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Abstract

Few-shot learning (FSL) aims to learn new categories
with a few visual samples per class. Few-shot class repre-
sentations are often biased due to data scarcity. To mit-
igate this issue, we propose to generate visual samples
based on semantic embeddings using a conditional vari-
ational autoencoder (CVAE) model. We train this CVAE
model on base classes and use it to generate features for
novel classes. More importantly, we guide this VAE to
strictly generate representative samples by removing non-
representative samples from the base training set when
training the CVAE model. We show that this training
scheme enhances the representativeness of the generated
samples and therefore, improves the few-shot classifica-
tion results. Experimental results show that our method
improves three FSL baseline methods by substantial mar-
gins, achieving state-of-the-art few-shot classification per-
formance on miniImageNet and tieredImageNet datasets
for both 1-shot and 5-shot settings. Code is available
at: https://github.com/cvlab-stonybrook/
fsl-rsvae.

1. Introduction
Few-shot learning (FSL) methods aim to learn useful

representations with limited training data. They are ex-
tremely useful for situations where machine learning solu-
tions are required but large labelled datasets are not triv-
ial to obtain (e.g. rare medical conditions [49, 71], rare
animal species [75], failure cases in autonomous systems
[42,43,58]). Generally, FSL methods learn knowledge from
a fixed set of base classes with a surplus of labelled data and
then adapt the learned model to a set of novel classes for
which only a few training examples are available [73].

Many FSL methods [10, 23, 39, 65, 65, 77, 82] employ a
prototype-based classifier for its simplicity and good per-
formance. They aim to find a prototype for each novel class
such that it is close to the testing samples of the same class
and far away from testing samples for other classes. How-
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Figure 1. Representative Samples. We refer representative sam-
ples to the “easy-to-recognize” samples that faithfully reflect the
key characteristics of the category. We identify those samples and
then use them to train a VAE model for feature generation, con-
ditioned on class-representative semantic embeddings. We show
that the generated data significantly improves few-shot classifica-
tion performance.

ever, it is challenging to estimate a representative prototype
just from a few available support samples [37,79]. An effec-
tive strategy to enhance the representativeness of the proto-
type is to employ textual semantic embeddings learned via
NLP models [13, 46, 52, 53] using large unsupervised text
corpora [77, 82]. These semantic embeddings implicitly
associate a class name, such as “Yorkshire Terriers”, with
the class representative semantic attributes such as “small-
est dog” or “long coat” [1] ( Fig. 1), providing strong and
unbiased priors for category recognition.

For the most part, current FSL methods focus on learn-
ing to adaptively leverage the semantic information to com-
plete the original biased prototype estimated from the few
available samples. For example, the recent FSL method of
Zhang et al. [82] learns to fuse the primitive knowledge and
attribute features into a representative prototype, depending
on the set of given few-shot samples. Similarly, Xing et
al. [77] propose a method that computes an adaptive mix-
ture coefficient to combine features from the visual and tex-
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tual modalities. However, learning to recover an arbitrarily
biased prototype is challenging due to the drastic variety of
the possible combinations of few-shot samples.

In this paper, we propose a novel FSL method to ob-
tain class-representative prototypes. Inspired by zero-shot
learning (ZSL) methods [4, 18, 85], we propose to gen-
erate visual features via a variational autoencoder (VAE)
model [66] conditioned on the semantic embedding of each
class. This VAE model learns to associate a distribution
of features to a conditioned semantic code. We assume
that such association generalizes across the base and novel
classes [3, 47]. Therefore, the model trained with sufficient
data from the base classes can generate novel-class fea-
tures that align with the real unseen features. We then use
the generated features together with the few-shot samples
to construct class prototypes. We show that this strategy
achieves state-of-the-art results on both miniImageNet and
tieredImageNet datasets. It works exceptionally well for 1-
shot scenarios where our method outperforms state-of-the-
art methods [76, 80] by 5 ∼ 6% in terms of classification
accuracy.

Moreover, to enhance the representativeness of the pro-
totype, we guide the VAE to generate more representative
samples. Here we refer representative samples to the “easy-
to-recognize” samples that faithfully reflect the key char-
acteristics of the category (see Fig. 1). The embeddings
of these representative samples often lie close to their cor-
responding class centers, which are particularly useful for
constructing class-representative prototypes.

