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Abstract

Multi-view clustering can explore common semantics
from multiple views and has attracted increasing attention.
However, existing works punish multiple objectives in the
same feature space, where they ignore the conflict between
learning consistent common semantics and reconstructing
inconsistent view-private information. In this paper, we pro-
pose a new framework of multi-level feature learning for
contrastive multi-view clustering to address the aforemen-
tioned issue. Our method learns different levels of features
from the raw features, including low-level features, high-
level features, and semantic labels/features in a fusion-free
manner, so that it can effectively achieve the reconstruction
objective and the consistency objectives in different feature
spaces. Specifically, the reconstruction objective is con-
ducted on the low-level features. Twwo consistency objectives
based on contrastive learning are conducted on the high-
level features and the semantic labels, respectively. They
make the high-level features effectively explore the common
semantics and the semantic labels achieve the multi-view
clustering. As a result, the proposed framework can reduce
the adverse influence of view-private information. Extensive
experiments on public datasets demonstrate that our method
achieves state-of-the-art clustering effectiveness.

1. Introduction

Multi-view clustering (MVC) is attracting more and more
attention in recent years [22,50,52,57] as multi-view data or
multi-modal data can provide common semantics to improve
the learning effectiveness [3, 14,27,33,36,43]. In the liter-
ature, existing MVC methods can be roughly divided into
two categories, i.e., traditional methods and deep methods.

The traditional MVC methods conduct the clustering task
based on traditional machine learning methods and can be

TEqual contribution. *Corresponding author.

subdivided into three subgroups, including subspace meth-
ods [0, 18, 24], matrix factorization methods [45,53,56], and
graph methods [28, 55, 60]. Many traditional MVC methods
have the drawbacks such as poor representation ability and
high computation complexity, resulting in limited perfor-
mance in the complex scenarios with real-world data [10].

Recently, deep MVC methods have gradually become
a popular trend in the community due to the outstanding
representation ability [1,2,20,44,49,50,54]. Previous deep
MVC methods can be subdivided into two subgroups, i.e.,
two-stage methods and one-stage methods. Two-stage deep
MVC methods (e.g., [21,50]) focus on separately learning
the salient features from multiple views and performing the
clustering task. However, Xie et al. [48] present that the
clustering results can be leveraged to improve the quality of
feature learning. Therefore, one-stage deep MVC methods
(e.g., [39,59]) embed the feature learning with the clustering
task in a unified framework to achieve end-to-end clustering.

Multi-view data contains two kinds of information, i.e.,
the common semantics across all views and the view-private
information for individual view. For example, a text and
an image can be combined to describe common semantics,
while the unrelated context in the text and the background
pixels in the image are meaningless view-private information
for learning common semantics. In multi-view learning, it
is an always-on topic to learn common semantics and avoid
the misleading of meaningless view-private information. Al-
though important progress has been achieved by existing
MVC methods, they have the following drawbacks to be
addressed: (1) Many MVC methods (e.g., [39,59]) try to dis-
cover the latent cluster patterns by fusing the features of all
views. However, the meaningless view-private information
might be dominant in the feature fusion process, compared
to the common semantics, and thus interferes with the qual-
ity of clustering. (2) Some MVC methods (e.g., [18,21])
leverage the consistency objective on the latent features to
explore the common semantics across all views. However,
they usually need the reconstruction objective on the same
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Figure 1. The framework of MFLVC. We avoid the direct feature fusion in multi-level feature learning, which learns the low-level features
Z™, the high-level features H™, and the semantic labels Q" from the raw features X™ for each view. The reconstruction objective L7 is
individually conducted on Z™. Two consistency objectives (i.e., Lu and Lq) are conducted on {Hm}ffil and { Qm}%:h respectively.

Furthermore, Lp is optimized to leverage the cluster information of {H™}2_, to improve the clustering effectiveness of {Q™

features to avoid the trivial solution. This induces the con-
flict that the consistency objective tries to learn the features
with common semantics across all views as much as possible
while the reconstruction objective hopes the same features
to maintain the view-private information for individual view.

