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Abstract

Cross-domain weakly supervised object detection (CD-
WSOD) aims to adapt the detection model to a novel tar-
get domain with easily acquired image-level annotations.
How to align the source and target domains is critical to
the CDWSOD accuracy. Existing methods usually focus
on partial detection components for domain alignment. In
contrast, this paper considers that all the detection com-
ponents are important and proposes a Holistic and Hier-
archical Feature Alignment (H2FA) R-CNN. H2FA R-CNN
enforces two image-level alignments for the backbone fea-
tures, as well as two instance-level alignments for the RPN
and detection head. This coarse-to-fine aligning hierar-
chy is in pace with the detection pipeline, i.e., process-
ing the image-level feature and the instance-level features
from bottom to top. Importantly, we devise a novel hybrid
supervision method for learning two instance-level align-
ments. It enables the RPN and detection head to simultane-
ously receive weak/full supervision from the target/source
domains. Combining all these feature alignments, H2FA
R-CNN effectively mitigates the gap between the source
and target domains. Experimental results show that H2FA
R-CNN significantly improves cross-domain object detec-
tion accuracy and sets new state of the art on popular
benchmarks. Code and pre-trained models are available at
https://github.com/XuYunqiu/H2FA_R-CNN .

1. Introduction

Cross-domain weakly supervised object detection (CD-
WSOD) is of significant value in realistic detection applica-
tions. Specifically, the training data and the testing data are
sometimes under different domains (i.e., the source domain
and target domain, respectively), yielding a cross-domain
detection scenario. To mitigate the domain shift, there are
three potential solutions, i.e., the supervised, unsupervised

*Work done during an internship at Baidu Research.

Image-level 
class-agnostic

RPN

backbone

sourcetarget

cat
cat, person

image-level
feature

RoI feature
detection

head

bottom

top

Image-level 
class-wise

instance-level 
foreground

instance-level 
class-wise

IIR unit

proposal

class-wise

class-agnostic

class-wise

foreground

image

instance

domain

image

hybrid

coarse

fine

holistic and hierarchical feature align

supervisionsemanticspatial

Figure 1. Our H2FA R-CNN employs four feature alignments,
i.e., image-level (class-agnostic and class-wise) alignments and
instance-level (foreground and class-wise) alignments for CDW-
SOD. From the viewpoints of spatial granularity, semantic granu-
larity and the supervision signals, there is a clear hierarchy from
coarse to fine, which is paced with the detection pipeline from bot-
tom to top. The novel Instance- and Image-level Recognition (IIR)
unit is based on the RPN and detection head and is compatible to
both full and weak supervision signals.

and weakly supervised approaches. The supervised ap-
proach requires additional densely annotated samples (i.e.,
instance-level bounding boxes) on the target domain, which
can be very burdensome. In contrast, the unsupervised ap-
proach [10,15,50] relieves the annotation cost, but generally
achieves inferior detection accuracy. Therefore, many liter-
ature [27, 30, 43] explore the weakly supervised approach
(i.e., CDWSOD), which provides good trade-off between
accuracy and annotation efficiency. Generally, CDWSOD
improves cross-domain detection accuracy by adapting the
deep model to the target domain with additional weak su-
pervision signals (i.e., the image-level annotations).

We argue it is important to exploit the characteristics
of the detection pipeline during the domain adaptation for
CDWSOD. Specifically, a popular cross-domain detection
baseline adopts the two-stage pipeline [45] and is consisted
of a backbone, a region proposal network (RPN) and a de-
tection head. While the common sense is that all these
three components are critical to the detection accuracy, ex-
isting methods usually focus on partial components for do-

14329



main alignment. For instance, [27] aligns the backbone fea-
tures and neglects aligning the RPN and detection head.
Some self-training-based methods [30, 43] use instance-
level pseudo labels for adaptive training and can be viewed
as directly aligning the features in the detection head. In
contrast to the previous literature, we believe that all these
components are important for domain alignment.

Such motivated, we propose a novel CDWSOD method
named Holistic and Hierarchical Feature Alignment (H2FA)
R-CNN, as illustrated in Figure 1. H2FA R-CNN not only
includes holistic detection components (i.e., the backbone,
the RPN and the detection head) for domain alignment, but
also organizes these multiple alignments in a hierarchical
sequence in pace with the detection pipeline. We explain
the hierarchical sequence as below:

1) Two image-level alignments for the backbone: When
the detection pipeline is within the backbone, the network
processes each image as a whole. Correspondingly, we en-
force two image-level alignments (a class-agnostic and a
class-wise one) on the backbone features. Such a class-
agnostic → class-wise sequence is paced with the fact that
the backbone feature gradually develops class-wise discrim-
inative ability from bottom to top layers.

Specifically, the class-agnostic alignment uses adversar-
ial domain classifiers to pull close two domains, without
categorizing each image. In contrast, the class-wise domain
alignment employs a multi-label classification task to learn
a set of class-wise prototypes (a single prototype for a re-
spective class). During training, each prototype pulls close
the features (of the corresponding class) from two domains,
therefore facilitating the class-wise alignment.