Specifically, we guide the VAE model to generate repre-
sentative samples by selecting only representative data from
the base classes for training it. In essence, our VAE model
is trained to model the data distribution of the training set.
As the training set contains only representative data, the
trained VAE model outputs samples that are also represen-
tative. Specifically, to select those representative features,
we first assume that the feature vectors of each class fol-
low a multivariate Gaussian distribution and estimate this
distribution for each base class. Based on these distribu-
tions, we compute the probability of each sample belonging
to its corresponding category to measure the representative-
ness for the sample. We filter out the non-representative
samples and train the VAE using only representative sam-
ples. Interestingly, we show that the representativeness of
the training set highly corresponds to the accuracy of the
few-shot classifier. We obtain the highest accuracy when
training the VAE with the most representative samples. In
this case, we only use a small percentage of the whole train-
ing set, e.g., 10% for the case of miniImagenet dataset, to
obtain the best results. Our analyses show that this approach
consistently improves the FSL classification performance
by 1 ∼ 2% across all benchmarks for three different base-
lines [10, 39, 65].

Our main contributions can be summarized as follows:

• We are the first to use a VAE-based feature generation
approach conditioned on class semantic embeddings
for few-shot classification.

• We propose a novel sample selection method to col-
lect representative samples. We use these samples to
train a VAE model to obtain reliable data points for
constructing class-representative prototypes.

• Our experiments show that our methods achieve state-
of-the-art performance on two challenging datasets,
tieredImageNet and miniImageNet.

We summarize related FSL works in Section 2. Section
3 provides a rundown of our approach. Section 4 reports
the main results obtained with our method. In section 5, we
provide multiple analyses to clarify different aspects of our
methods.

2. Related Work
Few-shot Learning. FSL is helpful when we only have

limited labeled training data [7,25–30]. Representative FSL
approaches include metric learning based [65,67,68,70,79,
80,83], optimization based [17,31,33,34,37,54,59,62], and
data augmentation based methods [2, 61, 74, 78]. Similar
to our method, some FSL methods use semantic informa-
tion to improve the few-shot classifiers [21, 51, 69, 77, 82].
Zhang et al. [82] and Xing et al. [77] propose methods that
learn to adaptively combine the visual features and the se-
mantic features to obtain an unified cross-modality repre-
sentation for each class. These two methods focus on the
fusing strategies that combine features of the two domains.
Hu et al. [21] propose to disentangle the visual features
into the sub-spaces that associate to different semantic at-
tributes. The FSL method of Peng et al. [51] uses semantic
information to infer a classifier for novel classes and adap-
tively combines this classifier with the few-shot samples.
Our method is the first FSL method that uses a conditional
VAE model to directly generate visual features, conditioned
on the semantic embedding of each class.

Conditional Variational Autoencoder. The practice of
using a conditional VAE to model a feature distribution has
been used before in many computer vision tasks such as im-
age classification [23,60,78,84], image generation [16,38],
image restoration [14], or video processing [50]. Using
VAE models for generating features conditioned on the cor-
responding semantic embedding is fairly common in ZSL
methods [4, 18, 47, 60, 81, 85]. Mishra et al. [47] are the
first to propose to use a conditional VAE for ZSL where
they view ZSL as a case of missing data. They find that
such an approach can handle well the domain shift problem.
Similarly, Arora et al. [3] show that a conditional VAE can
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Figure 2. Overview – The key aspect of our approach is to subset our training set to the most representative samples to train a conditional
VAE model that generates more representative features. (a) To select representative samples, we assume that the features of each class
follow a multivariate Gaussian distribution. We estimate the distribution parameters and compute a probability for each data point belonging
to the class distribution. We identify a set of representative samples by setting a threshold on the probability. (b) We train a VAE to generate
visual features, conditioned on the semantic embedding of each class. Using only representative samples (the output of the sample selection
step) to train this VAE model improves the representativeness of the generated samples.

be used together with a GAN system to synthesize images
for unseen classes effectively. Keshari et al. [22] focus on
generating a specific set of hard samples which are closer
to another class and the decision boundary. For the most
part, ZSL methods aim to model the whole distribution of
data [6,9,40,60], while our method focuses on modeling the
distribution of representative samples useful for construct-
ing the class-representative prototypes.