In this paper, we propose a new framework of multi-
level feature learning for contrastive multi-view clustering
(MFLVC for short) to address the aforementioned issues, as
shown in Figure 1. Our goals include (1) designing a fusion-
free MVC model to avoid fusing the adverse view-private in-
formation among all views and (2) generating different levels
of features for the samples in each view including low-level
features, high-level features, and semantic labels/features.
To do this, we first leverage the autoencoder to learn the
low-level features from raw features, and then obtain the
high-level features and semantic labels via stacking two
MLPs on low-level features. Each MLP is shared by all
views and is conducive to filtering out the view-private in-
formation. Furthermore, we take the semantic labels as the
anchors, which combine with the cluster information in the
high-level features to improve the clustering effectiveness.
In this framework, the reconstruction objective is achieved
by the low-level features while two consistency objectives
are achieved by the high-level features and the semantic
labels, respectively. Moreover, these two consistency objec-
tives are conducted by contrastive learning, which makes the
high-level features focus on mining the common semantics
across all views and makes the semantic labels represent con-
sistent cluster labels for multi-view clustering, respectively.
As a result, the conflict between the reconstruction objective
and two consistency objectives is alleviated. Compared to

M
m=1-

previous works, our contributions are listed as follows:

* We design a fusion-free MVC method which conducts
different objectives in different feature spaces to solve
the conflict between the reconstruction and consistency
objectives. In this way, our method is able to effectively
explore the common semantics across all views and
avoid their meaningless view-private information.

We propose a flexible multi-view contrastive learn-
ing framework, which can be used to simultaneously
achieve the consistency objectives for the high-level fea-
tures and the semantic labels. The high-level features
enjoy good manifolds and represent common semantics,
which enable to improve the quality of semantic labels.

Our method is robust to the hyper-parameters’ setting
due to the well-designed framework. We conduct abla-
tion studies in details, including the loss components
and contrastive learning structures to understand the
proposed model. Extensive experiments demonstrate
that it achieves state-of-the-art clustering effectiveness.

2. Related Work

Multi-view clustering. The first category of MVC meth-
ods belongs to subspace clustering [ 18, 24], which focuses
on learning a common subspace representation for multiple
views. For instance, the traditional subspace clustering was
extended by [0], where the authors presented a diversity-
induced mechanism for multi-view subspace clustering. The
second category of MVC methods is based on the matrix
factorization technique [23, 560] that is formally equivalent to
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the relaxation of K-means [26]. For example, Cai et al. [4]
introduced a shared clustering indicator matrix for multiple
views and handled a constrained matrix factorization prob-
lem. The third category of MVC methods is graph based
MVC [28,34], where graph structures are build to preserve
the adjacency relationship among samples. The fourth cate-
gory of MVC methods is based on deep learning framework,
as known as deep MVC methods, which have been exploited
increasingly and can be further roughly divided into two
groups, i.e., two-stage deep MVC methods [2 1, 50] and one-
stage deep MVC methods [20,51,59]. These methods utilize
the excellent representation ability of deep neural networks
to discover the latent cluster patterns of multi-view data.

Contrastive learning. Contrastive learning [7, 42] is
an attention-getting unsupervised representation learning
method, with the idea that maximizing the similarities of
positive pairs while minimizing that of negative pairs in a
feature space. This learning paradigm has lately achieved
promising performance in computer vision, such as [29,40].
For example, a one-stage online image clustering method
was proposed in [19], which explicitly conducted contrastive
learning in the instance-level and cluster-level. For multi-
view learning, there are also some works based on contrastive
learning [12,21,35,38]. For instance, Tian et al. [38] pro-
posed a contrastive multi-view coding framework to capture
underlying scene semantics. In [ 2], the authors developed
a multi-view representation learning method to tackle graph
classification via contrastive learning. Recently, some works
investigated different contrastive learning frameworks for
multi-view clustering [21,31,39].

3. Method

Raw features. A multi-view dataset {X™ € RV*DPm1M_
includes N samples across M views, where x* € RDPm
denotes the D,,-dimensional sample from the m-th view.
The dataset is treated as the raw features where multiple
views have K common cluster patterns to be discovered.