2) Two instance-level alignments for the RPN and detec-
tion head: When the detection pipeline proceeds to the RPN
and detection head, the network shifts to instance-level ob-
ject recognition. Correspondingly, we enforce an instance-
level foreground alignment for the RPN and an instance-
level class-wise alignment for the detection head, respec-
tively. Since the target domain does not provide instance-
level but image-level annotations, we transform the vanilla
RPN and detection head into a novel Instance- and Image-
level Recognition (IIR) unit (as introduced below), which is
compatible to both weak and full supervision. Such a fore-
ground → class-wise sequence is paced with the two-stage
hierarchy of the detection baseline.

Apart from the overall framework, another important
characteristic of H2FA R-CNN is the novel Instance- and
Image-level Recognition (IIR) unit. IIR unit has two func-
tions: 1) IIR preserves the original instance-level recogni-
tion function of the RPN and detection head; 2) IIR merges
the outputs from the RPN and detection head for image-
level recognition. Therefore, IIR can receive full/weak su-
pervision from the source/target domains simultaneously,
facilitating the desired instance-level alignments.

There is a clear hierarchy in the above aligning pipeline
of image-level (class-agnostic → class-wise) ⇒ instance-
level (foreground → class-wise). In pace with the detec-
tion pipeline from bottom to top, the semantic and spatial
granularity of the alignments are from coarse to fine (see
Figure 1). Meanwhile, the supervision signals for learn-
ing these alignments are from weak to strong (i.e., domain
labels, image-level labels, and the hybrid image-level plus
instance-level labels). We empirically show that the holis-
tic and hierarchical characteristics are both important for
H2FA (see §4.4). Experimental results show that H2FA R-
CNN significantly improves the cross-domain object detec-
tion performance and sets new state of the art on popular
benchmarks. Our main contributions can be summarized as
follows:

• We propose the holistic and hierarchical feature align-
ment (H2FA) R-CNN for the CDWSOD task. H2FA
R-CNN organizes two image-level and two instance-
level alignments in a hierarchical manner.

• As an important component, we devise an Instance-
and Image-level Recognition (IIR) unit to replace the
vanilla RPN and detection head. IIR receives hybrid
supervision from the source and target domains and
facilitates instance-level alignments.

• We evaluate the proposed H2FA R-CNN through com-
prehensive experiments. Experimental results demon-
strate that H2FA R-CNN not only achieves state-of-
the-art cross-domain object detection performance, but
also has the advantage of strong noise robustness.

2. Related Work
Object detection. Modern object detection methods [6,40,
45] have achieved promising detection accuracy based on
some large-scale datasets [17,21,41,52]. However, deploy-
ing a well-trained detector to another novel domain may
bring catastrophic performance degradation. This paper
aims to mitigate the accuracy gap between detection and
cross-domain detection with additional weak supervision
on the target domain. We use Faster R-CNN [45] as our
baseline model. Such a choice is consistent with most prior
cross-domain object detection works [10,15, 27,30,50, 68].

Weakly supervised object detection. Most prior weakly
supervised object detection (WSOD) arts [3, 12, 29, 31, 46,
53, 54, 58, 62, 63, 73, 75, 77] focus on learning object de-
tectors with only image-level annotations. They formulate
WSOD as a multiple instance learning problem. More re-
cently, several works [2, 5, 5, 16, 18, 26, 33, 47, 82] try boost
WSOD performance with some instance-level annotations.
Most of them [5,16,26,33,60,82] focus on extending detec-
tors to novel categories with image-level annotations. Com-
pared with WSOD, the topic of this paper (i.e., CDWSOD)
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Figure 2. H2FA R-CNN enforces two image-level alignments and two instance-level alignments from bottom to top. We use both the full
supervision on the source domain and the weak supervision on the target domain for training H2FA R-CNN. Within the backbone, we
respectively use a D-Classifier and I-Classifier to enforce image-level class-agnostic and class-wise alignments. After the backbone, we
further enforce two instance-level alignments using an Instance- and Image-level Recognition (IIR) unit. IIR constructs two different and
parallel paths based on the RPN and detection head: 1) it uses the vanilla instance-level recognition path for detection and receives full
supervision on the source domain; 2) it uses an image-level recognition path to receive weak supervision on the target domain.

is more challenging due to the severe domain shift. The pro-
posed H2FA R-CNN is featured for holistic and hierarchical
feature alignment, which largely mitigates the domain shift
problem.