Sample Selection. To the best of our knowledge, we
are the first to propose using a sample selection method for
selecting training samples for a VAE model. Here we se-
lect only representative samples for training the VAE. This
is a new sample selection regime since mainstream sample
selection works mainly focus on identifying the most in-
formative samples [5, 24] for training their models, which
is widely used in active-learning [32, 63]. In FSL, Chang
et al. [8] propose a method to select the most informative
data that should be annotated for a few-shot text genera-
tion system. Zhou et al. [86] propose a method to select
the useful base classes to train their model, while our work
selects useful individual samples within an arbitrary set of
base classes.

3. Method

3.1. Problem Definition

In a typical few-shot classification setting, we are given
a set of data-label pairs D = {(xi, yi)}. Here xi ∈ Rd is the
feature vector of a sample and yi ∈ C, where C denotes the
set of classes. The set of classes is divided into base classes
Cb and novel classes Cn. The sets of class Cb and Cn are
disjoint, i.e. Cb ∩ Cn = ∅. For a N -way K-shot problem,

we sample N classes from the novel set Cn, and K samples
are available for each class. K is often small (i.e., K = 1
or K = 5). Our goal is to classify query samples correctly
using the few samples from the support set.

3.2. Overall Pipeline

Fig. 2 gives an overview of our sample selection method
and VAE training approach. We propose a method to select
a set of representative samples from a set of base classes.
We use these selected representative data to train a condi-
tional VAE model for feature generation. To select repre-
sentative samples, we assume that the features of each class
follow a multivariate Gaussian distribution. We estimate
the parameters for each class distribution and compute the
probability for each data point belonging to its class. By
setting a threshold on the probabilities, we identify a set of
representative samples. We then use these selected repre-
sentative samples to train a VAE model that generates sam-
ples conditioned on the semantic attributes of each class.

We train this VAE on the base classes and use the trained
model to generate samples for the novel classes. The gener-
ated features are then used together with the few-shot sam-
ples to construct the prototype for each class. Our method
is a simple plug-and-play module and can be built on top
of any pretrained feature extractors. In our experiments, we
show that our method consistently improves three baseline
few-shot classification methods: Meta-Baseline [10], Pro-
toNet [65] and E3BM [39] by large margins.
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3.2.1 Class-representative Sample Selection

In this paper, we are interested in representative samples
as they can serve as reliable data points for constructing a
class-representative prototype [10, 65]. The main idea is
to train a feature generator with only representative data to
obtain more representative generated samples.

To select the representative features, we assume that the
feature distribution of the base classes follows a Gaussian
distribution and estimate the parameters of this distribution
for each class. We calculate the Gaussian mean of a base
class i as the mean of every single dimension in the vector:

µi =
1

ni

ni∑
j=1

xj , (1)

where xj is a feature vector of the j-th sample from the
base class i and ni is the total number of samples in class
i. The covariance matrix Σi for the distribution of class i is
calculated as:

Σi =
1

ni − 1

ni∑
j=1

(xj − µi)(xj − µi)T . (2)

Once we estimate the parameters of the Gaussian distribu-
tion using the adequate samples from the base classes, the
probability density of observing a single feature, xj , being
generated from the Gaussian distribution of class i is given
by:

p(xj |µi,Σi) =
exp{− 1

2 (x
j − µi)TΣi−1

(xj − µi)}
(2π)k/2|Σi|1/2

,

(3)
where k is the dimension of the feature vector.

Here we assume that the probability of a single sample
belongs to its category’s distribution reflects the represen-
tativeness of the sample, i.e., the higher the probability, the
more representative the sample is. By setting a threshold
ϵ on the estimated probability, we filter out those samples
with small probabilities and get a set of representative fea-
tures for class i:

Di = {xj | p(xj |µi,Σi) > ϵ}, (4)

where Di stores the features for class i with the probabilities
larger than a threshold ϵ.

