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Abstract

Long-term action quality assessment is a task of eval-
uating how well an action is performed, namely, estimat-
ing a quality score from a long video. Intuitively, long-
term actions generally involve parts exhibiting different lev-
els of skill, and we call the levels of skill as performance
grades. For example, technical highlights and faults may
appear in the same long-term action. Hence, the final score
should be determined by the comprehensive effect of dif-
ferent grades exhibited in the video. To explore this latent
relationship, we design a novel Likert scoring paradigm in-
spired by the Likert scale in psychometrics, in which we
quantify the grades explicitly and generate the final qual-
ity score by combining the quantitative values and the cor-
responding responses estimated from the video, instead of
performing direct regression. Moreover, we extract grade-
specific features, which will be used to estimate the re-
sponses of each grade, through a Transformer decoder ar-
chitecture with diverse learnable queries. The whole model
is named as Grade-decoupling Likert Transformer (GDLT),
and we achieve state-of-the-art results on two long-term ac-
tion assessment datasets.1

1. Introduction

Action quality assessment (AQA) is a task to evaluate
how well a specific action is performed and is usually mod-
eled as a score regression task. Due to its rich application
scenarios in the real world, such as sport events [16,27,30–
32, 37, 43–45], surgical training [10–12, 21, 41] and daily
skills [8, 9, 18], AQA has attracted growing attention from
the computer vision community.

Compared with actions that only take a few seconds

*Corresponding author.
1Project page https://isee- ai.cn/˜angchi/CVPR22_
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Figure 1. A brief illustration of our idea. The features of an action
video are first disentangled into different grade-aware features,
which contain the information related to specific grades. Then they
will be regarded as “evidence” to generate responses and “fill” the
“scale”. The final quality score is generated by aggregating the
scores of “scale questions” (i.e., different grades) according to the
responses from the video.

(e.g., diving), AQA of long-term actions (e.g., figure skat-
ing) is more challenging since they contain richer and more
complex information. Intuitively, a long video is very
likely to exhibit different levels of skill (e.g., excellent,
good, fair or poor) at different parts [9], and we call
the levels of skill as performance grades. For exam-
ple, a perfect air twist, a substandard leg lifting, and a
fall fault may occur in the same long-term action (figure
skating). Therefore, we conceive that the quality score
should be determined by the comprehensive effect of dif-
ferent grades exhibited in a video. In other words, we sup-
pose that there exists an inherent mapping from grades to
scores. This observation has hardly been discussed in pre-
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vious works [21, 27, 43, 45], and these existing works use
MLP to directly regress the score from video representa-
tions, ignoring this inherent complexity.

In this work, we aim to explicitly model the influences
of different grades on the score. To this end, we propose
a novel scoring paradigm, named Likert scoring, which is
inspired by the well-known Likert scale [19] in psychomet-
rics and sociological investigation. A scale is a psychomet-
ric tool for quantitatively evaluating the psychological state
of the respondent, which consists of several related ques-
tions or statements about different aspects. The respondent
is asked to evaluate how well he/she agrees with each state-
ment. Then the agreement degrees of each statement will be
converted into quantified scores, and all scores are added to
get a total score, which indicates the respondent’s mental-
ity. In the context of this paper, we treat assessing a complex
action as filling a “scale”, whose “statements (questions)”
refer to the inherent performance grades. The input video
is then required to “answer” the questions that how well it
matches each grade, i.e., the response intensities are esti-
mated for each grade from the video. These intensities will
be combined with the pre-quantified scores to determine the
final quality score. The underlying insight here is to evalu-
ate a complex objective (i.e., action quality) by explicitly
measuring several inherent components, which is consis-
tent with the Likert scale. A brief illustration of this idea
is shown in Figure 1.