Cross-domain object detection. Cross-domain object de-
tection aims at detecting objects cross different domains.
Most previous works solving cross-domain object detec-
tion mainly focus on UDAOD [4, 7, 15, 20, 24, 25, 42, 55,
57, 61, 65, 76, 79, 84]. Prior UDAOD methods can be
roughly divided in to two groups, i.e., adversarial feature
alignment [9–11, 28, 48, 50, 59, 66, 68, 72, 78, 80, 81] and
self-training [34, 35, 37, 44, 49]. Apart from the standard
UDAOD setting, source-free and multi-source UDAOD
tasks are studied in [38] and [48, 74] respectively. More-
over, domain generalization in object detection is explored
in [39,64]. Compared with UDAOD, CDWSOD [27,30,43]
provides additional image-level annotations on the target
domain and generally achieves superior accuracy. This pa-
per well exploits the weak supervision signals on the target
domain for domain alignment on four feature levels.

3. H2FA R-CNN
3.1. Overview

As shown in Figure 2, H2FA R-CNN adopts a two-stage
detection framework [45] comprised of a backbone, a RPN,
and a detection head. H2FA R-CNN takes the mixture

of source and target images as its input and seeks for do-
main alignment in the holistic and hierarchical manner. To
this end, H2FA R-CNN makes two changes to the base-
line structure: 1) It appends extra domain classifiers (D-
Classifier) and an image classifier (I-Classifier) to the back-
bone for image-level feature alignments. 2) It transforms
the RPN and detection head into an Instance- and Image-
level Recognition (IIR) unit for instance-level alignments.

When the detection pipeline is within the backbone,
H2FA R-CNN enforces two image-level alignments with
D-Classifier and I-Classifier (see §3.2). Specifically, D-
Classifier enforces image-level class-agnostic alignment on
bottom-layer features, by learning to recognize the under-
lying domain of each image with a popular adversarial loss
Ldc [50]. I-Classifier enforces image-level class-wise align-
ment on top-layer features, by learning multi-label classifi-
cation through a binary cross-entropy loss Lic. We arrange
I-Classifier (for class-wise alignment) behind D-Classifier
(for class-agnostic alignment). Such arrangement is be-
cause the classification generally requires higher semantic
information and thus favors the top-layer features.

After image-level alignments, H2FA R-CNN further en-
forces instance-level alignments by transforming the RPN
and detection head into an Instance- and Image-level
Recognition (IIR) unit (see §3.3). The proposed IIR unit
achieves two different functions via routing different paths
on the shared RPN and detection head. The first path main-
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tains the vanilla detection pipeline for the source domain
and is supervised with popular detection losses [45], i.e.,
Lrpn (for the RPN) and Ldet (for the detection head). The
second path aggregates the instance-level predictions of the
RPN and detection head into image-level predictions. Dur-
ing training, IIR inputs the target domain features into the
second path and supervises the corresponding image-level
predictions with a binary cross-entropy loss Lcls.

During training, H2FA R-CNN aggregates all the above
loss functions for an end-to-end optimization:

L = λdcLdc + λicLic︸ ︷︷ ︸
image-level align

+Lrpn + Ldet + λclsLcls︸ ︷︷ ︸
instance-level align

. (1)

During inference, H2FA R-CNN employs a standard infer-
ence pipeline as in the baseline [45]. In other words, we
remove the D-Classifier, I-Classifier and restore the IIR unit
into the vanilla RPN and detection head.

3.2. Image-level feature alignments
Class-agnostic alignment with domain supervision. Do-
main labels are freely available for all data. Using domain
labels, we perform image-level class-agnostic feature align-
ment via adversarial training. Similar to [50], we attach
two domain classifiers (D-Classifier) on the backbone. The
D-Classifier try to distinguish which domain the input im-
age belongs to. Meanwhile, the gradient reverse layers [19]
reverse the gradients propagated by D-Classifier to con-
fuse the backbone. By optimizing D-Classifier with do-
main supervision and the adversarial loss Ldc introduced
in [50], backbone parameters gradually lose the ability to
distinguish domains. Consequently, these parameters be-
come domain irrelevant, enabling cross-domain features to
be aligned in a unified space.

Class-wise alignment with weak supervision. Perform-
ing cross-domain feature alignment in a class-agnostic man-
ner only ensures the global distributions of two domains are
aligned [61]. However, it is tolerant for class-wise mis-
alignment, which compromises the recognition accuracy.
Since top layer of the backbone contains high-level seman-
tics and already gains discriminative ability for each indi-
vidual class, we further impose class-wise alignment to take
the benefit of the image-level annotations for both domains.

Concretely, we add a multi-label image classifier (I-
Classifier) at the top of backbone. Supervised by a binary
cross-entropy loss Lic, I-Classifier learns a set of proto-
types (one for each object class). During training, these
prototypes pull the features from the corresponding classes
towards themselves, regardless of the underlying domain.
Consequently, the source and target domain features of a
same class are pulled close towards each other, yielding the
desired class-wise feature alignment.

We note that the I-Classifier in our H2FA R-CNN
is significantly different from those in previous UDAOD
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(b) Source only baseline with I-Classifier.
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(c) H2FA R-CNN.