3.1. Motivation

The multi-view data usually have redundancy and ran-
dom noise, so the mainstream methods always learn salient
representations from raw features. In particular, autoen-
coder [13,37] is a widely used unsupervised model and it can
project the raw features into a customizable feature space.
Specifically, for the m-th view, we denote E™(X™; ™)
and D™(Z™; ™), respectively, as the encoder and the de-
coder, where 0" and ¢™ are network parameters, denote
z" = E™(x") € RE as the L-dimensional latent feature
of the i-th sample, and denote L7 as the reconstruction
loss between input X" and output X € RN*Pm 5o the

reconstruction objective of all views is formulated as:

M M N
Lz = Ly =Y Y Ix"=D"(E"")5 D

m=1 m=1 i=1

Based on {Z™ = E™(X™)}M_, MVC aims to mine the
common semantics across all views to improve the clustering
quality. To achieve this, existing MVC methods still have
two challenges to be addressed: (1) Many MVC methods
(e.g., [20,59]) fuse the features of all views {Z™}M_, to
obtain a common representation for all views. In this way,
the multi-view clustering task is transformed to single-view
clustering task by conducting clustering directly on the fused
features. However, the features of each view Z™ contain the
common semantics as well as the view-private information.
The latter is meaningless or even misleading, which might
interfere with the quality of fused features and result in
poor clustering effectiveness. (2) Some MVC methods (e.g.,
[8,21]) learn consistent multi-view features to explore the
common semantics by conducting a consistency objective
on {Z™}M_,, e.g., minimizing the distance of correlational
features across all views. However, they also apply Eq. (1) to
punish constraints on {Z™ }*_, to avoid the model collapse
and producing trivial solutions [!1,21]. The consistency
objective and the reconstruction objective are pushed on the
same features, so that their conflict may limit the quality
of {Z™}M_, . For example, the consistency objective aims
to learn the common semantics while the reconstruction
objective hopes to maintain the view-private information.
Recently, contrastive learning becomes popular and can
be applied to achieve the consistency objective for multiple
views. For instance, Trosten et al. [39] proposed a one-stage
contrastive MVC method but its feature fusion suffers from
challenge (1). Lin et al. [21] presented a two-stage con-
trastive MVC method by learning consistent features, but
it does not consider challenge (2). Additionally, many con-
trastive learning methods (e.g., [19,30,40]) mainly handle
single-view data with data augmentation. Such specific struc-
ture makes it difficult be applied in multi-view scenarios.
To address the aforementioned challenges, we propose a
new framework of multi-level feature learning for contrastive
multi-view clustering (named MFLVC) as shown in Figure
1. Specially, to reduce the adverse influence of view-private
information, our framework avoids the direct feature fusion
and builds a multi-level feature learning model for each view.
To alleviate the conflict between the consistency objective
and the reconstruction objective, we propose to conduct them
in different feature spaces, where the consistency objective
is achieved by the following multi-view contrastive learning.

3.2. Multi-view Contrastive Learning

Since the features {Z™}M_, obtained by Eq. (1) mix
the common semantics with the view-private information,
we treat {Z™}M_ as low-level features and learn another
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level of features, i.e., high-level features. To do this, we
stack a feature MLP on {Z™}*_, to obtain the high-level
features {H™}M_, where h” € R and the feature MLP
is a one-layer linear MLP denoted by F'({Z™}*_,: Wy).
In the low-level feature space, we leverage the reconstruction
objective Eq. (1) to preserve the representation ability of
{Z™}M_ 50 as to avoid the issue of model collapse. In the
high-level feature space, we further achieve the consistency
objective by contrastive learning to make {H™}*_, focus
on learning the common semantics across all views.

Specifically, each high-level feature h? has (M N — 1)
feature pairs, i.e., {h]", h} }7~ 11 N ,where {h*, h!'}, 2,
are (M — 1) positive feature pairs and the rest M (N — 1)
feature pairs are negative feature pairs. In contrastive learn-
ing, the similarities of positive pairs should be maximized
and that of negative pairs should be minimized. Inspired by
NT-Xent [7], the cosine distance is applied to measure the
similarity between two features:

(hi", h})

([ {[[[bF ]

J

(@3]

where (-, -) is dot product operator. Then, the feature con-
trastive loss between H™ and H" is formulated as:

d(h’" h?)/7p

O S R LR e R
' (3)
where 7 denotes the temperature parameter. In this paper,
we design an accumulated multi-view feature contrastive
loss across all views as:

Z >, )

m=1n#m

In consequence, the features of each view can be written
as H™" = WgZ™ = Wy E™(X™). The encoder E™ is
conducive to filtering out the random noise of X™. The
reconstruction objective on Z"" avoids the model collapse as
well as pushes both the common semantics and view-private
information to be preserved in Z™. Wy is conducive to
filtering out the view-private information of {Z™}M_,. The
consistency objective on {H™}M__ allows them to mine
the common semantics across all views. As a result, the
clusters of high-level features are close to the true semantic
clusters. Intuitively, semantic information is a high-level
concept that does not involve meaningless noise. Therefore,
the high-level features within the same cluster are close to
each other, resulting in dense shapes (verified in Sec. 5.1).

Learning semantic labels. This part explains how to
obtain semantic labels for end-to-end clustering from the
raw features in a fusion-free model. Specifically, we obtain
the cluster assignments for all views {Q™ € RVXK1M_
via a shared label MLP stacked on the low-level features,
ie., L{Z™}M_ ;W ). The last layer of the label MLP is

set to the Softmax operation to output the probability, e.g.,
q;; represents the probability that the i-th sample belongs to
the j-th cluster in the m-th view. Hence, the semantic label
is identified by the largest element in a cluster assignment.
In real-world scenarios, however, some views of a sample
might have wrong cluster labels due to the misleading of
view-private information. In order to obtain robustness, we
need to achieve clustering consistency, i.e., the same cluster
labels of all views represent the same semantic cluster. In
other words, {Q’” 1 Q7 € R™) need to be consistent.
Similar to learnlng the hlgh level features, we adopt con-
trastive learning to achieve this consistency objective. For
the m-th view, the same cluster labels Q' have (M K —1) la-
bel pairs, i.e., {Q}, Q' } = % K , where {Q"}, Q%% }rzm
are constructed as (M — 1) pos1t1ve label pairs and the rest
M (K — 1) label pairs are negative label pairs. We further
define the label contrastive loss between Q™ and Q™ as:

gimm) _ S

LAQT Q) /7L

Zi{zl Zv:m n €d<Qfﬂj’! /T el/mr 7
3

where 77, denotes the temperature parameter. As thus, the

clustering-oriented consistency objective is defined by:

M

Z Sorm ey Zsj log 5™, (6)

mln;&m m=1j=1

where 57" = ~ vazl q;; - The first part of Eq. (6) aims to
learn the clustering consistency for all views. The second
part of Eq. (6) is a regularization term [40], which is usually
used to avoid all samples being assigned into a single cluster.

Overall, the loss of our multi-view contrastive learning
consists of three parts:

L=Lz+Lyu+ Lq
= Lz({X", X" {07, 6" Fie)
+ Lu({H™ s Wa, {07 1)
ﬁQ(“Qm}%;nVVQﬁﬂm %;ﬂ:

where Lz is the reconstruction objective conducted on the
low-level features {Z™}M_, to avoid the model collapse.
The consistency objectives £H and Lq are designed to learn
the high-level features and the cluster assignments respec-
tively. We learn {Q™ }M_, from {Z™}M_ rather than from
{H™}M_| as it can av01d the influence between Wy and
‘W . Meanwhile, W g and W will not be influenced by
the gradient of L£z. Thanks to this multi-level feature learn-
ing structure, we do not need weight parameters to balance
the different losses in Eq. (7) (verified in Sec. 5.1).

(7

3.3. Semantic Clustering with High-level Features

Through the multi-view contrastive learning, the model
simultaneously learns the high-level features {H™}M_, and
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the consistent cluster assignments {Q™ }*_,. We then treat
{Q™}M_, as anchors and match them with the clusters
among {H™}M_. 1In this way, we can leverage the cluster
information contained in the high-level features to improve
the clustering effectiveness of the semantic labels.
Concretely, we adopt K-means [26] to obtain the clus-
ter information of each view. For the m-th view, letting
{cm}E | € R denote the K cluster centroids, we have:

N K
S e ®

The cluster labels of all samples p™ € RY are obtained by:

p;" = argmin ||
J

b 5 ©)