3.2.2 Conditional VAE Model for Feature Generation

We use our sample selection method to select a set of repre-
sentative samples and use them for training our feature gen-
eration model. We develop our feature generator based on a
conditional variational autoencoder (VAE) architecture [66]
(see Fig. 2b). The VAE is composed of an Encoder E(x, a),

which maps a visual feature x to a latent code z, and a de-
coder G(z, a) which reconstructs x from z. Both E and
G are conditioned on the semantic embedding a. The loss
function for training the VAE for a feature xj of class i can
be defined as:

LV (x
j) =KL

(
q(z|xj , ai)||p(z|ai)

)
− logp(xj |z, ai),

(5)

where ai is the semantic embedding of class i. The first
term is the Kullback-Leibler divergence between the VAE
posterior q(z|x, a) and a prior distribution p(z|a). The sec-
ond term is the decoder’s reconstruction error. q(z|x, a) is
modeled as E(x, a) and p(x|z, a) is equal to G(z, a). The
prior distribution is assumed to be N (0, I) for all classes.

The loss for training the feature generator is the loss over
all selected representative training samples:

LV =

Cb∑
i=1

∑
x∈Di

LV (x) (6)

3.2.3 Constructing Class Prototypes

After the VAE is trained on the base set, we generate a set
of features for a class y by inputting the respective semantic
vector ay and a noise vector z to the decoder G:

Gy = {x̂|x̂ = G(z, ay), z ∼ N (0, I)}. (7)

The generated features along with the original support set
features for a few-shot task is then served as the training
data for a task-specific classifier. Following our baseline
methods, we compute the prototype for each class and ap-
ply the nearest neighbour classifier. Specifically, we first
compute two separated prototypes: one using the support
features and the other using the generated features. Each
prototype is the mean vector of the features of each group.
We then take a weighted sum of the two prototypes to obtain
the final prototype py for class y:

py = wg ∗
1

|Gy|
∑

x̂j∈Gy
x̂j + ws ∗

1

|Sy|
∑

xj∈Sy
xj , (8)

where Sy is the support set features and (wg, ws) are the co-
efficients of the generated feature prototype and the real fea-
ture prototype, respectively. We classify samples by find-
ing the nearest class prototype for an embedding query fea-
ture. We conduct further analysis to show that our gener-
ated features can benefit all types of classifiers (see Section
5.2). Compared to the methods that correct the original bi-
ased prototype, our model does not require any carefully
designed combination scheme.
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Method Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Matching Net [70] ResNet-12 65.64 ± 0.20 78.72 ± 0.15 68.50 ± 0.92 80.60 ± 0.71
MAML [17] ResNet-18 64.06 ± 0.18 80.58 ± 0.12 - -
SimpleShot [72] ResNet-18 62.85 ± 0.20 80.02 ± 0.14 69.09 ± 0.22 84.58 ± 0.16
CAN [20] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37
S2M2 [44] ResNet-18 64.06 ± 0.18 80.58 ± 0.12 - -
TADAM [48] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 62.13 ± 0.31 81.92 ± 0.30
AM3 [77] ResNet-12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31
DSN [64] ResNet-12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48
Variational FSL [84] ResNet-12 61.23 ± 0.26 77.69 ± 0.17 - -
MetaOptNet [31] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
Robust20-distill [15] ResNet-18 63.06 ± 0.61 80.63 ± 0.42 65.43 ± 0.21 70.44 ± 0.32
FEAT [80] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
RFS [68] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
Neg-Cosine [36] ResNet-12 63.85 ± 0.81 81.57 ± 0.56 - -
FRN [76] ResNet-12 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15
Meta-Baseline [10] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
Meta-Baseline + SVAE (Ours) ResNet-12 69.96 ± 0.21 79.92 ± 0.16 73.05 ± 0.24 83.96 ± 0.18
Meta-Baseline + R-SVAE (Ours) ResNet-12 72.79 ± 0.19 80.70 ± 0.16 73.90 ± 0.24 84.17 ± 0.18
ProtoNet [80] ResNet-12 62.39 80.53 68.23 84.03
ProtoNet + SVAE (Ours) ResNet-12 73.01 ± 0.24 83.13 ± 0.40 76.36 ± 0.65 85.65 ± 0.50
ProtoNet + R-SVAE(Ours) ResNet-12 74.84 ± 0.23 83.28 ± 0.40 76.98 ± 0.65 85.77 ± 0.50
E3BM [39] ResNet-12 64.09 ± 0.37 80.29 ± 0.25 71.34 ± 0.41 85.82 ± 0.29
E3BM + SVAE (Ours) ResNet-12 73.07 ± 0.39 80.82 ± 0.31 79.85 ± 0.43 86.82 ± 0.32
E3BM + R-SVAE(Ours) ResNet-12 73.35 ± 0.37 80.95 ± 0.31 80.46 ± 0.43 86.99 ± 0.32