Figure 3. Within-class distributions of a vehicle, an animal and a
person class on Watercolor [30] dataset. In (a), the model is trained
only on the source domain and thus incurs significant domain gap
along each class. In (b), adding the I-classifier mitigates the class-
wise domain gap. In (c), H2FA R-CNN combining all the feature
alignments further mitigates the class-wise domain gap. More vi-
sualization examples are shown in the Appendix.

works [9, 71, 80], in terms of motivation and mechanism.
These methods do not use the image-level classifier to di-
rectly align source and target domains. Instead, they only
train the image-level classifier on the source domain and
use it to enhance the effect of domain classifiers. In con-
trast, our I-Classifier explicitly aligns two domains along
each individual class, as visualized in Figure 3b.

3.3. Instance-level feature alignments

Instance- and image-level recognition unit. After coarse
alignment at image-level, H2FA R-CNN further seeks for
instance-level alignment. Enforcing instance-level align-
ment along each class is non-trivial, because target domain
has no instance-level annotations. Prior self-training-based
methods [30, 43] try to solve this problem by using pseudo
labels and are vulnerable to the pseudo label noises. In
contrast, H2FA R-CNN directly tackles this problem with
hybrid supervision (i.e., combining full supervision on the
source domain and weak supervision on the target domain)
and thus requires no pseudo labels.

To this end, we propose a novel Instance- and Image-
level Recognition (IIR) unit, which shares exactly the same
modules (i.e., a RPN and a detection head) and parame-
ters for both the domains yet performs two different func-
tions via routing different paths. For the source domain, IIR
treats each proposal independently and produces instance-
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level predictions as a regular detection model. For the target
domain, IIR switches to an image-level recognition function
which aggregates the multiple outputs of RPN and detection
head into an image-level multi-label prediction and thus en-
ables the weak supervision. We present the details as below:

• Instance-level recognition path adopts a standard two-
stage pipeline [45] to generate instance-level predictions.
The RPN first generates coarse object proposal candidates.
Then, the detection head extracts instance-level features
from these proposals for further refinement. As instance-
level annotations of source domain are already available,
we train IIR using standard object detection losses as in [45]
(i.e., Lrpn for the RPN, and Ldet for the detection head).

• Image-level recognition path reuses the instance-level
predictions from the RPN and detection head to generate
image-level prediction. To this end, it considers represent-
ing the whole image with a few informative instances that
1) are more likely to cover complete objects, and 2) have a
high probability belong to an individual class.

Let us assume for an image, the RPN predicts objectness
logits o ∈ RN , while the detection head predicts the clas-
sification logits x ∈ RN×C (C is the total number of object
classes). We aggregate o and x for a single multi-class pre-
diction, as shown in Figure 4. Specifically, we first assign
the n-th objectness on to a specific object class according
to xn ∈ RC : if the index for the largest-value entry of xn is
i, we assign on to the i-th entry and assign 0 objectness to
all the other entries. In this way, we obtain a class-specific
objectness matrix ō ∈ RN×C .

We use ō and the classification logits x to generate the
image-level prediction. We first extract the proposals’ prob-
abilities of belonging to each object class by a softmax
along object classes (i.e., softmax along row in Figure 4).
Given these probability scores from multiple proposals, we
use weighted sum to collect them into a single image-level
probability. To this end, we leverage a softmax along pro-
posals (i.e., softmax along column in Figure 4) for assigning
weights, as it provides normalization effect and naturally
highlights the most representative proposals. Finally, the
image-level predictions are obtained by accumulating all
proposals. Formally, the aforementioned image-level pre-
diction aggregation can be given as:

Pc =

N∑
n=1

(σrow(xn,c)⊙ σcol(ōn,c)), (2)

where Pc is the predicted probability for class c (indicating
whether current image contains objects of class c), σrow(·)
and σcol(·) are softmax operations along row and column
respectively, and ⊙ is the element-wise product operation.

After obtaining the image-level multi-label predictions,
we employ a binary cross-entropy loss Lcls for optimiza-
tion. If class c exists in the current image, minimizing Lcls

pushes Pc towards 1. In contrast, if class c is absent from
the current image, minimizing Lcls pushes Pc towards 0.
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Figure 4. Pipeline of image-level prediction aggregation in image-
level prediction recognition path, where ⊙ indicates element-wise
product. The object class logits are from the detection head, and
the objectness logits are from the RPN.

Why IIR enforces instance-level alignments. In IIR, both
the instance-level and the image-level recognition paths
share the same RPN and detection head. It makes the RPN
and detection head competent for recognizing the objects on
both the source and target domains, and therefore mitigates
the domain gap, as illustrated in Figure 3c. More concretely,
we note that there is a learnable foreground prototype in the
RPN. To recognize foreground on both domains, the fore-
ground prototype aligns the objects from both domain to-
wards itself. Similarly, the detection head contains a set
of class-wise prototypes. These class-wise prototypes pull
the objects of each corresponding class towards themselves,
therefore aligning two domains along each class.