Moreover, to fill the “scale”, we need “evidence” for
each question (i.e., the information related to each grade
from the video) to generate responses. For this pur-
pose, we disentangle video features into different grade-
aware features, which contain the grade-specific informa-
tion. This procedure is called grade decoupling. In-
spired by DETR [3], this step is implemented by a Trans-
former [39] decoder, which ingests a video feature sequence
and a set of learnable vectors serving as the prototypes of
various grades, and the grade-specific semantics are ex-
tracted from video features by these prototypes via the
cross-attention mechanism.

Formally, we name our whole model as Grade-
decoupling Likert Transformer (GDLT), which is com-
posed of a standard Transformer [39] encoder-decoder ar-
chitecture and a Likert Scoring Module (LSM). The former
consists of a Temporal Context Encoder (TCE) and a Grade-
aware Decoder (GAD). In the TCE, we leverage the self-
attention mechanism to better explore the rich context in-
formation for each segment, which is critical for long video
understanding. Then the GAD and LSM will perform grade
decoupling and Likert scoring respectively. In summary,
our main contributions are two-fold:

• A novel assessment paradigm named Likert scoring
inspired by psychological research is proposed to ex-
plore the comprehensive effect of different grades on

the score.

• A Transformer [39] encoder-decoder architecture is in-
troduced to perform grade decoupling, which aims to
extract grade-specific features used for Likert scoring
from the input video. To the best of our knowledge, it
is the first work to adopt the Transformer in AQA.

To evaluate our idea, we conduct experiments on two
public long-term action assessment datasets: Rhythmic
Gymnastics [45] and Fis-V [43]. Our model achieves state-
of-the-art results on both datasets, demonstrating its effec-
tiveness.

2. Related Work

Action Quality Assessment. AQA is generally regarded
as a regression problem [11,16,21,27,28,30–32,40,43–45],
i.e., estimating a quality score for an action. Some early
works [31, 32] directly adopt support vector regression to
perform regression with the hand-crafted discrete cosine
transform or deep C3D [38] features as input. To achieve
a more accurate assessment, recent works [11,16,27,28,37,
40, 43–45] aim to solve some specific problems in AQA.
For example, Tang et al. [37] utilize the label distribution
learning to model score uncertainty. However, problems in
long-term AQA are still relatively unexplored [43, 45]. Xu
et al. [43] propose two LSTMs [14] to learn both local and
global information. Zeng et al. [45] leverage static posture
information to enhance video motion features and design a
graph-based attention module for long-term temporal mod-
eling. In this work, we explore various grades of perfor-
mance implied in long videos and propose a novel scoring
paradigm considering these grades instead of directly re-
gressing the score.

However, Some daily activities such as tying a tie have
no professional criteria for accurate scoring. Doughty et
al. [8, 9] address this issue by regarding AQA as a pairwise
ranking problem, i.e., to determine which of a given pair of
videos is better. Note that in [9], they propose separately
modeling high-skill and low-skill parts in a video, and de-
sign loss functions to constrain the relationships between
these two parts between a pair of videos, which is similar to
our work. However, our proposed model is generalized to
multiple grades instead of binary ones and can be used for
direct score estimation.

Transformer. Transformer [39] was first introduced by
Vaswani et al. for machine translation and sequence model-
ing. It proposes a self-attention mechanism allowing each
element to see the whole sequence and to update itself by
aggregating information from other elements. Due to its
advanced ability to model global relationship, Transformer
has dominated the natural language processing field [6,33],
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Figure 2. The overall framework of our proposed GDLT. The backbone extracts feature sequence from video segments, and the TCE
enhances it by the context information. The GAD maintains a set of learnable vectors serving as prototypes of performance grades and
exploits them to extract grade-aware features from context-enhanced video features. Finally, the grade-aware features are used to generate
response intensities, which will be combined with quantitative values to calculate the final score.

as well as been widely adopted in time series model-
ing [42, 47] and computer vision tasks [1–3, 7, 22]. In this
work, a transformer encoder is utilized to further explore
the temporal context relationships in the video feature se-
quence.

