in the query and exemplar procedures to make
the inference process more interpretable, and achieve sub-
stantial improvements for existing AQA methods.

Limitations & Potential Negative Impact. The pro-
posed method has an assumption that the number of step
transitions in the action procedure is known. The fine-
grained annotations need to be manually decomposed and
professionally labeled.

Existing Assets and Personal Data. This work con-
tributes a new dataset on the diving sport, where all the data
is collected and downloaded on YouTube and bilibili web-
sites. We are actively contacting the creators to ensure that
appropriate consent has been obtained.
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