4. Experiments

4.1. Datasets

Following [8, 27, 30, 43, 50], we use four datasets,
i.e., PASCAL VOC (VOC) [17], Clipart, Watercolor and
Comic [30] for evaluation. We use the general object detec-
tion benchmark VOC as the source domain, and use the rest
three artistic painting datasets as the target domains. Ac-
cording to CDWSOD, the source domain provides instance-
level annotations for training, while the target domain pro-
vides only image-level annotations.

The trainval split of VOC 0712 is used as source do-
main training data, which contains ∼16.5k real-world im-
ages of 20 object categories. Clipart has a train split and
a test split. Each split contains 500 images of 20 ob-
ject categories. Following prior arts [8, 27, 50], both splits
are used for training and testing (we termed such adaptation
task as Clipartall). Meanwhile, as in [15, 30, 43], we also
train using only the train split and evaluate on the test
split (we termed such adaptation task as Cliparttest). Both
Watercolor and Comic contain 2k images with 6 classes.

14333



aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
source-only 23.9 45.2 26.2 21.3 33.4 44.2 25.8 18.4 37.9 19.8 27.2 12.5 24.6 45.4 30.2 41.1 9.1 17.1 45.8 35.4 29.2
PCL [58] 3.4 10.6 2.3 1.7 5.2 3.4 23.3 1.2 5.6 0.4 7.8 3.7 5.6 0.3 24.5 19.7 11.9 3.6 9.2 25.4 8.4
EDRN [54] 2.7 13.5 1.2 4.2 1.8 10.3 25.7 0.4 8.4 0.3 3.2 2.7 1.1 0.7 29.4 17.2 5.2 1.6 2.9 19.1 7.6
SWDA [50] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
HTD [8] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
IIOD [67] 41.5 52.7 34.5 28.1 43.7 58.5 41.8 15.3 40.1 54.4 26.7 28.5 37.7 75.4 63.7 48.7 16.5 30.8 54.5 48.7 42.1
I3Net [9] 30.0 67.0 32.5 21.8 29.2 62.5 41.3 11.6 37.1 39.4 27.4 19.3 25.0 67.4 55.2 42.9 19.5 36.2 50.7 39.3 37.8
DBGL [7] 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6
DT+PL [30] 50.1 75.0 37.0 38.7 58.1 83.4 50.1 38.0 55.2 67.3 51.1 34.8 49.8 89.9 60.2 63.4 28.8 42.4 62.6 70.9 55.3
ICCM [27] 39.8 66.7 37.2 42.5 43.3 48.1 48.1 21.3 46.5 73.0 29.0 29.8 57.3 78.6 67.8 48.7 46.3 19.3 42.8 48.5 46.7
H2FA R-CNN 58.1 73.0 56.8 50.4 61.2 98.6 69.5 57.8 66.4 77.1 56.1 84.1 64.3 100.0 78.1 78.2 43.5 65.4 77.3 79.7 69.8

Table 1. Mean AP performance (%) on Clipartall.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
source-only 23.3 52.5 22.2 26.1 34.4 46.5 28.2 13.6 43.3 15.9 38.9 3.0 29.4 48.1 36.7 44.7 14.3 5.5 38.6 24.9 29.5
WSDDN [3] 1.6 3.6 0.6 2.3 0.1 11.7 4.5 0.0 3.2 0.1 2.8 2.3 0.9 0.1 14.4 16.0 4.5 0.7 1.2 18.3 4.4
CLNet [32] 3.2 22.3 2.2 0.7 4.6 4.8 17.5 0.2 4.8 1.6 6.4 0.6 4.7 0.6 12.5 13.1 14.1 4.1 8.0 29.7 7.8
DM [36] 28.5 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8
ATF [25] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1
UMT [15] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
DT+PL [30] 51.6 84.0 30.0 41.1 52.3 82.0 50.2 19.0 51.8 58.3 41.3 14.6 47.0 86.2 61.9 58.6 24.9 22.5 47.4 52.8 48.9
PLGE [43] 43.4 52.5 29.4 40.1 30.4 71.9 54.9 3.6 52.4 73.8 53.5 24.0 54.8 89.1 65.1 40.5 32.3 33.8 45.4 61.0 47.6
H2FA R-CNN 38.5 70.6 38.9 47.4 59.6 83.5 47.0 29.3 51.5 76.3 44.4 48.1 47.3 79.2 75.7 54.4 53.9 32.0 56.6 51.1 55.3
oracle 55.2 78.3 51.1 58.1 60.7 58.4 61.5 27.3 60.9 71.7 60.5 40.7 56.9 82.5 82.8 65.9 49.2 46.1 59.7 58.1 59.3

Table 2. Mean AP performance (%) on Cliparttest.

We use 1k images from the train split for training, and
1k images from the test split for testing.