Additionally, several works adopt a set of learnable
queries with specific semantic meanings to extract diverse
semantics from input via Transformer decoder [3,17,25,36,
46]. For instance, DETR [3] uses each query to represent
a potential object class in object detection. In this work,
we regard the learnable queries as the prototypes of grades,
which will be used to extract the relevant information for
each grade via Transformer decoder.

3. Our Approach

In this section, we introduce our proposed Grade-
decoupling Likert Transformer (GDLT) in detail. We first
describe some preliminaries of our work in Section 3.1.
Then we introduce three main components of GDLT,
i.e., Temporal Context Encoder (TCE), Grade-aware De-
coder (GAD), and Likert Scoring Module (LSM) in Sec-
tion 3.2, Section 3.3 and Section 3.4, respectively. Figure 2
illustrates the overall framework of the GDLT.

3.1. Preliminaries

Problem Formulation. We first formulate the AQA prob-
lem. Following the practice in the real world (e.g., sports
competitions), the action quality is measured by a score,
which is a non-negative real number, and a higher score
indicates better action quality. Naturally, the model is re-
quired to learn a mapping from videos to scores under the
supervision of human expert annotations. Following [45],
we normalize the labels to the interval [0,1] for more stable
training.

Feature Extraction. Following the practice in long-term
action understanding [15, 43, 45, 46, 48], we build GDLT
upon the feature sequences extracted from non-overlapping
video segments, each of which consists of several consecu-
tive frames. The features are extracted via a well-designed
video backbone (e.g., I3D [5], TSM [20], and VST [23]).
Then, a 2-layer MLP is applied for reducing the dimen-
sion of backbone features. We denote the obtained feature
sequence of a video with T segments as {f t}Tt=1 where
f t ∈ Rd, serving as the input for GDLT.

Grade Definition. As described in Section 1, the grade is
the level of quality. In this work, we define K grades, in-
dexed from 1 to K, to indicate action quality from bad to
good with ascending index. Note that these grade indices
are consistent with the subscripts of the grade prototypes
(see Section 3.3), quantitative values (see Section 3.4) and
other relevant symbols, namely, a relevant symbol with sub-
script k corresponds to the k-th grade.

3.2. Temporal Context Encoder

Since the features are independently extracted from the
video segments, each f t only contains information of a very
small temporal region (i.e., current segment) and lacks olin-
ganxthe context information. Therefore, a Transformer [39]
encoder is adopted to first enrich segment-wise representa-
tions {f t}Tt=1. The context information of each segment is
obtained through weighted aggregation among all segment
features, and the weights are determined by the semantic
correlations between the current segment and others. This
procedure is called the self-attention mechanism. Then the
context information is added back to the original f t, and the
summed vectors are passed into a small feed-forward net-
work for further fusion. Multiple encoders can be stacked
to gradually aggregate and refine context semantics. We
denote the final context-enhanced features as {f ctx

t }Tt=1,
which will be used by the Grade-aware Decoder.
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3.3. Grade-aware Decoder

In the Grade-aware Decoder, we aim to extract the in-
formation related to different grades from context-enhanced
video features {f ctx

t }Tt=1. For this purpose, we introduce a
set of K learnable vectors {pk}Kk=1 as the prototypes of K
performance grades to learn the distinct characteristics of
them. Then inspired by DETR [3], the interaction between
{pk}Kk=1 and {f ctx

t }Tt=1 is implemented by a parallel non-
autoregressive and non-masked version of Transformer [39]
decoder that consists of three parts: self-attention, cross-
attention and a small feed-forward network (FFN). The self-
attention mechanism is first applied for mining the rela-
tionships among K prototypes. We denote the updated
prototypes after the self-attention as {p̂k}Kk=1. Then they
will be used to extract the relevant information from video
feature sequences through cross-attention, and this proce-
dure is called grade decoupling. Figure 3 shows the details
of GAD.