Let 1™ € RY denote the cluster labels outputted by the
label MLP, where [} = argmax, q,T’jL, it is worth noting that
the clusters represented by p™ and 1" are not corresponding
to each other. Because the clustering consistency is achieved
by Eq. (6) in advance, [* and [* represent the same cluster.
Therefore, we can treat 1”* as anchors to modify p”* by the
following maximum matching formula:

min M™A™,
A‘IYL

s.t.Zaij:LZa;’;:L a0
i=1 j=1
CL?; € {Oa 1}7Z7] = 172, ...7I('7

where A™ € {0, 1}5 <K is the boolean matrix and M™ €

RE*K denotes the cost matrix. M™ = max; ; m}? — M™
and M} = anl [lm = {]1[p™ = j], where ]IH repre-
sents the indicator function. Eq. (10) can be optimized by
the Hungarian algorithm [16]. The modified cluster assign-
ments p7* € {0,1}X for the i-th sample is defined as a
one-hot vector. The k-th element of p]" is 1 when k satisfies

k= kllal: =1]1[p]* = s],k,s € {1,2,..., K}. We then
fine-tune the model by cross-entropy loss:
M A
_ Z P™ 10g (Q'm7 (11)

where P™ = [p7*; ;. ..; PR € RV*K In this way, we
can transfer the learned semantic knowledge to improve the
clustering. Finally, the semantic label of the ¢-th sample is:

XM
y; = argmax (M Z qf}) . (12)
J m=1

Optimization. The full optimization process of MFLVC
is summarized in Algorithm 1. To be specific, we adopt the
algorithm of mini-batch gradient descent to train the model,
which consists of multiple autoencoders, a feature MLP, and
a label MLP. The autoencoders are initialized by Eq. (1).

Algorithm 1 : The optimization of MFLVC

Input: Multi-view dataset {X™}M_,; Number of clusters
K; Temperature parameters 7 and 7y,.
Initialize {6™, ¢ }M_, by minimizing Eq. (1).
Optimize W, Wo, {6™,¢™}M_ by Eq. (7).
Compute cluster labels by Egs. (8) and (9).
Match multi-view cluster labels by solving Eq. (10).
Fine-tune W, {#™}M_, by minimizing Eq. (11).
: Calculate semantic labels by Eq. (12).
Output The label predictor {{6™}M_, | WQ};

The high-level feature extractor {{0™}M_, "Wyl

AN T

The multi-view contrastive learning is then conducted to
achieve the common semantics and clustering consistency
by Eq. (7). After performing the multi-view contrastive
learning, the cluster labels obtained from high-level features
are modified through the maximum matching formula in
Eq. (10). The modified cluster labels are then used to fine-
tune the model by Eq. (11). The high-level feature extractor
includes the encoders and the feature MLP, while the label
predictor includes the encoders and the label MLP.

4. Experiments

4.1. Experimental Setup

Datasets #Samples #Views #Classes
MNIST-USPS 5,000 2 10
BDGP 2,500 2 5
CCV 6,773 3 20
Fashion 10,000 3 10
Caltech-2V 1,400 2 7
Caltech-3V 1,400 3 7
Caltech-4V 1,400 4 7
Caltech-5V 1,400 5 7

Table 1. The information of the datasets in our experiments.

Datasets. The experiments are carried out on the five pub-
lic datasets as shown in Table 1. MNIST-USPS [34] is a pop-
ular handwritten digit dataset, which contains 5,000 samples
with two different styles of digital images. BDGP [5] con-
tains 2,500 samples of drosophila embryos, each of which
is represented by visual and textual features. Columbia
Consumer Video (CCV) [15] is a video dataset with 6,773
samples belonging to 20 classes and provides hand-crafted
Bag-of-Words representations of three views, such as STIP,
SIFT, and MFCC. Fashion [47] is an image dataset about
products, where we follow the literature [50] to treat different
three styles as three views of one product. Caltech [9] is a
RGB image dataset with multiple views, based on which we
build four datasets for evaluating the robustness of the com-
parison methods in terms of the number of views. Concretely,
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Datasets MNIST-USPS