4.2. Implementation details

Our proposed method is implemented and evaluated us-
ing Detectron2 [69] and PaddleDetection [1]. The
base framework is a two-stage detector Faster R-CNN [45]
with RoIAlign [22], following [8, 15, 27, 50, 68]. Ima-
geNet [14] pre-trained ResNet-101 [23] is utilized as our
network backbone in all experiments, unless otherwise
specified. We use a mini-batch size of 8 (4 images per do-
main) in 2 GPUs, and an initial learning rate is set to 0.005.
The loss weights λdc, λic and λcls are empirically set to 1,
0.1 and 1. Other hyper-parameters are the default setups in
Detectron2, and we do not tune them ad hoc. For the
Clipart1kall, we train for 36k iterations with the learning
rate multiplied by 0.1 at 24k and 32k iterations. For the rest
three data splits, we train for 24k iterations with the learning
rate multiplied by 0.1 at 16k and 21.5k iterations.

4.3. Main results

We compare H2FA R-CNN against several baselines and
state-of-the-art methods, including: 1) source-only base-
line trained on the source domain with instance-level la-
bels; 2) WSOD methods [3, 32, 54, 58] trained on the tar-
get domain with only image-level labels; 3) UDAOD meth-
ods [7, 15, 25, 50] trained with fully-labeled source do-
main and unlabeled target domain; 4) CDWSOD meth-
ods [27,30,43] trained with fully-labeled source domain and
image-level labeled target domain; 5) oracle model trained
with fully-labeled source and fully-labeled target domain.
For fair comparison, we re-implement the Faster-RCNN
variant of DT+PL [30] with ResNet-101 and use the pro-

bike bird car cat dog person mean
source-only 77.6 39.0 46.7 21.5 16.2 47.5 41.4
PCL [58] 6.7 28.8 20.2 9.5 5.4 27.4 16.3
EDRN [54] 5.2 29.3 15.3 1.4 0.9 34.9 14.5
SWDA [50] 82.3 55.9 46.5 32.7 35.5 66.7 53.3
HTD [8] 69.2 49.5 49.5 34.9 30.8 61.2 49.2
ATF [25] 78.8 59.9 47.9 41.0 34.8 66.9 54.9
MCAR [80] 87.9 52.1 51.8 41.6 33.8 68.8 56.0
IIOD [67] 95.8 54.3 48.3 42.4 35.1 65.8 56.9
UMT [15] 88.2 55.3 51.7 39.8 43.6 69.9 58.1
I3Net [9] 81.1 49.3 46.2 35.0 31.9 65.7 51.5
VDD [68] 90.0 56.6 49.2 39.5 38.8 65.3 56.6
DBGL [7] 83.1 49.3 50.6 39.8 38.7 51.3 53.8
DT+PL [30] 81.0 49.5 39.5 32.3 28.4 62.4 48.8
ICCM [27] 86.6 64.2 52.6 32.4 41.2 67.4 57.4
PLGE [43] 73.7 56.1 50.6 42.5 41.8 74.6 56.5
H2FA R-CNN 88.6 52.4 53.6 46.4 44.5 73.8 59.9
oracle 73.3 65.5 57.3 45.7 37.3 80.5 59.9

Table 3. Mean AP performance (%) on Watercolor.

cessed intermediate data released by the authors1.

Clipartall. Table 1 reports the cross-domain detection re-
sults on Clipartall, where the target-domain training data
and testing data are the same. We observe that H2FA R-
CNN achieves 69.8% mAP, surpassing all the compared
approaches. Remarkably, H2FA R-CNN outperforms pre-
vious state-of-the-art CDWSOD method [30] by 14.5%.

Cliparttest. Fewer target-domain training and testing data
are available in Cliparttest. The comparison with previ-
ous arts is shown in Table 2. H2FA R-CNN brings signif-
icant improvement (from 29.5% to 55.3% mAP) over the
source-only model. Compared with the previous state-of-
the-art [30], H2FA R-CNN also shows 6.4% improvement
in terms of mAP.

1https://github.com/naoto0804/cross-domain-detection/
tree/master/datasets
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bike bird car cat dog person mean
source-only 43.2 10.7 24.1 9.1 11.7 20.9 19.9
PCL [58] 1.2 0.4 8.9 2.9 2.3 15.6 5.2
EDRN [54] 1.6 0.5 13.2 7.2 2.5 13.2 6.4
SWDA [50] 30.3 19.6 28.8 15.2 24.9 46.9 27.6
HTD [8] 35.4 14.8 26.6 13.7 26.9 40.0 26.2
MCAR [80] 47.9 20.5 37.4 20.6 24.5 50.2 33.5
I3Net [9] 47.5 19.9 33.2 11.4 19.4 49.1 30.1
DBGL [7] 35.6 20.3 33.9 16.4 26.6 45.3 29.7
DT+PL [30] 53.0 23.7 34.4 27.4 27.2 44.0 35.0
ICCM [27] 50.6 23.3 35.4 32.3 33.8 47.1 37.1
PLGE [43] 55.0 21.2 40.0 35.1 37.9 60.9 41.7
H2FA R-CNN 55.3 26.6 45.9 38.1 45.6 66.8 46.4
oracle 61.9 38.9 50.8 48.9 45.2 76.6 53.7

Table 4. Mean AP performance (%) on Comic.