Grade Decoupling. The grade decoupling is imple-
mented by the cross-attention mechanism. Specifically, the
module takes {f ctx

t }Tt=1 and {p̂k}Kk=1 as input, and first
generates queries from {p̂k}Kk=1, while keys and values are
transformed from {f ctx

t }Tt=1 via three different linear pro-
jections:

qk = W qp̂k, kt = W kf
ctx
t , vt = W vf

ctx
t , (1)

where {qk}Kk=1, {kt}Tt=1 and {vt}Tt=1 indicate queries,
keys and values, respectively. After that, the semantic
correlation between k-th grade and t-th video segment is

measured by dot-product similarity between corresponding
query-key pair:

ak,t =
qT
k kt√
d
, (2)

where
√
d serves as a scaling factor. It shows how much the

t-th segment is related to the k-th performance grade. The
softmax function is then applied along temporal dimension
t to produce normalized attention weights âk,t for informa-
tion aggregation among values:

pagg
k =

T∑
t=1

âk,tvt. (3)

The above equation is applied for pooling video features via
grade-dependent weights. Therefore, the results can be re-
garded as a kind of “pure substance” containing information
only related to specific grades in the video, ideally.

We then leverage the obtained {pagg
k }Kk=1 to activate

video-agnostic prototypes {p̂k}Kk=1 by adding {pagg
k }Kk=1

back to {p̂k}Kk=1, and the summed vectors are further re-
fined by the FFN. Multiple decoders can also be stacked
and the output of one layer serves as the input queries for
the next one. The output of the last GAD layer is denoted
as {patt

k }Kk=1, and we call it grade-aware features.

Diversity of the Grade-aware Features. Intuitively, dif-
ferent grade prototypes should focus on different semantic
patterns, so the grade-aware features should have low cor-
relation. Therefore, we exploit a diversity loss to regular-
ize them explicitly, inspired by [17, 36]. Specifically, we
adopt a triplet loss [34] to ensure that the grade-aware fea-
tures of different grades are far enough apart. Given a batch
of B videos, we rewrite {patt

k }Kk=1 as {patt,(i)
k }Kk=1 where

i = 1, 2, ..., B. Each triplet consists of a grade-aware fea-
ture p

att,(i)
k of the k-th grade and i-th video as an anchor,

a positive sample with the same grade and a negative one
with a different grade. Hence, for each p

att,(i)
k , we search

for the hardest positive and negative pair distancesDi,k
+ and

Di,k
− with:

Di,k
+ = max

j
dist(p

att,(i)
k ,p

att,(j)
k ), j ̸= i,

Di,k
− = min

m,n
dist(p

att,(i)
k ,patt,(n)

m ), m ̸= k,
(4)

where dist(·, ·) is a pairwise distance metric. We use the
cosine distance here:

dist(x,y) = 1− ⟨x,y⟩
∥x∥2∥y∥2

. (5)

Then the diversity loss is defined as:

Ldiv =
1

BK

B∑
i=1

K∑
k=1

max(0, Di,k
+ −Di,k

− + α), (6)
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Figure 4. Illustration of Likert Scoring Module. Part I: response
estimation. Part II: score generation.

where α is a non-negative margin and a hyper-parameter.

3.4. Likert Scoring Module

For bridging grades and the quality score, we design this
Likert Scoring Module inspired by the Likert scale [19], in
which we apply discrete values for quantifying each grade
and generate a quality score by combining them. The com-
bination weights are considered as the response intensities
of each grade in the video and are estimated from the grade-
aware features {patt

k }Kk=1, since each of them can be re-
garded as a global representation of a specific performance
grade in the video. Formally, the Likert scoring paradigm
is composed of three steps: quantification, response esti-
mation, and score generation. A brief illustration is given
in Figure 4.

Quantification. The first step is to find a set of discrete
values {sgk}Kk=1 to represent grade, which are fixed for a
given dataset. Obviously, these values should cover the
whole valid score interval [0,1], and be diverse enough to
ensure the discriminability of grades. Hence, we set them
uniformly distributed in the interval:

sgk =
k − 1

K − 1
. (7)

We also examine other choices in ablation studies.