Table 1. Comparison to prior works on miniImageNet and tieredImageNet. Average 5-way 1-shot and 5-way 5-shot accuracy (%) with
95% confidence intervals. SVAE denotes our method using the VAE trained with all features in the base set. R-SVAE denotes the one
trained with only representative features. The best performance is highlighted in bold.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our method on two widely-used
benchmarks for few-shot learning, miniImageNet [55] and
tieredImageNet [57]. miniImageNet is a subset of the
ILSVRC-12 dataset [12]. It contains 100 classes and each
class consists of 600 images. The size of each image is 84
× 84. Following the evaluation protocol of [56], we split
the 100 classes into 64 base classes, 16 validation classes,
and 20 novel classes for pre-training, validation, and testing.
tieredImageNet is a larger subset of ILSVRC-12 dataset,
which contains 608 classes sampled from hierarchical cate-
gory structure. The average number of images in each class
is 1281. It is first partitioned into 34 super-categories that
are split into 20 classes for training, 6 classes for validation,
and 8 classes for testing. This leads to 351 actual categories
for training, 97 for validation, and 160 for testing.

Baseline methods. Our method can be used as a sim-
ple plug-and-play module for many existing few-shot learn-
ing methods without fine-tuning their feature extractors.
We investigate three baseline few-shot classification meth-
ods used in conjunction with our method: ProtoNet [80],
Meta-Baseline [10] and E3BM [39]. ProtoNet is known
as a strong and classic prototypical approach. In our ex-

periments, we use the ProtoNet implementation of Ye et al.
[80]. Meta-Baseline [10] uses a ProtoNet model to fine-tune
a generic classifier via meta-learning. E3BM [39] meta-
learns the ensemble of epoch-wise models to achieve robust
predictions for FSL. For each baseline method, we extract
the corresponding feature representations to train our fea-
ture generation VAE model. We then use the trained VAE
to generate features and obtain the class prototypes for few-
shot classification.

Evaluation protocol. We use the top-1 accuracy as
the evaluation metric to measure the performance of our
method. We report the accuracy on standard 5-way 1-shot
and 5-shot settings with 15 query samples per class. We
randomly sample 2000 episodes from the test set and report
the mean accuracy with the 95% confidence interval.

4.2. Implementation Details

All the three baselines use ResNet12 backbone as the
feature extractor. The feature representation is extracted by
average pooling the final residual block outputs. The di-
mension of the feature representation is 640 for ProtoNet
[80], 512 for Meta-Baseline [10], and 640 for E3BM [39].
For our feature generation model, both the encoder and the
decoder are two-layer fully-connected (FC) networks with
4096 hidden units. LeakyReLU and ReLU [19] are the non-
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Figure 3. Few-shot classification results with different probability thresholds. We report the classification accuracy (%) (red) and the
number of samples (green) when setting different thresholds for the probabilities. A higher threshold means we select samples that are
more representative, resulting in a less amount of training data points. In general, the classification performance increases when the number
of training samples decreases with increasing representativeness thresholds.

linear activation functions in the hidden and output layers,
respectively. The dimensions of the latent space and the se-
mantic vector are both set to be 512. The network is trained
using the Adam optimizer with 10−4 learning rate. Our se-
mantic embeddings are extracted from CLIP [53]. We em-
pirically set the combination weights [wg, ws] in Equation 8
to [ 12 ,

1
2 ] for 1-shot settings and to [ 16 ,

5
6 ] for 5-shot settings.

We set the probability threshold to 0.9 for the main exper-
iments and discuss the performance under different values
of this threshold in Section 5.1.

4.3. Results

Table 1 presents the 5-way 1-shot and 5-way 5-shot
classification results of our methods on miniImageNet and
tieredImageNet in comparision with previous FSL methods.
Here all methods use ResNet12/ResNet18 architectures as
feature extractors with input images of size 84 × 84. Thus,
the comparison is fair. For the rest of the paper, we denote
our VAE trained with all data as SVAE (Semantic-VAE) and
the model trained with only representative data as R-SVAE
(Representative-SVAE).