Watercolor. Table 3 summarizes the comparison on Wa-
tercolor. While previous state-of-the-art method already ap-
proaches close the oracle accuracy, H2FA R-CNN still out-
performs the most competitive UMT [15] and ICCM [27]
by ∼ 2% mAP.

Comic. As shown in Table 4, Comic benchmark is a very
challenging benchmark, where the source-only model only
achieves 19.9% mAP. H2FA R-CNN exceeds all the previ-
ous methods and largely closes the gap to the oracle model.
Concretely, H2FA R-CNN obtains 46.4% mAP, surpassing
the second place PLGE [43] by 4.7%.

4.4. Ablation study

Table 5 investigates the characteristics of H2FA R-CNN
through ablation on four benchmarks. For brevity, we
use A1, A2, A3, and A4 to indicate image-level class-
agnostic, image-level class-wise, instance-level foreground
and instance-level class-wise alignments from bottom to
top, respectively. We draw three important observations:

Each individual alignment is beneficial. Comparing
methods in Lines (b)-(e) against the source-only baseline
in Line (a), we observe that most individual alignment
brings more or less improvement. For example, on Comic,
the A1 to A4 alignments improve the source-only base-
line by +13.4%, +11.9%, +7.2% and +14.6% mAP, re-
spectively. Although A4 by itself sometimes decreases the
source-only baseline (e.g., −2.2% on Cliparttest), adding
A4 over “A1+A2+A3” brings consistent improvement. The
reason for A4 sometimes decreasing the baseline is the de-
teriorated hierarchy, as to be analyzed later.

The holistic alignment is important. Comparing Line (i)
(the holistic alignments) against Lines (a)-(e), we find that
employing holistic alignments achieves the largest improve-
ment. Specifically, the holistic improvement in Line (i) sur-
passes any individual improvement by a large margin.

The hierarchical alignment is important. While Line (i)
(adding A4 upon “A1+A2+A3” in Line (g)) brings consis-
tent improvement on all these benchmarks, we clearly ob-
serve the effect of A4 based on the source-only baseline is

A1 A2 A3 A4 Clipartall Cliparttest Watercolor Comic
(a) 29.2 29.5 41.4 19.9
(b) ✓ 37.1 (+7.9) 39.5 (+10.0) 49.6 (+8.2) 33.3 (+13.4)

(c) ✓ 39.0 (+9.8) 33.0 (+3.5) 53.8 (+12.4) 31.8 (+11.9)

(d) ✓ 50.8 (+21.6) 39.2 (+9.7) 42.0 (+0.6) 27.1 (+7.2)

(e) ✓ 30.8 (+1.6) 27.3 (-2.2) 53.4 (+12.0) 34.5 (+14.6)

(f) ✓ ✓ 48.0 (+18.8) 44.2 (+14.7) 53.3 (+11.9) 39.6 (+19.7)

(g) ✓ ✓ ✓ 63.1 (+33.9) 50.3 (+20.8) 49.3 (+7.9) 41.6 (+21.7)

(h) ✓ ✓ 59.1 (+29.9) 37.8 (+8.3) 55.0 (+13.6) 38.3 (+18.4)

(i) ✓ ✓ ✓ ✓ 69.8 (+40.6) 55.3 (+25.8) 59.9 (+18.5) 46.4 (+26.5)

Table 5. Effectiveness of different feature alignments in H2FA
R-CNN, where mean AP performance (%) over all classes is re-
ported. A1-A4 denote the four different types of feature align-
ments from bottom to top, where A1 and A2 are image-level align-
ments and A3 and A4 are instance-level alignments. A more de-
tailed ablation is provided in the Appendix.

extra bike bird car cat dog person mean
DT+PL [30] 81.0 49.5 39.5 32.3 28.4 62.4 48.8
H2FA R-CNN 88.6 52.4 53.6 46.4 44.5 73.8 59.9
DT+PL [30] ✓ 89.1 48.7 47.4 39.2 33.5 64.1 53.7
H2FA R-CNN ✓ 90.2 57.5 49.8 48.0 53.0 77.2 62.6

(a) Mean AP performance (%) on Watercolor

extra bike bird car cat dog person mean
DT+PL [30] 53.0 23.7 34.4 27.4 27.2 44.0 35.0
H2FA R-CNN 55.3 26.6 45.9 38.1 45.6 66.8 46.4
DT+PL [30] ✓ 60.7 28.8 38.6 37.9 33.5 51.0 41.7
H2FA R-CNN ✓ 60.2 36.6 47.6 59.6 48.7 65.3 53.0

(b) Mean AP performance (%) on Comic

Table 6. Comparison based on extra noisy target training data.

quite unstable. In other words, A4 relies on the coarse align-
ments of “A1+A2+A3” as its prerequisite to maintain con-
sistent improvement. Without coarse alignments, the fine-
grained A4 can be unstable. For example, on Clipartall,
the improvement is slight (+1.6% mAP). On Cliparttest,
A4 even decreases on source-only baseline (−2.2% mAP).
It indicates that without coarse alignments at the bottom,
the fine-grained alignment at top can be unstable or even
deteriorates the aligning effect.