Response Estimation. After GAD, the grade-aware fea-
ture patt

k should contain information related to the k-th per-
formance grade in the video. Therefore, we adopt a simple
network ψk(·) to estimate the response intensity to the k-th
grade (denoted as ŵg

k) of the video from the correspond-
ing feature patt

k . ψk(·) is implemented as a full-connected
layer, followed by a sigmoid activation σ:

ŵg
k = σ(ψk(p

att
k )). (8)

Note that for learning the specific mapping rules for differ-
ent grades, the parameters among ψk(·) are not shared.

Score Generation. The final score is generated through a
linear combination of quantitative values and response in-
tensities among grades. Note that the score should be de-
termined by the proportion of each grade to ensure that it
falls within a valid interval (i.e., [0,1]). Hence we nor-
malize {ŵg

k}Kk=1 such that the sum is 1 to obtain new
weights {wg

k}Kk=1:

wg
k =

ŵg
k∑K

i=1 ŵ
g
i

. (9)

Finally, the quality score s is calculated as:

s =

K∑
k=1

wg
ks

g
k. (10)

Loss Function. To directly minimize the errors between
estimated scores and labels, we adopt the mean-squared er-
ror (MSE) loss LMSE to train our model, together with the
diversity loss term Ldiv described in Section 3.3:

L = LMSE + λLdiv, (11)

where λ is a trade-off hyper-parameter.

4. Experiments
We conduct experiments on two datasets: Rhythmic

Gymnastics [45] and Fis-V [43] to evaluate our model.
We first briefly introduce the datasets and common metric.
Then, we describe our implementation details and present
the results. After that, we perform ablation studies to further
analyze our model in depth and conduct some visualization
for intuitive understanding.

4.1. Datasets and Metric

Rhythmic Gymnastics (RG). The RG dataset contains a
total of 1000 videos of 4 rhythmic gymnastics actions with
different apparaturses, i.e., ball, clubs, hoop, and ribbon.
The length of each video is approximately 1.6 minutes with
a frame rate of 25. There are 200 videos for training and 50
for evaluating in each kind of action. Following the practice
of [45], we train individual models for each kind.

Figure Skating Video (Fis-V). The Fis-V dataset has 500
videos of ladies’ singles short program of figure skating.
Each video is approximately 2.9 minutes long with a frame
rate of 25. We follow the official split which has 400 videos
for training and 100 for testing. All videos are annotated
with two scores, namely, Total Element Score (TES) and
Total Program Component Score (PCS), according to the
competition rule. Following [43], we train two independent
models for predicting these two scores.

Note that Fis-V is a substitute for MIT-Skating [32] and
UNLV-Skating [31] , which are also about figure skating but
much smaller (150/171 videos, respectively). Thus, we no
longer conduct experiments on them.
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Methods Features
SRCC↑

Rhythmic Gymnastics Fis-V
Ball Clubs Hoop Ribbon Avg. TES PCS Avg.

C3D+SVR [31] C3D [38] 0.357 [45] 0.551 [45] 0.495 [45] 0.516 [45] 0.483 [45] 0.400 [43] 0.590 [43] 0.501 [43]
C3D [38] - - - - - 0.650 0.780 0.721
I3D [5] 0.515 [45] 0.621 [45] 0.540 [45] 0.522 [45] 0.551 [45] - - -MS-LSTM [43]

VST [23] 0.621† 0.661† 0.670† 0.695† 0.663† 0.660† 0.809† 0.744†
I3D [5] + ResNet [13] 0.528 0.652 0.708 0.578 0.623 - - -ACTION-NET [45] VST [23] + ResNet [13] 0.684† 0.737† 0.733† 0.754† 0.728† 0.694† 0.809† 0.757†

GDLT (Ours) VST [23] 0.746 0.802 0.765 0.741 0.765 0.685 0.820 0.761

Table 1. Comparisons of GDLT with other methods on RG and Fis-V datasets. Avg. is the average SRCC across all classes computed
using Fisher’s z-value. † indicates the results of our reimplementation. ↑ indicates that the higher the metric, the better. Best results are in
bold, second best are underlined.