We apply our methods on top of the Meta-Baseline [10],
ProtoNet [80], and E3BM [39]. Our methods consistently
improve all three baselines under all settings and for all
datasets. They work particularly well under the 1-shot set-
tings, in which sample bias is a more pronounced issue.
Using the model trained on all data - SVAE, we report
6.8% ∼ 10% 1-shot accuracy improvements for all three
baselines. Our 1-shot performance for all the baselines out-

performs the state-of-the-art method [76] by large margins.
In 5-shot, our method consistently brings a 0.5 ∼ 2.7% per-
formance gains to all baselines.

Using representative samples to train our VAE model
further improves the three baseline methods under all set-
tings and for all datasets. Compared to SVAE, training on
strictly representative data improves the 1-shot classifica-
tion accuracy by 0.3% ∼ 2.8% and the 5-shot classification
accuracy by 0.2% ∼ 0.8%. R-SVAE achieves state-of-the-
art few-shot classification on miniImageNet dataset with the
ProtoNet baseline and on tieredImageNet dataset with the
E3BM baseline.

5. Analyses
All the following analyses use the feature extractor from

the Meta-Baseline method [10].

5.1. Analysis on the Probability Threshold

In our main setting, we set a threshold of 0.9 on the
probabilities to select those class-representative samples as
the training data for our VAE model (the higher, the more
representative). In this section, we conduct experiments
with different threshold values to see how it affects the
classifier’s performance. Fig. 3 shows the classification
accuracy under different thresholds on miniImageNet and
tieredImageNet datasets. As the threshold increases, more
non-representative samples are filtered out, resulting in less
training data for R-SVAE. Interestingly, we observe that the
model generally performs better with higher threshold val-
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Figure 4. Feature Visualization. We show the t-SNE visualization of the original features (marked as dark points) and our generated
features (marked as transparent points) on tieredImageNet dataset. Different colors represent different classes. From left to right, we show
the original support set (a), the query set (b), the features generated by SVAE (c), and the features generated by R-SVAE (d).
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Figure 5. Distance Distributions. Kernel Density Estimation of
the distance between the estimated prototypes and the ground truth
prototype. A smaller value means the estimated prototypes are
closer to the ground truth prototypes.

ues under both 1-shot and 5-shot settings. For example, un-
der the 1-shot setting on miniImageNet dataset, we only use
58 images per class on average when setting the threshold
to 0.9. Training the VAE model with this small set of im-
ages improves the performance by 2.95% compared with
the model trained using all data in the base set with 600
images per class on average. The results suggest that the
performance of our method strongly corresponds to the rep-
resentativeness of training data. Moreover, it shows that our
sample selection method provides a reliable measurement
for the representativeness of the training samples.

5.2. Performance with Different Classifiers

In our main experiments, we classify samples by finding
the nearest neighbor among class prototypes. In this sec-
tion, we apply another three different types of classifiers:
1-nearest neighbor classifier (1-N-N), Support Vector Ma-
chine (SVM), and Logistic Regression (LR).

Table 2 shows the 1-shot performance of different clas-
sifiers using our generated features on miniImageNet and
tieredImageNet datasets. It shows that the features gener-
ated by our VAEs improve the performance of all three clas-
sifiers. For example, the 1-shot accuracy on miniImageNet
using LR is improved by 8.8% with SVAE and by 10.1%
with R-SVAE. The consistent performance improvements

show that our generated features can benefit different types
of classifiers.

5.3. Feature Distribution Analysis

In Fig. 4, we show the t-SNE representation [41] of dif-
ferent sets of features for three classes from the novel set of
tieredImageNet dataset. From left to right, we visualize the
distribution of the original support set (a), the query set (b),
the features generated by SVAE (c), and the features gener-
ated by R-SVAE (d). Note that our methods do not rely on
the support features to generate features.

Fig. 4(c) and (d) visualize the effect of our sample selec-
tion method. Fig. 4(c) visualizes features generated from
our method trained with all available data from the base
classes, which consist of 1281 images per class on average.
In Fig. 4(d), we train the same model with only 484 rep-
resentative images per class on average. Our model trained
with a representative subset of data generates features that
lie closer to the real features, showing the effectiveness of
our sample selection method.