4.5. Further empirical analysis

Evaluation on noisy target data. We evaluate H2FA R-
CNN under noisy target domain, where the image-level la-
bels have considerable noises. To this end, we employ the
extra splits of Watercolor and Comic datasets for extra
∼15.8k and ∼50.8k noisy training samples. The results are
respectively summarized in Tables 6a and 6b, from which
we draw two observations.

Firstly, using additional (noisy) training samples on the
target domain further improves H2FA R-CNN. For exam-
ple, on Watercolor, H2FA R-CNN achieves 2.7% mAP
improvement with extra data. Secondly, compared with
DT+PL [30], H2FA R-CNN shows consistent and massive
improvement, both with and without extra noisy data.

Generalization to similar domains. We evaluate H2FA R-
CNN under the small domain gap scenario (i.e., adaptation
from CityScapes [13] to Foggy Cityscapes [51]). Foggy
Cityscapes is a dataset rendered from Cityscapes and sim-
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Figure 5. Mean AP (%) performance on Foggy Cityscapes.
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Figure 6. H2FA R-CNN with various backbones. The source in
legends denotes the source-only lower-bound. We omit the oracle
for Clipartall, because its training and testing set are the same.

ulates the foggy scenes. As shown in Figure 5, H2FA R-
CNN achieves significant improvement on all the categories
(e.g., +19.7% mAP on car), compared with the source-only
baseline. It surpasses a recent state-of-the-art CDWSOD
method [30] by a clear margin, as well. We thus infer that
H2FA R-CNN has strong generalization capacity towards
similar domains.

Generalization to different backbones. We investigate
different backbones including VGG16 [56], ResNet-50,
ResNet-101 [23] and ResNeXt-101 [70] for H2FA R-CNN.
As illustrated in Figure 6, H2FA R-CNN achieves consistent
and considerable improvement over multiple backbones on
all the four benchmarks. For the largest ResNeXt-101 back-
bone, the improvement of both H2FA R-CNN and oracle is
relatively small. This is probably because the small-scale
training set on the target domain (e.g., only 500 training
samples for Cliparttest) becomes the bottleneck.

Analysis on training and inference efficiency. Figure 7
depicts the trade-off of the performance and time consump-
tion. Compared with the source-only baseline, H2FA brings
significant improvement (∼ 40% mAP), while incurring
∼ 3 hours additional training time. Compared with another
CDWSOD method DT+PL [30], H2FA achieves significant
better training efficiency.

We infer the efficiency of training H2FA R-CNN is due

0 10 20 30 40
training time (hours)

30

40

50

60

70

m
AP

(%
)

source-only

SWDA

DT+PL DT+PL

H2FA R-CNN

Figure 7. Comparison on training time and detection accuracy on
Clipartall. All models are trained with ResNet-101 backbone on
2 NVIDIA V100 GPUs. For DT+PL†, we only count the time for
its detector training and exclude the time for Cycle GAN training.

to its end-to-end training manner. Specifically, H2FA R-
CNN is directly trained on the mixture of source and target
domain without warm-up training. Therefore, although the
feature alignments in H2FA R-CNN adds several extra mod-
ules for training, the overall consumption is relatively low.
In contrast, self-training-based CDWSOD methods [30,43]
typically require a warm-up training on the source do-
main, and sometimes requires extra for style-transfer using
a dataset-specific CycleGAN [83].

During inference, we may directly remove all the addi-
tional components for feature alignments, making the struc-
ture exactly the same as Faster R-CNN [45]. In other words,
H2FA R-CNN brings no computational burden for infer-
ence, compared with the Faster R-CNN baseline.

5. Conclusion
This paper proposes a Holistic and Hierarchical Feature

Alignment (H2FA) R-CNN for cross-domain weakly su-
pervised object detection (CDWSOD). H2FA R-CNN en-
forces multiple domain alignments on all the critical de-
tection components and organizes them in a hierarchy in
pace with the detection pipeline. Apart from two image-
level alignments for the backbone, H2FA R-CNN imposes
two instance-level alignments for the RPN and detection
head. Such instance-level alignments are challenging and
are jointly learned in a novel hybrid supervision manner.
Comprehension experiments confirm that H2FA R-CNN
significantly improves CDWSOD, and sets new state of the
art on popular benchmarks.

Limitations. Currently, all existing CDWSOD methods,
including our method, assume that the target domain classes
largely overlap with the source domain classes. Under prac-
tical scenarios, it is quite possible that the target domain has
abundant classes that are novel to the source domain. How
to further utilize these novel target domain classes deserves
future exploration.
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