Metric. Following previous works [31, 32, 43, 45], we
adopt the Spearman’s rank correlation coefficient (SRCC)
ρ as the evaluation metric, which measures the monotonic-
ity between the predicted series and the ground-truth series.
It’s defined as follows:

ρ =

∑
i(x

r
i − x̄r)(yri − ȳr)√∑

i(x
r
i − x̄r)2

∑
i(y

r
i − ȳr)2

, (12)

where xr and yr indicate the rankings of two series respec-
tively. It ranges from -1 to 1 and the higher is the better. In
addition, the average SRCC across classes (the word “class”
refers to both action types in RG and score types in Fis-V) is
calculated from individual per-class SRCCs using Fisher’s
z-value as in [11, 27, 29, 37, 44].

4.2. Implementation Details

Feature Extraction. As described in Section 3.1, we
first divide the video into non-overlapping segments, each
of which is composed of 32 consecutive frames. Due
to the rapid development of vision Transformer in recent
years, we adopt a newly developed Video Swin Transformer
(VST) [23] pretrained on Kinetics-600 [4], which is ex-
tended from Swin Transformer [22], as our backbone. Note
that we don’t fine-tune it, following previous works on long-
term action understanding [15, 43, 45, 48]. For mini-batch
training, the number of segments is fixed to 68 for RG and
124 for Fis-V. If a video has more segments, we select con-
tinuous segments where the start position is randomly deter-
mined in each training iteration, as in [43,45]. All segments
are used when testing.

Experimental Settings. We use the 1-layer TCE and 2-
layer GAD all with single-head attention to implement
GDLT. The dimension of the latent space d is 256, and the
number of grades K is set as 4 for all classes. We use the
SGD with a momentum of 0.9 to optimize all models. The
batch size is 32 and the learning rate is 0.01, and we then
gradually decrease it to 0.0001 by a cosine annealing strat-
egy [24]. For better convergence, we set different epochs for
different models: 250/400/500/150/320/400 for RG(Ball) /

RG(Clubs) / RG(Hoop) / RG(Ribbon) / Fis-V(TES) / Fis-
V(PCS). The λ in Equation (11) is 1.0 for RG and 0.5 for
Fis-V. The α in Equation (6) is 1.0 for all models. To regu-
larize the models, we use a dropout of 0.3/0.7 for RG/Fis-V
and the weight decay is set as 1e-4. See more details in the
supplementary material.

4.3. Comparison with the State-of-the-art

Table 1 shows the assessment results of our model and
previous state-of-the-art methods on RG and Fis-V datasets.
For fair comparison, we reimplement [43, 45] on the same
VST features as ours. As shown in Table 1, our model
outperforms the current state-of-the-art method ACTION-
NET [45], especially on RG (by 0.037 on average), and
achieves average improvements of 0.102 on RG and 0.017
on Fis-V compared with MS-LSTM [43]. Note that they
both directly regress the score from the global feature of a
video, so the results demonstrate the effectiveness of mod-
eling the latent grades. Remarkably, ACTION-NET utilizes
additional static image features to assist the dynamic video
features. Instead, our GDLT uses video features only but
still achieves superior results.

4.4. Ablation Studies

Likert Scoring Paradigm. To evaluate our proposed Lik-
ert scoring (LS) paradigm, we compare it with the common
practice of AQA that directly regresses the score from the
video-level global description via MLP. Hence, we adopt
the common average pooling (AVG) and attention pooling
(ATT) to generate this global description from the context-
enhanced features {f ctx

t }Tt=1, as two baselines. The atten-
tion unit consists of two fully-connected layers with ReLU
and softmax activation functions [9,26,35,45]. At each time
step t, it takes the feature f ctx

t as input and outputs a weight
for aggregation.