Moreover, we plot the distance distributions between the
estimated prototypes and the ground truth prototypes of
each class. Specifically, for each class, we first obtain the
ground-truth prototype by taking the mean of all the fea-
tures of the class. Then we calculate the L2 distance be-
tween the ground truth prototype and three different proto-
types: 1) Baseline: the prototype was estimated using only
the support samples. 2) SVAE: the prototype was estimated
using the support samples and the generated samples from
our SVAE model. 3) R-SVAE: the prototype was estimated
using the support samples and the generated samples from
our R-SVAE model.

We sample 2400 tasks from miniImageNet dataset un-
der both 5-way 1-shot and 5-way 5-shot settings. For each
task, we obtain five distances, one distance per class. Then
we plot the probability density distribution of the distance,
shown in Fig. 5. The probability density is calculated
by binning and counting observations and then smoothing
them with a Gaussian kernel, namely, Kernel Density Esti-
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Representative Non-representative

Figure 6. Examples of representative samples (left) and non-representative samples (right). We visualize 5 images with high proba-
bilities and 5 images with small probabilities computed via our proposed method for 3 classes from tieredImageNet dataset.

miniImageNet tieredImageNet
Classifier support samples + SVAE + R-SVAE support samples + SVAE +R-SVAE
Prototype [10] 63.17 ± 0.23 69.96 ± 0.21 72.79 ± 0.19 68.62 ± 0.27 73.05 ± 0.24 73.90 ± 0.24
1-N-N 63.28 ± 0.23 67.25 ± 0.20 69.27 ± 0.19 68.73 ± 0.26 68.05 ± 0.25 69.82 ± 0.24
SVM 63.41 ± 0.23 70.30 ± 0.20 72.84 ± 0.19 68.88 ± 0.25 69.26 ± 0.25 71.28 ± 0.24
LR 63.33 ± 0.22 72.11 ± 0.20 73.41 ± 0.19 69.15 ± 0.25 74.99 ± 0.23 75.98 ± 0.23

Table 2. Choices of the classifiers. One-shot classification accuracy on miniImageNet and tieredImageNet using different types of
classifiers, i.e., 1-N-N, SVM and LR. All methods use the feature extractor from the Meta-Baseline method [10].

mation [11]. As can be seen the Fig., our estimated class
prototypes are much closer to the ground truth prototypes,
compared to the baseline.

5.4. Sample Visualization

In Fig. 6, we visualize some representative samples and
non-representative samples based on the representativeness
probability computed via our method. The samples on the
left panel are images with high probabilities. These im-
ages mostly contain the main object of the category and are
easy to recognize. On the contrary, the samples on the right
panel are those with small probabilities. They contain var-
ious class-unrelated objects and can lead to noisy features
for constructing class prototypes.

5.5. Performance with Different Semantic Embed-
ding

We use CLIP features in our main experiments. The per-
formance of our method trained with Word2Vec [45] fea-
tures are shown in Table 3. Note that CLIP model is trained
with 400M pairs (image and its text title) collected from the
web while Word2Vec is trained with only text data. Our
model outperforms state-of-the-art methods in both cases.

6. Limitations and Discussion
We propose a feature generation method using a condi-

tional VAE model. Here we focus on modeling the distri-
bution of the representative samples rather than the whole

1-shot 5-shot
Meta-Baseline 63.17 ± 0.23 79.26 ± 0.17
Meta-Baseline + SVAE 67.39 ± 0.21 79.77 ± 0.17
Meta-Baseline + R-SVAE 68.03 ± 0.22 79.93 ± 0.16

Table 3. Classification accuracy using Word2Vec [45] as the
semantic feature extractor.

data distribution. To accomplish that, we propose a sample
selection method to collect a set of strictly representative
training samples for training our VAE model. We show that
our method brings consistent performance improvements
over multiple baselines and achieves state-of-the-art perfor-
mance on both miniImageNet and tieredImageNet datasets.
Our method requires a pre-trained NLP model to obtain the
semantic embedding of each class. It might also inherit
some potential biases from the textual domain. Note that
our method does not aim to generate diverse data with large
intra-class variance [35, 78]. Building a system that can
generate both representative and non-representative sam-
ples can greatly benefit various downstream computer vi-
sion tasks and is an interesting direction to extend our work.

Acknowledgements. Jingyi Xu is partially supported by a
research grant from Zebra Technologies and the SUNY2020
ITSC grant. Hieu Le is funded by Amazon Robotics to at-
tend the conference. We thank Tran Truong, Kien Huynh,
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