BDGP CCV Fashion

Evaluation metrics | ACC NMI PUR

ACC NMI PUR | ACC NMI PUR | ACC NMI PUR

0424 0.318 0.428
0.768 0.675 0.768
0.482 0.709 0.531
0.620 0.676 0.647
0.735 0.837 0.778
0.669 0.592 0.717
0.981 0.962 0.981
0.987 0.976 0.989
0.995 0.985 0.995

RMSL [18] (2019)
MVC-LFA [41] (2019)
COMIC [34] (2019)
CDIMC-net [44] (2020)
EAMC [59] (2020)
IMVTSC-MVI [46] (2021)
SiMVC [39] (2021)
CoMVC [39] (2021)
MFLVC (ours)

0.630
0.395
0.642
0.799
0.480
0.950
0.545
0.670
0.966

0.849
0.564
0.578
0.884
0.681
0.981
0.704
0.802
0.989

0.215
0.232
0.157
0.201
0.263
0.117
0.151
0.296
0.312

0.157
0.195
0.081
0.171
0.267
0.060
0.125
0.286
0.316

0.243
0.261
0.157
0.218
0.274
0.158
0.216
0.297
0.339

0.849
0.612
0.639
0.885
0.697
0.982
0.723
0.803
0.989

0.408
0.791
0.578
0.776
0.614
0.632
0.825
0.857
0.992

0.405
0.759
0.642
0.809
0.608
0.648
0.839
0.864
0.980

0.421
0.794
0.608
0.789
0.638
0.635
0.825
0.863
0.992

Table 2. Results of all methods on four datasets.

Bold denotes the best results and underline denotes the second-best.

Datasets Caltech-2V

Caltech-3V Caltech-4V Caltech-5V

Evaluation metrics | ACC NMI PUR

ACC NMI PUR | ACC NMI PUR | ACC NMI PUR

RMSL [18] (2019)
MVC-LFA [41] (2019)
COMIC [34] (2019)
CDIMC-net [44] (2020)
EAMC [59] (2020)
IMVTSC-MVI [46] (2021)
SiMVC [39] (2021)
CoMVC [39] (2021)
MFLVC (ours)

0.525
0.462
0.422
0.515
0.419
0.490
0.508
0.466
0.606

0.474
0.348
0.446
0.480
0.256
0.398
0.471
0.426
0.528

0.540
0.496
0.535
0.564
0.427
0.540
0.557
0.527
0.616

0.554
0.551
0.447
0.528
0.389
0.558
0.569
0.541
0.631

0.480
0.423
0.491
0.483
0.214
0.445
0.495
0.504
0.566

0.554
0.578
0.575
0.565
0.398
0.576
0.591
0.584
0.639

0.596
0.609
0.637
0.560
0.356
0.687
0.619
0.568
0.733

0.551
0.522
0.609
0.564
0.205
0.610
0.536
0.569
0.652

0.608
0.636
0.764
0.617
0.370
0.719
0.630
0.646
0.734

0.354
0.741
0.532
0.727
0.318
0.760
0.719
0.700
0.804

0.340
0.601
0.549
0.692
0.173
0.691
0.677
0.687
0.703

0.391
0.747
0.604
0.742
0.342
0.785
0.729
0.746
0.804

Table 3. Results of all methods on Caltech with different views. “-X V” represents that there are X views.

Caltech-2V includes WM and CENTRIST; Caltech-3V in-
cludes WM, CENTRIST, and LBP; Caltech-4V includes
WM, CENTRIST, LBP, and GIST; Caltech-5V includes WM,
CENTRIST, LBP, GIST, and HOG.

Implementation. All the datasets are reshaped into vec-
tors, and the fully connected networks with the similar ar-
chitecture are adopted to implement the autoencoders for
all views in our MFLVC. Adam optimizer [17] is adopted
for optimization. The code of MFLVC is implemented by
PyTorch [32]. More implementation details are provided in
https://github.com/SubmissionsIn/MFLVC.

Comparison methods. The comparison methods in-
clude classical and state-of-the-art methods, i.e., 4 traditional
methods (RMSL [18], MVC-LFA [41], COMIC [34], and
IMVTSC-MVI [46]) and 4 deep methods (CDIMC-net [44],
EAMC [59], SIMVC [39], and CoMVC [39]).

Evaluation metrics. The clustering effectiveness is eval-
uated by three metrics, i.e., clustering accuracy (ACC), nor-
malized mutual information (NMI), and purity (PUR). The
mean values of 10 runs are reported for all methods.