Additionally, the output of Transformer [39] decoder
(i.e., GAD) can be seen as a set of response features cor-
responding to specific semantic patterns [3, 17, 25, 36, 46].
Therefore, to further show that the superiority is achieved

3237



Encoder Decoder Rhythmic Gymnastics Fis-V
Ball Clubs Hoop Ribbon Avg. TES PCS Avg.

TCE

AVG 0.773 0.754 0.675 0.711 0.730 0.553 0.786 0.687
ATT 0.711 0.685 0.696 0.728 0.705 0.528 0.776 0.670

TD-IS 0.715 0.701 0.727 0.755 0.725 0.607 0.807 0.722
TD-CS 0.697 0.719 0.736 0.696 0.712 0.573 0.822 0.720
TD-AS 0.705 0.787 0.688 0.707 0.724 0.575 0.815 0.715
TD-LS 0.746 0.802 0.765 0.741 0.765 0.685 0.820 0.761

Table 2. Ablation studies on the Likert scoring paradigm. AVG,
ATT, TD-IS, TD-CS, TD-AS, and TD-LS indicate average pool-
ing, attention pooling, Individual-Scoring, Concatenating-and-
Scoring, Averaging-and-Scoring, and our Likert-Scoring, respec-
tively. Best results are in bold, second best are underlined.

Variants Rhythmic Gymnastics Fis-V
Ball Clubs Hoop Ribbon Avg. TES PCS Avg.

GDLT w/o TCE 0.725 0.693 0.669 0.764 0.715 0.597 0.777 0.698
GDLT w/o Ldiv 0.723 0.755 0.760 0.700 0.735 0.675 0.816 0.754

GDLT 0.746 0.802 0.765 0.741 0.765 0.685 0.820 0.761

Table 3. Ablation studies on the impact of TCE and Ldiv .

exactly by the scoring paradigm instead of the Transformer
decoder, we construct three additional baselines (prefixed
by “TD”) that generate scores from these response features
by some common manners:

• Individual-Scoring (TD-IS). This baseline individ-
ually regresses scores from each response feature
through different MLPs and then averages them.

• Concatenating-and-Scoring (TD-CS). This baseline
concatenates all response features as the global repre-
sentation and regresses the score from it directly.

• Averaging-and-Scoring (TD-AS). This baseline is
similar to TD-CS but TD-AS generates the global rep-
resentation by averaging all response features.

The results are shown in Table 2. Our proposed Lik-
ert scoring achieves best or second-best performance on
all classes and outperforms others with a large margin on
average, showing its robustness and effectiveness. Espe-
cially, compared with TD-IS, TD-CS, and TD-AS, the re-
sults show that we establish a more direct and meaningful
connection between the response features and the final score
than them, as explained in Section 1.

Moreover, similar to [9], we have an interesting finding
that the inclusion of the attention unit decreases the perfor-
mance from naive average pooling in some cases. We think
it’s due to the huge gap between key segment selection and
score regression. On the contrary, our model explicitly links
the pooled features to specific grades. This operation can
be regarded as an intermediate bridge, which alleviates the
above gap and leads to superior results.

Impact of TCE. From Table 3, we can observe significant
performance drops on both RG (-0.05) and Fis-V (-0.063)

2 3 4 5 6
Number of grades K
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Figure 5. Comparison with different numbers of grades. Best
viewed in color.

when removing the TCE from the full model. It demon-
strates that the context information is important for long-
term video understanding.

Impact of Ldiv . As shown in Table 3, performance de-
clines when Ldiv is not applied. Ldiv provides additional
regularization to assist the learning of GAD, which lacks of
any direct supervision signal (only video-level score labels
are provided).

The Number of Grades K. The number of grades K is
critical. As shown in Figure 5, K = 4 is suitable for all
classes. We observe that the performance drops on most
classes when increasing K, because too many grades may
bring ambiguity to the model. Remarkably, the performance
at K = 2 is relatively poor, which shows that the good/bad
binary modeling [9] isn’t enough for complex action.

Quantitative Strategies. In Equation (7), we uniformly
set the quantitative values {sgk}Kk=1. We call this method
as Uniform-Interval (UI), and examine two other possible
methods here (note that for covering the entire score interval
[0,1], sg1 and sgK must be 0 and 1):

• Uniform-Sample (US). We quantify the grades so that
the ground-truth scores of samples in training set are
uniformly distributed in K − 1 intervals.

• Learnable-Width (LW). We make the quantitative
values learnable by taking the widths of K − 1 inter-
vals as a part of trainable parameters. When scoring,
we apply the softmax function for making them non-
negative and sum up to 1, and generate quantitative
values by normalized widths.

As shown in Table 4, the simplest method UI achieves the
best average performance. Remarkably, making quantita-
tive values learnable doesn’t improve the model since it may
be difficult to optimize the model when both the values and
combination weights are constantly changing.

4.5. Qualitative Analyses

Visualization of Cross-attention Weights. To figure out
the patterns on which grade prototypes focus, we show
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Figure 6. Visualization of cross-attention weights of each grade prototype in the last GAD layer. The sample is the #17 video in Fis-V and
the class is PCS. The first row shows four weight curves of four prototypes on video segments. The next two rows are four video segments
corresponding to four markers on the curves, i.e., a, b, c, and d.

Label ascending

Figure 7. Visualization of response intensities at each grade of all
video samples on the test set of RG(Ball). Each column represents
a sample, and all samples are sorted in ascending order of label
scores. To better observe the relative changes of intensities with
the sample scores, we normalize each row, i.e., all intensities of
the same grade, by min-max scaling. Best viewed in color.

Variants Rhythmic Gymnastics Fis-V
Ball Clubs Hoop Ribbon Avg. TES PCS Avg.

US 0.758 0.775 0.741 0.741 0.754 0.652 0.799 0.734
LW 0.689 0.749 0.707 0.724 0.718 0.651 0.820 0.747

UI (Ours) 0.746 0.802 0.765 0.741 0.765 0.685 0.820 0.761

Table 4. Comparison with different strategies to quantify grades.
US, LW, and UI indicate Uniform-Sample, Learnable-Width, and
Uniform-Interval, respectively. Best results are in bold, second
best are underlined.

in Figure 6 the cross-attention weights computed by Equa-
tion (2) of each prototype on a video feature sequence in the
last GAD layer. The different fluctuations of weight curves
demonstrate different attention patterns. Specifically, the
1st grade prototype gives high weight to the moment when
an athlete falls (marker a), which indicates poor perfor-
mance. The 2nd-grade prototype detects more trivial parts
that cannot be given high scores (marker b). The curve of
the 3rd grade is relatively stable since its quantitative value

sg3 (0.667) is closest to the average label score of the dataset,
so its grade pattern might be common. Finally, some tech-
nical movements related to high skill are attended by the
prototype of the highest grade, such as air twist (marker c)
and spinning (marker d).

Visualization of Response Intensities. Figure 7 shows
how the response intensities {ŵg

k}Kk=1 estimated by Equa-
tion (8) of a trained model change with the label scores.
We find that the intensity of low grades decreases almost
monotonically with the increment of sample scores, while
the intensity of high grades increases, which is in line with
human experience. See more visualizations in the supple-
mentary material.

5. Conclusion
In this work, we propose a novel Grade-decoupling Lik-

ert Transformer (GDLT) to explore the comprehensive ef-
fect of different grades exhibited in the video on the score.
For this purpose, a new scoring paradigm named Likert
scoring is proposed, in which we regard the quality score as
the combination between quantified grades and correspond-
ing responses estimated from the video. Besides, a Trans-
former decoder is adopted to extract the grade-specific in-
formation, which will be used for response estimation, from
the video via diverse learnable queries. The state-of-the-art
results on two long-term AQA datasets demonstrate the ef-
fectiveness of our model.
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