4.2. Result Analysis

The comparison results on four datasets are shown in
Table 2, where many comparison methods (e.g., RMSL and
COMIC) punish multiple objectives on the same features,
and CDIMC-net, EAMC, SiMVC, and CoMVC are fea-

ture fusion methods. One could find that: (1) Our MFLVC
achieves the best performance in terms of all metrics. Es-
pecially on Dataset Fashion, MFLVC outperforms the best
comparison method CoMVC (i.e., 85%) by about 14% in
terms of ACC. This is because our model is fusion-free and
it conducts the reconstruction objective and the consistency
objective in different feature spaces so that the adverse in-
fluence of view-private information can be reduced. (2) The
improvements obtained by the previous contrastive MVC
method (i.e., CoMVC) are limited. Our MFLVC is also a
contrastive MVC method, instead, it avoids the fusion of
view-private information and its multi-level feature learn-
ing framework allows the high-level features to learn the
common semantics across all views more effectively.

To further verify our method, we build four datasets based
on Caltech and test the performance of all comparison meth-
ods. Table 3 shows the results on Caltech with different
views, from which we could have the following observations:
(1) The clustering effectiveness of most methods improves
with the increase of the number of views, i.e., ACC increases
from 60% to 80%. (2) Compared to 8 comparison methods,
our MFLVC mostly achieves the best performance indicat-
ing its robustness. (3) Some methods obtain bad results
when increasing the number of views. For example, RMSL,
COMIC, and EAMC achieve ACC about 35%, 53%, and
31% on Caltech-5V which are lower than that on Caltech-4V
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Figure 3. (a) The similarities of feature pairs and label pairs. (b) Convergence analysis. (c) and (d) Parameters sensitivity analysis.

(i.e., 59%, 63%, and 35%). The reason is that the data of
each view simultaneously contain useful common semantics
as well as meaningless view-private information. Views con-
tain much view-private information which might increase
the difficulty of extracting their common semantics. These
observations further verify the effectiveness of our method,
which learns multiple levels of features so as to reduce the
interference from the view-private information.

5. Model Analysis
5.1. Understand the Multi-level Feature Learning

In order to investigate the proposed multi-level feature
learning, we take MNIST-USPS as an example and visualize
its training process. The MNIST view is shown in Figure 2
via t-SNE [25]. It can be discovered that the cluster struc-
tures of low-level features and high-level features become
clear during the training process. The clusters of low-level
features are not dense. This is because the low-level features
have maintained the diversity among samples by reconstruc-
tion objective. In contrast, the clusters of high-level features
are dense and have better low-dimensional manifolds. Ad-

ditionally, in Figure 3(a), the similarities of positive feature
pairs are rising while that of negative feature pairs are de-
creasing. This indicates that the information learned by
the high-level features is close to the common semantics
across multiple views. These observations are in agreement
with our motivations, i.e., the feature MLP can filter out the
view-private information of multiple views so the outputted
high-level features are in dense shapes. The similarities of
positive label pairs are also rising which indicates that the
clustering consistency of semantic labels is achieved.

Convergence analysis. It is not difficult to discover that
the objectives of Lz, Ly, Lq, and Lp, i.e., Egs. (1,4,6,11)
are all convex functions. As shown in Figure 3(b), the cluster-
ing effectiveness increases with the decrease of loss values,
indicating that MFLVC enjoys good convergence property.

Parameter sensitivity analysis. We investigate whether
hyper-parameters are needed to balance the loss components
in Eq. (7), i.e., Lz + M Lu + X2Lq. Figure 3(c) shows
the mean values of NMI within 10 independent runs, which
indicates that our model is insensitive to A1 and \o. This is
because our model has a well-designed multi-level feature
learning framework, by which the interference among differ-
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Components MNIST-USPS BDGP
EQ [,z [,H and Cp ACC NMI ACC NMI
A | v 0.676  0.777 | 0.715 0.663
B | Vv |V 0.891 0.939 | 0.825 0.690
O | v v 0.984 0.962 | 0.955 0.886
O | v |V v 0.995 0.985 | 0.989 0.966
Table 4. Ablation studies on loss components.
MNIST-USPS BDGP
ACC NMI | ACC NMI
@ | X—-—Qv 0.676 0.777 | 0.715 0.663
b | X-Z, -Q/ 0.921 0.860 | 0.652 0.498
© | X-Z,—-H,—-—Q, | 0948 0.894 | 0.742 0.654
d|X-Zx—-H,—-Q, 099 0.985 |0.989 0.966

Table 5. Ablation studies on contrastive learning structures. “v"”’
represents that the contrastive loss is optimized on the features.

ent features can be reduced. In this paper, we set A\; = 1.0
and \> = 1.0 for all used datasets. Furthermore, the multi-
view contrastive learning includes two temperature param-
eters, i.e., 7r of the feature contrastive loss in Eq. (3) and
71, of the label contrastive loss in Eq. (5). Figure 3(d) indi-
cates that our model is insensitive to the choice of 77 and
7r,. Empirically, we set 7 = 0.5 and 7, = 1.0.

5.2. Ablation Studies

Loss components. We conduct ablation studies on the
loss components in Eq. (7) and Eq. (11) to investigate their
effectiveness. Table 4 shows different loss components and
the corresponding experimental results. (A) Lq is optimized
to achieve the basic goal of multi-view clustering, i.e., learn-
ing the clustering consistency. (B) Lz is optimized to make
the low-level features be capable of reconstructing the mul-
tiple views. (C) Ly is optimized to learn the high-level
features, which are then used to fine-tune the semantic labels
by Lp. (D) The complete loss components of our method.
In terms of the results, (B) and (D) have better performance
than (A) and (C), respectively, indicating that the reconstruc-
tion objective is important. Especially when the model has
only low-level features, the results of (B) are better than that
of (A) by about 20% and 10% on MNIST-USPS and BDGP,
respectively. According to (C) and (D), we can find that
the learned high-level features play the most important role
in improving the clustering effectiveness. For example, the
results of (C) are better than that of (A) by about 30% and
20% on MNIST-USPS and BDGP, respectively.

Contrastive learning structures. To further verify our
proposal, we perform contrastive learning (i.e., consistency
objective) on different network structures. As shown in Ta-
ble 5, (a) The semantic labels Q are learned directly from
the input features X. This structure is similar to [29,40, 58]

in some degree. It results in poor performance by directly
extending contrastive learning to the multi-view scenarios.
(b) Between X and Q, we set the low-level features Z and
perform contrastive learning on Q and Z. This structure is
similar to [19,21,39] in some degree and the performance is
also limited. (c) Based on Z, we stack a feature MLP to ob-
tain the high-level features H and perform contrastive learn-
ing on Z, H, and Q. As for (b) and (c), the reconstruction
objective is also performed on Z. (b) and (c) make progress
on MNIST-USPS, because the two views of MNIST-USPS
are digital images and they have little view-private informa-
tion to influence the learning performance. However, (b) and
(c) cannot mine the common semantics well on BDGP. The
reason is that the two views of BDGP are visual features and
text features and they have much view-private information.
It results in poor performance when performing reconstruc-
tion and consistency objectives on the same features (i.e.,
Z). (d) We perform contrastive learning only on H and Q
while leaving reconstruction objective on Z. This setting
obtains the best performance by performing consistency and
reconstruction objectives in different feature spaces. These
experiments further verified the effectiveness of our method,
and confirmed that it is useful to learn representations via a
multi-level feature learning structure.

6. Conclusion

In this paper, we have proposed a new framework of multi-
level feature learning for contrastive multi-view clustering.
For each view, the proposed framework learns multiple levels
of features, including low-level features, high-level features,
and semantic labels in a fusion-free manner. This allows
our model to learn the common semantics across all views
and reduce the adverse influence of view-private information.
Extensive experiments on five public datasets demonstrate
that our method obtains state-of-the-art performance.

Broader impacts. The proposed framework learned a
high-level feature extractor and a label predictor, which can
be applied to downstream tasks such as feature compression,
unsupervised labeling, and cross-modal retrieval, etc. How-
ever, this work aims to provide a general framework and the
trained model might be affected by the intrinsic bias of data
especially with dirty samples. Therefore, the future works
could extend our framework to other application scenarios.
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